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ABSTRACT 

Typically star-delta transformation is adopted in determining the equivalent impedance between two terminals of an 
electrical network [2].  Shown relevantly  in [1] is a simplified approach, less time-consuming to determine the equivalent 
resistance between two terminals of an electrical circuit made of resistive elements (of equal values) and, hence the 
resultant currents in the ciurcuit are determined.   This concept is extended and generalized in this study to a class of 
networks with unequal resistances and/or reactances to determine the equivalent impedance between two nodes.  This 
generalized approach is more comprehensive and universal in analyzing electrical network with complex impedances 
(regardless of their values).  It is applicable to both contexts of circuits with pure resistive elements (as in d.c. analysis) as 
well as with complex impedances  encountered in a.c. analysis.     
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1. INTRODUCTION  

Certain  electrical circuits (such as those found in power system applications) can easily have hundreds of nodes.  
However, only a few of these nodes have sources connected to them.  If the nodes that do not have sources are removed 
(on ad hoc basis), the circuit analysis of the system gets significantly simplified.  Such node elimination in complicated 
systems can be done using matrix operations (by computer);  however, it can also be done by hand calculation, depending 
on the number of nodes.  A common method (given in most network analysis textbooks [2]) to solve by hand is to use 
wye-delta transformations and then series-parallel combinations as necessary.  That is, in the contexts of analyzing such 
networks, (both d.c. and/or a.c.) often star-delta transformation plus necessary series and parallel simplification of the 
elements are involved to find the circuit equivalent and determine relevant node voltages and loop-currents. 

Pertinent to such analysis Aneja and Kumar [1] have recently indicated a simplified alternative method (in lieu of 
star-delta transformation).  The approach is shown to be less time-consuming and simplified vis-à-vis complex topology of 
electrical network.  The study in [1] is confined to resistive elements, and such elements are also assumed to be all equal. 

The present study is indicated to perform a simplified analysis in more comprehensive electrical networks that 
may contain both resistive and/or reactive elements; also, no assumption is needed on the elements being all of identical 
values, except that a  certain ratio relation has to be maintained between elements in designated arms.  The proposed 
method is also simple and less time-consuming; but, has a broader scope to include reactive elements and as such, is 
applicable to both d.c. and a.c. networks as well.   

2. STATEMENT OF THE PROBLEM:  PROPOSED METHODOLOGY 

To illustrate the scope of the study and demonstrate the underlying efficacy, the following explicit configurations of circuits 
are considered: 

 Circuits with unequal resistance values  

 Circuits configured with equal-valued complex impedances  

 Circuits with unequal impedance values  

3. ALGORITHM 

The shortcut procedure given in [1]  refers to finding the equivalent resistance  for examples across terminals A and B in 
Fig. 1  of [1] assuming R1=R2=R3=R4=R5 = 4 (all being equal).  Relevant steps are as follows: 

 Keep intact all the branches connected to the terminals across which the equivalent resistance is calculated  

 Search for that resistive branch in the circuit that would be a null detection branch of the four-arm bridge  

 Open the null-detection branch obtained in the step above.   

Fig. 1 of[1] is reproduced here for easy reference.  Hence, the equivalent resistance between A and B (in Fig. 1) of [1] is 
obtained; as well as the loop currents being deduced.   
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Fig. 1:  Figure 1 of [1] 

3.1 Unequal Resistive Network: Present Method 

As stated earlier, in Fig. 1 of [1], the resistive elements considered are all of the same value.  However, ahould these 
values differ, as shown in Fig. 2 below, a relevant modified procedure is indicated.    The traditional method of finding 
equivalent resistance is first illustrated using wye-to-delta transformation.  As an example, In the following figure (Fig. 2), 
wye-to-delta transformations are used to find the resistance between terminals A and B.   
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Fig. 2:  Unequal Resistive Network Following the Condition of Balance 

 

Figure 2 can be redrawn using the wye-to-delta transformation as illustrated in Fig. 3.  Relevant relations are given here 
for a circuit with components specified as follows:   
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Fig 3: Wye-Delta Transformation of Fig. 2  

 

Thus, considering the circuit shown (Fig. 2) and applying the above relations (1), the resulting numerical values are 
indicated as in Fig. 4: 

 

Fig 4: Wye-Delta Transformation for Fig. 2 with numerical values 
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Suppose  Fig.  2  is redrawn as in Fig. 5: 

 

Fig 5:  Circuit Redrawn Using Wye-Delta Transformation

In Fig. 5, the equivalent resistance can be obtained as:        14.93||76||14||284eqR .  However, the 

underlying computations can be simplified by using the modified method of [1] as described below.   

The resistor across terminals C and D in Fig. 2 will have a negligible effect if there is a condition of balance existing in the 

circuit.   The proposed method involves searching for values of R2, R3, R4, R5  and determing by inspection whether a 
condition of balance exists.  That is,  
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In Fig. 2  note that any current flowing through resistor R3 also flows throught resistor R5.  Any current flowing through R2 
also flows throught R4.  There is no current flowing through R6 and no voltage drop across R6.  R6 has no effect on the 
overall network resistance.   

