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Abstract:

The concept of Public key cryptosystems based on error correcting codes was invented by McEliece in 1978. In 1991
Gabidulin, Paramonov and Tretjakov proposed a new version of the McEliece cryptosystem (GPT) based on maximum
rank distance codes instead of hamming distance codes. Respective structural attacks against different variants of the
GPT cryptosystem were proposed by Gibson and lately by Overbeck. The Overbeck attack breaks all variants of the GPT
cryptosystem and is turned out to be either polynomial or exponential depending on parameters of the cryptosystem.
Furthermore, In 2013, Gaborit et al. have presented a decoding attack against the parameters of the simple variant of the
GPT cryptosystem which were demonstrated to combat the GPT cryptosystem against Overbeck’s attack.

In this paper, we introduce two new secure approaches against both the structural (Overbeck’s attack) and decoding
(brute force) attacks. The first one is called Distortion Matrix Approach (DMA), and the second is called Advanced

Approach for Reducible Rank Codes (ARC). The DMA based on proper choice of a distortion matrix X , while, the ARC

based on a proper choice of a scramble matrix P . Furthermore, we evaluate the simple variant of GPT cryptosystem
against Gaborit et al. attack and demonstrate a new set of parameters which are secure against all known attacks. Our
results show the proposed approaches combat the structural and decoding attacks with a large reduction in the key size in
comparison to the original McEliece cryptosystem.
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1 Introduction

McEliece [1] introduced the first code-based public-key cryptosystem (PKC). The system is connected to the hardness of
the general decoding problem. It is based on Goppa codes in the Hamming metric. It is a strong cryptosystem but the size
of a public key is too large (500 000 bits) for practical implementations to be efficient. The choice of the code has a vital
effect on the security of this type of cryptosystems. Some codes have a structure that can be recovered in polynomial
time, hence breaking the cryptosystem completely. However, other codes still have protection against cryptanalysis.
Niederreiter [2] introduced a new code based version of PKC based on check matrices of Generalized Reed-Solomon
codes. It turned out that this cryptosystem is insecure [3]. Several modifications of this PKC [4, 5, 6], and [7] seem to be
secure but no independent cryptanalysis was made on these cryptosystems.

Also, Gabidulin, Paramonov and Tretjakov proposed in [8] other version of McEliece’s public key cryptosystem based on
rank error correcting codes, which is now called the GPT cryptosystem. The GPT cryptosystem has two advantages over
McEliece’s Cryptosystem. Firstly, it is more robust against decoding attacks than McEliece’s Cryptosystem [9]; secondly,
the key size of the GPT is much smaller and more useful in terms of practical applications than McEliece’s cryptosystem.
There are two types to attack against the GPT cryptosystem and its variants: the first is structural attack, an attacker
attempts to recover the private key (the hiding procedure) from the public key, based on the structural properties of the
rank codes; the second attack is decoding attack, an attacker tries to correct rank errors by a general algorithm without
any knowledge of the structure of a rank code. Decoding attack ia generic and depends only on the code parameters. In
1995, Gibson [10, 11] proposed the first structural attack which broke the GPT system for public keys of about 5 Kbits. The

Gibson attack was efficient for practical values of parameters ns< 30, where

F

N
27 as an alphabet.

is the length of rank code with the field

Several proposals of the GPT PKC were introduced to withstand Gibson’s attack [12, 13]. One proposal was to use a
rectangular row scramble matrix instead of a square matrix. The proposal allows working with subcodes of the rank codes
which have much more complicated structure. Another proposal exploits a modification of Maximum Rank Distance (MRD)
codes where the concept of a column scramble matrix was also introduced. Moreover, a new variant, which is called
reducible rank codes, was also implemented to combat the GPT cryptosystem against structural attacks [14, 15]. All the
above variants withstand Gibson attack. In 2005, R. Overbeck [16, 17], and [18] has proposed the second structural attack

which is more effective than Gibson attack. His method is based on two factors: a) a column scrambler P that is defined

over the base field, and b) the unsuitable choice of a distortion matrixx. However, Overbeck managed to break
completely all variants of the GPT cryptosystem based on the general and developed ideas of Gibson. In 2013, Gaborit et
al. have presented two new generic approaches (decoding attacks) to attack Rank Syndrome Decoding (RSD) problem,
both approaches have their own interest depending of the type of parameters considered [38]. Furthermore, they break
the proposed parameters in [24], and [21] which were demonstrated to combat the GPT cryptosystem against Overbeck’s
attack.

