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Abstract:  Gaussian Mixture Models (GMMs) has been proposed for off-line signature verification. The individual 

Gaussian components are shown to represent some global features such as skewness, kurtosis, etc. that characterize 
various aspects of a signature, and are effective for modeling its specificity. The learning phase involves the use of 
Gaussian Mixture Model (GMM) technique to build a reference model for each signature sample of a particular user. The 
verification phase uses three layers of statistical techniques. The first layer involves computation of GMM-based log-
likelihood probability match score,  second layer performs the mapping of this score into soft boundary ranges of 
acceptance or rejection through the use of z-score analysis and normalization function, thirdly, threshold is used to arrive 
at the final decision of accepting or rejecting a given signature sample. The focus of this work is on faster detection of 
authenticated signature as no vector analysis is done in GMM. From the experimental results, the new features proved to 
be more robust than other related features used in the earlier systems. The FAR (False Acceptance Rate) and FRR (False 
Rejection Rate) for the genuine samples is 0.15 and 0.19 respectively. 
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1. INTRODUCTION 

Signature has been a distinguishing feature for person identification through ages. Even today an increasing number of 
transactions, especially financial, are being authorized via signatures; hence methods of automatic signature verification 
must be developed if authenticity is to be verified on a regular basis. Approaches to signature verification fall into two 
categories according to the acquisition of the data: On-line and Off-line [1,2]. On-line data records the motion of the stylus 
while the signature is produced, and includes location, and possibly velocity, acceleration and pen pressure, as functions 
of time. Off-line data is a 2D image of the signature and processed off-line [3]. Difficulty lies in the fact that it is hard to 
segment signature strokes due to highly stylish and unconventional writing styles. The non-repetitive nature of variation of 
the signatures, because of age, illness, geographic location and perhaps to some extent the emotional state of the person, 
accentuates the problem. All these coupled together cause large intra-personal variation. A robust system has to be 
designed which should not only be able to consider these factors but also detect various types of forgeries. The system 
should neither be too sensitive nor too coarse. It should have an acceptable trade-off between a low False Acceptance 
Rate (FAR) and a low False Rejection Rate (FRR). Numerous approaches have been proposed for handwritten signature 
identification, recognition and authentication systems [5][6].  

J. F. Vargas et.al [4] proposed an offline signature verification system based on grey level information using texture 
features. They analyzed the co-occurrence matrix and local binary pattern and used as features. Genuine samples and 
random forgeries were used to train an SVM model. Random and skilled forgeries were used for testing. Daksina Ranjan 
Kisku et.al [8] proposes a technique Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature 
system. From the signature images, global and local features are extracted and the signatures are verified with the help of 
Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of 
these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The 
proposed system is tested on a signature database contains 5400 offline signatures of 600individuals and the results are 
found to be promising.Ali Karouni et.al [12] provides a method for offline verification of signatures using a set of simple 
shape based geometric features like area, center of gravity, eccentricity, kurtosis and skewness. Before extracting the 
features, preprocessing of a scanned image is necessary to isolate the signature part and to remove any spurious noise 
present. The system is initially trained using a database of signatures obtained from those individuals whose signatures 
have to be authenticated by the system. Artificial Neural Network was used to classify and verify the signatures and a 
classification of about 93% was obtained under a threshold of 90%. 

 

Gaussian Mixture Models (GMM) is generally used as a parametric model of the probability distribution of continuous 
features in speaker verification system [9]. In this paper, we propose a method, where GMM’s yields a better performance 
in offline signature verification system. We approach the problem in two steps. Initially, the scanned signature image is 
preprocessed to be suitable for extracting features. Then, the preprocessed image is used to extract relevant parameters 
that can distinguish signatures of different persons. Section 2 deals with the methodology used for verification. 
Implementation results and conclusion are listed in Section 3. 

2 METHODOLOGY 

The algorithm used for the implementation of offline signature verification systems consist of five major modules [7] 

.  

                                                Figure 1: Block Diagram of Proposed Offline Signature Verification System 

2.1 Data Acquisition 

The first step in the design of a static signature verification system is data acquisition. Handwritten signatures are collected 
from different individuals and some unique features are extracted from them to create a knowledge base for each 
individual. The system has been tested for its accuracy and effectiveness on data from 25 users with 10 specimens of 
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each making up a total of 250 signatures.  The proposed verification algorithm is tested on both genuine and forged 
signature sample counterparts. So we developed a signature database which consists of signatures from all the age 
groups. Our database is also language independent and also it consists of signatures done with different pens with 
different colors. 10 users were asked to provide genuine signatures, 5 were asked to do skilled forgeries, 5 provide casual 
forgeries and 5 did random forgeries. A scanner is set to 300-dpi resolution in 256 grey levels and then signatures are 
digitized. For further working we cut and pasted scanned images to rectangular area of 3 x 4 cm or 200 x 200 pixels and 
were each saved separately in files. 

2.2 Preprocessing 

The purpose of preprocessing [13] is to make signature standard and ready for feature extraction. It is also applied to 
improve the efficiency and performance of the verification system. Preprocessing steps done are: - converting RGB image 
to gray, noise removal, cropping in image, binarisation, thinning. The result of preprocessing is as follows:  

 

                  

  

 

 
  

Fig1: All Preprocessing Steps 

2.3 Feature Extraction 

Features Extraction [14] is the key to develop an offline signature recognition system. Features extracted for offline 
signature verification can be broadly divided into two main types: 

Local features are extracted from a portion or a limited area of the signature image. Local features are applied to the cells 
of a grid virtually super imposed on a signature image or to particular elements obtained after signature segmentation. 
These features are calculated to describe the geometrical and topological characteristics of local segments, such as 
position, tangent direction, and curvature.  

