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Abstract 

    The Stability of MHD compressible streaming fluid cylinder of radius oR endowed with surface tension and pervaded 

by axial magnetic field has been developed. The stability criterion is established in general form. The model is capillary 
unstable only in the axisymmetric mode m=0, the electromagnetic forces acting interior and exterior the fluid cylinder are 
stabilizing and the MHD stability is destabilizing for small wave length. In the latter case the instability shrinks with 
increasing the magnetic intensity. However the compressibility has a stabilizing tendency. 

Keywords 

Magneto hydrodynamic-compressible- streaming. 

Academic Discipline and Sub-Disciplines 

Applied Mathematics 

SUBJECT CLASSIFICATION 

Stability of liquid cylinder 

TYPE (METHOD/APPROACH) 

  Application of stability of liquid cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 

Vol 12, No.4 

editor@cirworld.com 

www.cirworld.com, member.cirworld.com 

 

mailto:shimaa_1234@hotmail.com
http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/


ISSN 2277-3061  

3422 | P a g e                                                        J a n u a r y 1 6 ,  2 0 1 4  

                      

  1. Introduction 

The stability of a liquid column has been studied by Plateau and Savart (1873). Rayliegh (1945) derived the dispersion 
relation. Donnelly and Glaberson (1966) p(542) examined the type of perturbation on the boundary of the capillary 
instability of liquid jet. The analytical studies have been performed by Rayleigh (1945). 

Such works have been exended by Chandrasekhar (1981) see also Radwan and Elazab (1990-2008) and Azwz (2008), 
(2010) and (2011).The present work is totally different those studied before since the velocity here is not solenoidal any 

more (i.e. 0. u ) and also that the density of the fluid is not uniform. 

2. Formulation of the problem 

  We consider a streaming (velocity ou ) liquid cylinder of density   (of radius oR ) endowed with surface tension and 

pervaded by axial magnetic field for all modes of perturbation. The fluid is assumed to be compressible, inviscid and 
perfectly conducting. The fluid of density   is pervaded by the magnetic field. 
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The surrounding tenoues medium around the cylinder is assumed to be pervaded by the magnetic field 
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Under the present circumstances, the fundamental equations are given as follows. 
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In the vacuum region, the basic equations are 
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Here u  and p are the fluid velocity vector and kinetic pressure, H  is the magnetic field intensity. Equation (3) is the 

magnetodynamic vector equation of motion including the magnetodynamic (Lorentz) force  HH  )(  and the 

gradient pressure force p . Equation (4) is the continuity equation for compressible fluid. Equation (5) is the state 

equation.  Equation (6) and (7) are the equations of the magnetic field in the liquid region. Equation (8) and (9) are the 
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equations of vaccum region. Equation (10) gives the pressure due to the capillary force. Equation (11) is the unit normal 

vector N  to the fluid - liquid interface and equation (12) is the equation of the boundary surface. 

3. Unperturbed State 

The unperturbed stationary state is studied upon considering the basic equations system (1) - (7). Equation (1) reduces to 

T o identify this constant of integration we have to apply the balance of the pressure across the boundary surface 

at oRr  . Taking into account equation (10) in the initial state gives. 
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Consequently, the unperturbed pressure distribution is finally given by 
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Where the first term in the right side of equation (17) represent the capillary force contribution while the second term is 
due to the electromagnetic force influence inside and outside the fluid cylinder. In the unperturbed state the pressure 

op must be positive and so using equation (17), we find 
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4. Perturbation analysis 

     Due to a small perturbation of the initial state, every variable quantity ),,,( tzrQ   may be expressed in the 

axisymmetric mode, as  
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Where the subscript o as usual characterizes the initial quantities while those with index unity are their increments. By 
substituting the expansion given in equation (19) into equations (3)-(10), the relevant perturbation equations in the fluid jet 
are 

    By an appeal to the expansion (2.13) for (2.1) - (2.7), the linearized perturbation equations are being  
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And along the fluid vacuum interface given by 
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Where  is the elevation of the perturbed interface given by 

))(exp( tkzio                                                                                         (28) 

Where  is the growth rate of instability, k is the longitudinal wave number and a
2

 is the 

speed of sound. 

