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ABSTRACT 

A function f is called an odd-graceful labeling of a graph G=(V(G), E(G)) with p vertices and q edges, if there exists an 

injection function .. with each edge uv assigned the label  : V(G)  {0, 1, 2,….., 2q-1} the resulting edge labels are {1, 3, 

5,….., 2q-1}. The tensor product of two graphs, G and H, has a vertex set V(G)×V(H) and an edge between (u, v) and (u, 

v), iff both uu E(G) and vv E(H), here we denote tensor product by  . In this paper, we prove Sn   Sm and Sn   Pm 
are odd graceful. 
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INTRODUCTION  

A graph G consist of a set V(G) of vertices and a set E(G) of edges, where E(G)  V(G) × V(G). When a single graph G is 
under consideration, we will write V = V(G) for it’s vertex set and E = E(G) for it’s edge set, furthermore, the order of G is 
defined as cardinality of V i.e |V| denoted by n often. If I a non negative integer f(u) is assigned to each vertex u, then the 
vertices are said to be labeled. G=(V,E) is itself a labeled graph if each edge e is given the value f(e)= |f(u)-f(v)|, where u 
and v are the end points of edge. Clearly every graph can be labeled in infinitely many ways. graph labeling is active 
research area in graph theory which has rigorous applications in coding theory, communication networks, optimal circuits 
layouts and graph decomposition problems. According to Beineke and Hegde [1] graph labeling serves as a frontier 
between number theory and the structure of graphs.  

A function f is called an odd-graceful labeling of a graph G=(V, E) with p vertices and q edges, if there exists an injection 

function  :V(G){0, 1, 2,…., 2q-1} with each edge uv assigned the label |f(u)-f(v)|, the resulting edge labels are {1, 3, 
5,…., 2q-1}. A graph which consist odd graceful labeling is odd graceful graph. 

In 1991, Gnanajothi [3] proved the graph Cm × K2 is odd graceful iff m even and the graph obtained from Pn × P2 by 
deleting an edge that joins to end points of the Pn paths, this graph is known as the ladder graph. Author proved that every 
graph with an odd cycle is not odd graceful. This labeling has been studied in several articles.  In 2000, Kathiresan [4] 
used the notation Pn;m to denote the graph obtained by identifying the end point of m paths each has length n. Chawathe 
and Krishna [5] have extended the definition of odd gracefulness the countably infinite graphs and showed that all 
countably infinite bipartite graphs which are connected and locally finite have odd graceful labeling. 

The path Pn(n≥ 2) has vertices v1, v2,…, vn and edges v1v2, v2v3,…., vn-1vn. The cycle on n-vertices Cn(n≥3) consists of Pn 
plus an additional edge v1vn; cycles are odd or even, according as the number of vertices is odd or even. 

The n-dimensional star graph is denoted by Sn. The vertex set V of Sn is {a1,…,an |a1,….,an is a permutation of 1, 2,...., n } 

and the edge set E is {(a1a2,…, ai-1aiai+1,…., an, aia2,…., ai-1a1ai+1,…, an) | a1,…., an  V and 2 ≤ i ≤ n}. Clearly by definition, 
Sn contains n! vertices and each vertex is of degree (n-1). 

The tensor product of two graphs G and H has a vertex set V(G) × V(H) and an edge between (u,v) and (u',v'), iff both 

uu' E(G) and vv' E(H), here we denote tensor product by  . 

In this paper, we prove Sn Sm and Sn Pm are odd graceful. 

THE MAIN RESULTS  

Theorem 1. The tensor product of Sn and Sm i.e Sn Sm is odd graceful. 

Proof.  Let G= SnSm be a graph with p vertices and q edges. The graph G is obtained by tensor product of Sn and Sm 
where n=1, 2,…., n and m=1, 2,…., m. Sn has vertex set {u1, u2,….,un} and Sm has {v1, v2,….,vn}. The graph G has q=2(n-
1)(m-1) number of edges and p=n.m number of vertices, as shown in figure: 

 

 

                                                                                           Fig 1: Sn  Sm 
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Define  : V(G){0, 1, 2,….., (2q-1)} as following: 

(u1v1)=2 

(ukv1)=(2q-1)-2(k-2)                                                                                                                              where,  2 ≤ k ≤ n 

(u1v2)=0 

(ukvj)=6(k-1)-3+2(j-2)+2(k-2)(m-4)                                                                                      where,  2 ≤ k ≤ n, 2 ≤ j≤ m 

(u1vj)= 2(n-1)(j-2),                                                                                                                                                 2 ≤j ≤m 

In accordance with the above labeling pattern the graph under consideration admits odd graceful labeling. 

Example : 

 

 

Fig 2: S7  S5 

 

Theorem 2. The tensor product of Sn and Pm  i.e Sn  Pm is odd graceful. 

Proof.  Let G= SnPm be a graph with p vertices and q edges. The graph G obtained by tensor product of Sn and Pm 

where n=1, 2,…., n and m=1, 2,…., m. Sn has vertex set {u1, u2,….,un} and Pm has vertex set {v1, v2,….,vn}. The graph G 
has q=2(n-1)(m-1) number of edges and p=n.m number of vertices, as shown in figure: 

Define : V(G) {0, 1, 2,…., (2q-1)} as following: 
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Fig 3: Sn  Pm 

(ukv1)=2(k-1)                                                                                                                                              where,  1 ≤ k ≤ n 

(u1v2)=1 

(u1v2j+1)=2(n-1)(j+1)                                                                                                                                 where,  1 ≤ j ≤ m 

(u1v2j+2)=2(n-1)(j+1)+1,                                                                                                                             where,  1 ≤ j ≤ m 

(ukv2) = (2q-1)-2(k-1),                                                                                                                                where,   2 ≤ k ≤ n 

(ukv2j+1)= (2q-1)-2(k-2)-2(n-1)-6(n-1)(j-1)+1,                                                                                where,  2≤ k ≤n, 2 ≤ j ≤ m    

(uk v2j)= (2q-1)-2(k-2)-2(n-1)-6(n-1)(j-1)+1-(2n-1),                                                                      where,  2 ≤ k ≤ n, 2 ≤ j ≤ m  

In accordance with the above labeling pattern the graph under consideration admits odd graceful labeling. 

Example 
:

 

      Fig 4: S5  P7 
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CONCLUSION 

We have given a systematic approach to find odd graceful labeling of tensor products  Sn Sm and Sn Pm and so these 
are odd graceful graphs. 
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