Global features depict or categorize the signature as a whole. These features are usually extracted from all the pixels that 
lie within the region circumscribing the signature image such as the length, width or baseline of the signature [15]. Global 
Features that are extracted are summarized as follows:- 

Skewness , Kurtosis, Signature area (Signature Occupancy Ratio, Height [25], Width [25], Horizontal projection, Vertical 
projection, Width to Height Ratio (Aspect Ratio), Centre of Gravity, Density of thinned Image, Density of Smoothed Image, 
Normalized area of black pixels 

First, getting all features values of reference signatures as shown in Table 1, then, the mean, variance and standard 
deviation are calculated as shown in Table 2. 
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Features Feature Vector (Mean of all features) 

Skew(F1) -7.1761 

Kurtosis(F2) 52.4966 

Area(F3) 5.22e+04 

Height(F4) 231 

Width(F5) 229 

Aspect Ratio(F6) 0.9913 

nBlack(F7) 51928 

nWhite(F8) 971 

Centre of gravity(F9) 116.2857,115.0397 

Density of thinned image(F10) 0.9816 

Density of smoothed 
image(F11) 

220.209 

Normalized area of black 
pixels(F12) 

0.9956 

Table 1: Values of features that have been extracted 

2.4 GMM For Training             

Gaussian Mixture Model(GMM) has been used for training our samples. The Gaussian Mixture Models technique is a 
statistical method that can be used for clustering low dimensional data with the help of several multidimensional Gaussian 
probability distributions [10] [11]. GMM is a weighted sum of M component Gaussian densities as given by equation (1) 

       p xi|⋋ = wig(xi
M

i=1
|μi ,Σi)                             (1) 

Where Xi  is a D-dimensional continuous valued features, wi, , i=1,…….,M, are the mixture weights & g(xi|µi,  ∑i), 
i=1,………,M, are the component Gaussian densities. 

The construction of a GMM starts with a random initialization of cluster centers (means of Gaussian distributions) and their 
shapes (covariance matrices). The number of clusters (Gaussians) is a parameter that can be specified by the users.  
Once the model is trained, it can be used to measure the correspondence between sample data (test set) and the model.  

Since good verification results have been achieved in online signature verification using GMMs, we have used them in the 
training phase. The mean and variance of each feature is estimated. Table for mean, variance and standard deviation for 
each signature is given below (Table 2) 

Features Mean Std Dev Variance 

F1 -7.242 0.110782 0.012273 

F2 53.45483 1.611712 2.597615 

F3 5.24E+04 5317.258 28273236 

F4 228.6667 4.041452 16.33333 

F5 232.3333 20.2726 408.3333 

F6 1.015433 0.075068 0.005635 

F7 52211.67 5302.194 28113262 

F8 958 73.36893 5383 

F9 115.0732 2.020903 4.084049 

F10 0.981933 0.000493 2.43E-07 

F11 217.0005 3.436678 11.81075 

F12 0.995567 0.000153 2.33E-08 

Table 2:Mean,Variance and Standard Deviation of a Reference Signatures for a user 
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Extracted feature values have very different distributions due to which it is required to normalize the feature values before 
attempting to match the feature vectors. To perform normalization we have used Z –score normalization [16].  This makes 
use of arithmetic mean & standard deviation of the data. 

A Normalized score is produced by the equation (2) 

 

𝐬′ =
𝐒−𝛍

𝛔
                                                  (2) 

Where µ is the mean & σ is the standard deviation of the matching score distribution. This technique does not guarantee a 
common range for the normalized scores but ensure that the distributions of each feature will have a mean of Zero & 
standard deviation of 1. 

This transformation only preserves the original distribution of it is Gaussian, due to fact that the mean & standard deviation 
are the optimal location & scale parameters for Gaussians. The Assumptions that features have Gaussian distribution is 
acceptable with our application. For each feature, z-score or standard score is calculated. 

In order to obtain the threshold of the global features classifier for a specific user, the probability score of the reference 
signatures is calculated as shown in Table 3. 

 

Signatures Probability Score 

Sig 1 0.68848 

Sig2 0.68925 

Sig3 0.688832 

Sig4 0.688548 

Sig5 0.53869 

Table 3: Signatures and Their Probability Score 

Threshold of a specific user is the minimum values among all reference signatures, and it is kept in his profile. In the test 
phase, all steps are repeated until getting the probability score value; if the current score is greater than or equal to the 
threshold value stored in the user profile, the user is accepted as genuine, otherwise is rejected as a forgery. 

3 Conclusion 

This paper uses Gaussian mixture models for offline signature verification and provided a performance evaluation which 
showed them to be effective. The algorithm used simple features to characterized signatures that effectively served to 
distinguish signatures of different persons. The approach was good for continuous pattern. The system was robust and 
could detect random, simple and semi-skilled forgeries but the performance deteriorates in case of skilled forgeries. A 
larger database can reduce false acceptances as well as false rejections. Using a higher dimensional feature space and 
also incorporating dynamic information gathered during the time of signature can also improve the performance. It gives 
fast output response and needs low storage requirements. The experimental results have shown the ability of the 
proposed system against all kinds of forgeries. 

Results for the proposed system are shown in Table (4). 

 

 FAR FRR 

Genuine 0.15 0.11 

Simple Forgery 1.7 1.9 

Random Forgery 2.01 1.99 

Skilled Forgery 4.77 3.97 

Table 4: Simulation Results 
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