In this paper, we introduce two new secure approaches against both the Overbeck and the decoding attacks. The first one
is called Distortion Matrix Approach (DMA), and the second is called Advanced Approach for Reducible Rank Codes

(ARC). The DMA based on proper choice of a distortion matrix X , while, the ARC based on a proper choice of a scramble

matrix P . The DMA is proposed to improve the security of the smart approach [19] against little vulnerability which may
affect its security, and as a consequence the system may be broken. Therefore, we address and show these

vulnerabilities, and then we will describe a new construction of distortion matrix X which countermeasures the
vulnerabilities of the smart approach. The ARC is designed to countermeasure Overbeck’s attack against the reducible
rank codes variant [14, 15]. Finally, we evaluate the simple variant of the GPT PKC which was proposed in [24] against
Gaborit et al. attack and demonstrate a new set of parameters which are secure against all known attacks. Our results

show the DMA is secure even the column scrambling matrix P is chosen over the base field, and the ARC is secure even

the distortion matrix X does not exist. The proposed approaches combat the structural and decoding attacks with a large
reduction in the key size in comparison to the original McEliece cryptosystem.

The rest of this paper is structured as follows. Section 2 introduces the related work. Section 3 describes the GPT
cryptosystems. Section 4 discusses decoding and Overbeck’s attacks against the GPT cryptosystem. The DMA will be
presented in Section 5. Section 6 first takes a short introduction on reducible rank codes, and then the ARC will be
described. Section 7 gives a short introduction on the simple variant, and afterward we demonstrate new parameters
against attacks. Finally, Section 8 concludes the paper with some remarks.

2 Related Work

Overbeck’s attack is a potential attack which breaks all variants of the GPT cryptosystem in a polynomial time. However,
there are few methods were proposed to combat Overbeck’s attack against the GPT cryptosystem. Kshevetskiy in [20]
suggested a secure approach towards the choice of parameters for avoiding Overbeck’s attack based on suitable choice

of the distortion matrix X . Independently, Loidreau proposed similar method in [21]. Although, they neither explained how
the matrix X can be constructed in a secure manner nor explored the implications of that approach. Moreover, they
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recommended a set of parameters to be secure against Overbeck’s attack. However, all parameters were proposed in [21]
have been broken by Gaborit et al., and the second set of parameters which were supposed to be stronger than the first
one are also attacked in a few seconds with hybrid Grobner bases attack as shown in [38]. In short, Both Kshevetskiy and
Loidreau approaches are not considered to be secure against Gaborit et al. attack (decoding attack).

Gabidulin presented in [22] a secure approach for the standard variant of the GPT cryptosystem called an advanced

approach which defines a particular column scrambler matrix P over the extension field without violating the standard
mode of the GPT PKC. This approach is secure against all known attacks however it is not applicable for the reducible
rank codes variant of the GPT PKC. Hence, the reducible rank codes have different constructions and principles than the
standard rank codes [14]. In this paper, we will present the ARC approach as an appropriate secure approach for the
reducible rank codes variant. We have applied the advanced approach for the simple variant of the GPT cryptosysrtem in
[23], and reduced its public key size from 10 Kbits to 4 Kbhits in [24]. Our method to reduce the public key size was based
on choice of a set of parameters which were secure against all known attacks at that time. Recently, Gaborit et al.
presented a decoding attack (new algorithm) which can break our proposed parameters in 5 days [38]. In this paper, we
will evaluate the simple variant against Gaborit et al. attack and demonstrate secure parameters against all known attacks.

We have introduced a new approach called smart approach [19] which based on a proper choice of the distortion

matrix X . Recently, we have realized that the smart approach can be vulnerable to a new structural attack under certain
conditions. Therefore, we will highlight the vulnerabilities of the smart approach, and then we will propose the DMA as an
alternative approach for the Smart approach. In summary, the reducible rank codes variant is still vulnerable to Overbeck’s
attack, and the Smart approach requisites to be reconstructed in more powerful way in order to avoid any structural
attacks in the future. In addition, both Kshevetskiy and Loidreau approaches are not considered to be secure against
Gaborit et al. attack. Moreover, the simple variant GPT PKC is also vulnerable to Gaborit et al. attack using our proposed
parameters in [24].

Our contributions are as follows:
1. We present the ARC approach to secure the reducible rank codes variant of GPT PKC.

2. We explore some vulnerabilities of the smart approach, and then, we will propose the DMA as an alternative
approach for the Smart approach.

3. We evaluate the simple variant of GPT PKC against Gaborit et al. attack and demonstrate a new set of parameters
which are secure against all known attacks.