By inspection,  for an equal resistive network the balance equation will hold.  In addition, there are an infinite number of 
other possibilities where the balance equation is satisfied and the new shortcut method due to [1] can be used for analysis 
in such cases.   Because the balance relation (2) holds for the circuit in Fig. 2, one can solve for the equivalent resistance 
between terminals A and B  by open-circuiting the branch between terminals C and D since it is a null detection branch of 
the four-arm bridge.  Relevant procedure is illustrated in Fig. 6.   

 

Fig 6:  Circuit Redrawn Without Null Branch 

A simple calulation gives R(AB) = 4 + 12||9  = 9.14 .  Note that this is the same result as from the wye-delta 
transformation approach.   Note that the value of the null detection branch resistance does not influence the overall 
network resistance.   

3.2 Equivalent Impedance AC Network 

It is shown here that the shortcut method can also be applied to determine the  equivalent a.c. impedance.  As an example 
consider the proposed circuit  in Fig. 7 with complex impledance values: 
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Fig 7:  Equivalent Impedance AC Network 

Applying wye-delta transformations and noticing that all three impedances connected in wye are equal, it follows that all 
three impedances connected in delta must be equal and the value of each delta-connected impedance must be three 
times the value of each wye-connected impedance.  This is shown in the figure 8.   

 

Fig 8:  Equivalent Impedance AC Network wye-delta Transformation 

Calulation of impedance Z(AB) between terminals A and B in Fig. 8  is given by.: 

      .30153045||30153045||3015||3045)( ooooooABZ    By not including the null 

detection branch of the four-arm bridge as per the proposed notion, Fig. 7 simplifies to Fig. 9: 

 

Fig 9:  Equivalent Impedance AC Network Using Shortcut Circuit  
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By inspection, the equivalent impedance for the circuit in Fig. 8 above is Z(AB) = 30<30
o
  ||  30<30

o  
= 15<30

o
.  Notice that 

this result is the same as that of the result using the wye-delta transformation approach.  Thus the shortcut method has 
been shown to be successful in equivalent impedance networks as well.    

3.3 Unequal  Impedance AC Network 

It is further shown here that the proposed method can also be applied to an unequal impedance a.c. network (as long as 
certain conditions of balance hold).  As an example, consider the following circuit (Fig. 10) : 

 

Fig 10:  Unequal Impedance AC Network  

The circuit in Fig. 10 can be simplified through a wye-delta transformation similar to that discussed previously, and the  
equivalent impedance is caluculated.  For the network shown in Fig. 10,  the calculations yield:   Z(AB) = 17.86<40

o
.  

However, it can be seen by inspection that a balance condition,namely,   
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exists in the circuit of Fig. 10.  If the circuit is at balance, equation (3) holds and the shortcut procedure can be adopted.  
Note that for an AC circuit,  Z1 = |Z1| <1,   Z2 = |Z2| <2 , Z3 = |Z3| <3,  and Z4 = |Z4| <4,   Then from equation (3), 

     ,44223311   ZZZZ  which shows there are two conditions to be satisfied 

simultaneoously for balance in an A.C. bridge circuit so that the shortcut method can be used and the null branch has no 
effect: 

                                                       42314231        and    ZZZZ                                                              (4) 

Because the balance condition is satisfied for the circuit of Fig. 10,  the circuit can be redrawn will the null branch 
neglected as shown in Fig. 11 towards simplification. 

 

Fig 11:  Unequal Impedance AC Network Without Null Branch 

From the circuit of Fig. 10, Z(AB) = [(10<30
o
 + 20<45

o
)  || (15<30

o
 + 30<45

o
)] = 17.86<40

o
.    Note that through the 

shortcut method of neglecting the impedance of the null branch, the impedance is calculated as having the same value as 
that of the result from the wye-delta transformation approach.   
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4. COMPLEX CIRCUIT ANALYSIS EXAMPLE  

More complex circuits can also be addressed by the proposed method.  As an example, consider complex network shown 
in Fig. 12.  By inspection of the network, the circuit follows the balance relation (2). Therefore, the same procedure 
indicated in the othe examples is applied to this network and matched with the wye-delta approach. 

 

Fig 12:  More Complex Circuit Example 

By wye-delta approach the equivalent resistance between terminals A and B works out as 1.49 ohm. Two wye-delta 
transformatations and numerous series-parallel simplifications require lengthy time-consuming effort.   However, since by 
inspection the balance equation (2) holds,  the circuit of Fig. 12 can be redrawn as shown in Fig. 13.   

 

Fig 13:  Simplified Circuit 

Hence,  by inspection the equivalent resistance between terminals A and B can be deduced as:  R(AB) ={ [(15 || 9 || 12) + 
2] || 2}  = 1.49 ohm.  Note that this result is same as for the circuit of Fig. 12, but the underlying computational task is 
highly reduced. 

5. CONCLUSION 

A shortcut method is indicated to find equivalent resistance/impedance of complex networks whenever  certain balance 
conditions are satisfied.   It  is possible to see such balance conditions by simple inspection.  If these balance conditions 
hold, then the circuit is simplified and the resistance/impedance in a null branch is assumed  negligible.  Thus, in 
summary, the present method allows a simplified approach to determine the equivalent resistance/impedance of complex 
dc/ac circuits.  The procedure is far more simpler than the wye-delta method.  The present study is an extended and 
generalized method due to [1] with more and exhaustive application potentials.   
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