 

   From the point of view of the space- time dependence, every small increment );,,(1 tzrQ   could be expressed as:  
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By the use of the expansion (29), the linearized equations (20)-(27) are simplified and solved. 
Under the present circumstances the non-singular solution is given by 
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Substituting from equation (31) into (30), we get 
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By using the expansion (37), taking into account the dependence (26), the solution of (37) is given in terms of Bessel 
functions of first kind of order zero 
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where )( rIo   is the modified Bessel function of the first kind of order zero while A is an arbitrary constant to be 

determent The perturbed magnetic  field in the region surrounding the fluid cylinder is obtained by solving the relevant 
perturbation equations (25) and (26). Equation (25) means that the perturbed magnetic field in the region surrounding the 

fluid can be derived from a scalar function 1 , say 
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By combining equations (25) and (41), we get 

01

2                                                                                                                 (42) 

Using the expansion (29) the solution of (41) is given in terms of Bessel functions 
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Where )(krKo is the modified Bessel function of the second kind of order zero and B is the unspecified constant. Finally,  
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5. Boundary conditions 

     The solution of the above equations in the perturbed state must satisfy the following boundary conditions: 

(1) The normal component of the velocity must be compatible with the velocity of the fluid particles across the boundary 

surface at oRr  , i.e. 
dt
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(2) The normal component of the magnetic field H namely rH must be continues across the perturbed boundary at 
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Therefore, the perturbed magnetic field external the fluid cylinder is given by 
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 (3) The normal component of the stresses due to the kinetic pressure of the fluid and the magnetic pressure of the 
electromagnetic forces acting inside and outside the fluid column must be discontinues by the curvature pressure. This 
may be written as 
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After lengthy calculations, we finally arrive to 
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6. General discussions  

    Equation (50) is the capillary dispersion relation of fluid cylinder acting upon electromagnetic and capillary forces with 
uniform magnetic fields. 

If we impose ,0oH equation (50) reduces to 
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As the fluid is incompressible so a   and in such case xy  , therefore equation (50) degenerates to 
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If we impose ,0oH U=0 equation (52) reduces to that derived by Rayleigh (1945)    
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7. Hydrodynamic Instability 

If the model under consideration is acting upon the capillary force only and other forces are neglected the dispersion 
relation for this case is given by (51). The discussions of this relation showed that the model is capillary stable in the 
symmetric mode x>1 and unstable if x<1 where   x=1 is marginally stability state. 

8. Magnetodynamic Stability 

In the absence of the capillary force and the fluid cylinder only subjected to the electromagnetic forces interior and exterior 
the fluid, the dispersion relation  
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The electromagnetic forces acting interior and exterior the fluid cylinder are stabilizing effect due to the fact that the 
applicable magnetic fields are axial and uniform. 

Therefore, the model is purely stable under the influence of the electromagnetic force. 

9. MHD Stability 

In the case which the fluid cylinder is acting upon the capillary and electromagnetic forces , the model is unstable for small 
region while stable otherwise in the case of effect of capillary force while instability shrinks with increasing magnetic 
intensity and it may suppress the destabilizing character of the capillary force.                   
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10. Numerical discussions 

 In order to verify the results obtained analytically concerning the acting different forces effects on the present 
model, it is found very important to discuss the dispersion relation (50) numerically. In order to do that we have to rewrite 
this dispersion relation in non-dimensional form, so we may insert such relation in the computer for making the numerical 

computation. Based on the input data, one has to check whether the values of )( 32

oRT  are positive or other wise. If 

the data are positive, then we have data for unstable regions. As values )( 32

oRT   are negative we put  i are 

the values of the oscillation frequency concerning the stable domains. In the transition from the negative values to positive 

values we have to path with the values of 0  which means marginal stability states. The points at which the transition 
from stability regions to those of instability called the critical points.  

 The dispersion relation (50) has been formulated in the dimensionless form upon using the quantity 

213)( oRT  which has a unit of time as 


1
and that the quantity )( 222

oo RH   says GH  has a unit of the intensity 

of magnetic field. Consequently, equation (2.33) takes the form  
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The numerical calculations have been performed by inserting the dispersion relation (2.41) in the computer and computed. 

Taking into )()( 10 xx  . The calculations have been carried out for all short and long wave lengths as 0  x  4.0 

for several values of ( Go HH ) = 0, 0.2 and 0.8. 
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