3 The GPT Cryptosystem

We give a short introduction to rank codes in Section 3.1; and provide a description of the standard GPT cryptosystem in
Section 3.2.

3.1 Rank Codes

Rank codes were introduced by Gabidulin in 1985 [34]. The rank codes are a linear codes generated by polynomial
which can correct rank distance errors efficiently. The basic notions of rank codes are introduced as follows:

F

F s q N w N
Let 9 be afinite field of 1 elements andlet 9 be an extension field of degree 'Y .

X=X %) F

Le be a vector with coordinates in

. F
The Rank norm of X is defined as the maximal number of X , Which are linearly independent over the base field % and

RK(x|F,)

is denoted

F

N
Similarly, for a matrix M with entries in @ , the column rank is defined as the maximal number of columns, which are

chol (M | Fq) )

F
linearly independent over the base field 9, and is denoted

We distinguish two ranks of the matrix:

Fnv Rk(MI|F,)
1. The usual rank of matrix M over 9 - o" .

F
2. The column rank of a matrix M over the base field ' 9 — Rk°°'(M|Fq).

Rk (M|F,) >Rk (M|F
The column rank of the matrix M depends on the field. In particular, (M| q) (M| qN)
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_y:

The Rank distance between X and y is defined as the rank norm of the difference

d(x,y) = Rk(x-y|F,)

- (nk,d) . CcFy . _
Any linear V'™ code @ fulfils the Singleton-style bound [34] for the rank distance:
Nk < Nn—(d —1)max{N,n} (1)

A code C reaching that bound is called a Maximal Rank Distance (MRD) code.
The theory of optimal MRD (Maximal Rank Distance) codes is given in [34].

[l .— qimodN .
The notation g = means the ! -th Frobenius power of 9 . It allows to consider both positive and negative
Frobenius powers i .

G . , ,
For N= N , a generator matrix ¥ ofa (n’ K, d) MRD code is defined by a matrix of the following form:

9 9, .. O,
ol e, o)
G.=| o g7 9y
N
[k-1] [k-1] [k-1]
o 0 g 2
9:,9:---,0 P
Where " are any set of elements of the extension field % which are linearly independent over the base field 9.

A code with the generator matrix (2) is referred to as (n’ K, d) MRD code, where N is code length, k is the number of

. . . . =n— m=(m,m,,...,m
information symbols, d is code distance. For MRD codes, d=n k"'l. Let ( R 3 k) be an

n

information vector of dimension k . The corresponding code vector is the ' -vector

g(m)=mG,

d-1

i Rk(e|F)=s<t=——

If Y3 g(m) +9 and , then the information vector M can be recovered uniquely from y

by some decoding algorithm. There exist fast decoding algorithms for MRD codes [34], [35]. A decoding procedure
T

(n 5 k) g GkH D O. For decoding, the matrix H should

requires elements of the parity check matrix H such that

be of the form

h, h, ... h
1 1 1
ho  hE L g
— 2 2 2
H=| he  h2 o he |
[d-21  pld-2] [d-2]
h; h; S 3)
N R o F — .
where elements M.y, by are in the extension field 9 and are linearly independent over the base field 9.

3.2 Description of the GPT Cryptosystem
Overview of the GPT Cryptosystem.
The GPT cryptosystem is described as follows:

- m eF,,s=12,...,k
m=m,m,,...,m N 15y
Plaintext: A Plaintext is any K _vector (m,, m,, ) % .
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Public key: In previous works, different representations of the public key are given. All of them can be reduced to the
following form.

kx(n+t)

The Public key is a generator matrix

pub

{X Gk}
G,,=S P
(4)

Let us explain roles of the factors.

G
« The main matrix K

t:L—n_k

2 can be corrected.

is given by equation (2). It is used to correct rank errors. Errors of rank not greater than

F

* A matrix S is a row scrambler. This matrix is a non singular square matrix of order k over the extension field 9 .

Fon RK o (X |Fq)=tl

* A matrix X is a distortion (kth) matrix over 9 with full column rank

" X O Jryenes

k - has full column rank

and rank

RK(X|F ) =t by <t,

. The matrix

(t, +n)

E
* A nonsingular matrix Pisa square column scramble matrix of order over the base field 9.

. tl+n may be greater than N ,but N <N !

S,G,, X,P

The Private keys are matrices separately and (explicitly) a fast decoding algorithm of an MRD code. Note

also, that the matrix X is not used to decrypt a ciphertext and can be deleted after calculating the Public key.

m=(m,m,,....mJ)m; eF ,
Encryption: Let 9" be a plaintext. The corresponding ciphertext is given by

c=mG,,+e=mSK G, P+e -

n—k
A
2 2

€ is an artificial vector of errors of rank t2 or less. It is assumed that

where
Decryption: The legitimate receiver upon receiving C calculates

C (ci,c'z,...,ct'lm) =
X G
cp? =ms{ k}rep1

Then from C the extracts the subvector

c =(ct1+1,ct1+2,...,ctl+n):mSGk+e , ©

v -1
where € s the subvector of eP . Then the legitimate receiver applies the fast decoding algorithm to correct the error

v " i
€, extracts mS and recovers M as M = (mS)S ]

V =kx(t,+n)xN xlog,q R=—~

In this system, the size of the public key is bits, and the information rate is L+n,

Figure 3.2 depicts how the GPT cryptosystem operates, and shows where the attacks can be made.
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4 The security of the GPT PKC

There are two types of attacks against the GPT cryptosystem and its variants. The first one is the decoding attacks which
are described in Section 4.1. The second is structural attacks, we focus on Overbeck’s attack in this paper as one of the
most powerful structural attack against GPT cryptosystem. Overbeck’s attack is discussed in Section 4.2.

4.1 Decoding Attacks

An important part of a decryption procedure is correcting rank errors using a fast decoding algorithm known to the
legitimate party. An unauthorized party may attempt to correct rank errors by a general algorithm without any knowledge of
the structure of a rank code. We consider algorithms described in [36], [37] and [38].

F

Johannson and Ourivski proposed two algorithms for decoding an arbitrary (n’ k) linear rank distance code over q"
t= {HJ
[36]. These algorithms correct errors of rank 2 in operations over 9.
min{fO (Nt)sq(t—l)(k+1) :O « +t)3ts'q(tfl)(N+tlft) ; -
Furthermore, Levy-dit-Vehel et al introduced an algorithm which was described in [37]. It requires
0Gy()- (N -+t .

F
Operations over 9 which is more complex than the Johannson and Ourivski algorithms.

Recently, Gaborit et al. proposed two new algorithms in [38], the first algorithm is combinatorial and generalizes a
particular Hamming distance attack based on the error support in a rank metric context; the second algorithm introduced a
new algebraic setting for solving the Rank Syndrome Decoding (RSD) problem. These algorithms require

Ry N RGSOLY
min| O(n—k)*N’q" " ,0(n—k)*N%q" ~ »
©
F

N
Operations in 9 .If there exists an integer v<k such that
with an average complexity bounded above by

n-vx>(r+1)k+1-v)-1

then an algorithm exists

3L, 3\~tV
O((nkv+t3k*)q™) 10
=

! . N A - h
operations in 9 .Let us consider the following example as case study in order to evaluate the GPT cryptosystem

against Decoding attacks. Complexities of the above attacks to correct t =@ rank errors are as follows:

N=n=12,t, =4,k=8,q=2%d =5,t=2

1. Publickeysize ¥ - VX kx(t, +n)x10g,0 _ 12x8x16x8 _ 12288 s,

ivski - 2% ons in 256
2. Johannson and Ourivski algorithms Eq.(7) — operations in .
171 F

3. Levy-dit-Vehel etal Eq. (8) — 2 operations in = 26 .

, , , 288 . Fg
4. Gaborit et al. first algorithm Eq. (9) — operations in .

i i 2140 ons in 7256
5. Gaborit et al. second algorithm Eq. (10) — operations in .

In brief, the Decoding attacks are infeasible for practical implementations against the GPT cryptosystem and its variants.
Hence, the GPT cryptosystem is secure against the Decoding attacks.
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4.2 Overbeck’s Attack

Overbeck introduced a potential structural attack against the GPT cryptosystem and its variants [16, 17], and [18]. We
summarize Overbeck’s attack below. We outline the following notations to representing the fundamentals of Overbeck’s

XxekF |
attack. For q

T:(tij)

— 4
let O-(X) X be the Frobenius automorphism.

FqN et o(T)= (o-(tij)) = (t:})

o O (M =01 (T)

For the matrix over

For any integer S ,

N _ 1 _ __NA
Itis clearthat © = O . Thus the inverse exists © =~ O

The following simple properties if 0 are useful:

.o(a+b)=c(@+o(b)
. o(ab) = o(a)o(b)
o(M=T

* In general, for matrices

o(P)= 2

P ) - F
« If P is a matrix over the base field 9, then

Description of Overbeck’s attack: To break the GPT cryptosystem, a cryptanalyst constructs an integer U from the public

G,,=SK G, P

G
~ , to provide its corresponding extended public key  ®“PU  Overbeck’s attack is described as

key P
follows:
Gpub
O-(Gpub)
2
G
Gext,pub = . ( PUb) ~
" (G )

A\ Kk G, ] P
o) FX) oG)]P
a*s) P oGP

11)

oP)=P

=
, if P is a matrix over the base field = ¢ , as described in equation (11).

GEXtvab = SeXt |(ext Gext :Pl (12)

The property that

Rewrite this matrix as

where

S, =Diag} o(s) ... *(5)_

X G,
o (X) a(Gy)

X =| i | Gu=|
c"(X) "(G,)
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Choose u=n-k-1 (13)
For a matrix
xll le Xlt1
X, Xyp . Xzytl
X = : : ,
xk—l,l Xk—l,2 kal,t1
Xk,l xk,z Xk,tl
L - (14)
let
Xy X1 Ly
X1 X2 24
X, =
Xk—l,l Xk-1,2 X 4y
- - (15)
be the (k_l)th matrix, obtained from X by deleting the last row. Let
Xy  Xn ... o088
Xy = Xy Xy k-1
K. A - AW
¥ 3 (16)
be the (k_l)th matrix, obtained from X by deleting the first row.
kx k—1)x kx
T:FT > F X eF1
Define a linear mapping 4 4 by the rule: if 4" | then
T(X)=Y =0(X))-X,
Let
v
o (Y)
2
a*(Y)
Yext =
o' 1(Y)
- - 7
Using suitable transformations of rows, therefore, equation (12) can be rewritten on the following form:
Z | Gy
Gpub,ext = Sext Yext | O P
(18)

where G n-1 is the generator matrix of the (n’ n _1’2) MRD code.
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Let us try to find a solution U of the system

[z 1 6,
Sec| Yo | 0 |Pu’ =0,
(19)
F T
where U is a vector-row over the extension field 9 of length ti +n . Represent the vector Pu as
Pu=} h’,

Where the subvector y has length tl and h has length n. Hence, equation (19) is equivalent to the following equation:

Zy' +G,,h" =0,

(20)
T
Yexty =0 (21)
Assume that the next condition is valid:
Rk(Yext | F N ) = tl
1 (22)
y' =0
Then the equation (21) has only the trivial solution . Thus, the equation (20) becomes
TN
G, ,h" =0 3

It allows to find the first row of the parity check matrix for the code with the generator matrix equation (18) (see,[16, 17],
and [18], for details). Hence this solution breaks a GPT cryptosystem and its variants in a polynomial time. The Overbeck

F

3
N
attack requires O((n H tl) ) operation over 9 in order to break the system.

The property that O-(P) o
the first row of the parity check matrix H ' of the rank code can be obtained as described by Overbeck, and then the

P o(P)#P

cryptosystem can be broken easily. However, if a matrix P is over the extension field ¢ , then
Consequently, the Overbeck’s attack cannot be applied even the distortion matrix X' does not exist. The distortion matrix

F
is valid if matrix P is over the base field = 9 , as shown in equation (11). As a result of that,

X is an additional parameter to the GPT cryptosystem to increase its security. although, it is a fundamental parameter of
the GPT cryptosystem.

5 Solution based on distortion matrix X

In the following Sections: the Smart approach is described briefly in Subsection 5.1, and the Distortion matrix approach
(DMA) is presented in Subsection 5.2.

5.1 Smart Approach
The smart approach was introduced in [19]. It is based on a particular choice of the distortion matrix X . It allows for

F
withstanding all known attacks even if the column scrambler matrix P over the base field 9. In this Section, our
intentions are to review and evaluate the overall security of the smart approach.

X G,
G =S P

The cryptographer should choose the matrix X of the public key in the following manner in order to

countermeasure Overbeck’s attack:
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chol (X | Fq) = tl’
chol (Y | Fq) = b,

RK(Ye [F )=t -4,
d (24)
< > aN T T
where b—tl' a—l. In this case, equation (21) has q solutions y . Hence the exhaustive search over y is
aN 3
needed. The work function has order O(q (n +t1) ) and Overbeck’s attack fails. However, it is not always the case

therefore we consider two other cases to evaluate security of the Smart approach.

First case, consider that a matrix X is chosen in such a manner that the matrix Y(X) has all entries in the base
F =t —
field 9, b tl a.az 2. It is possible to construct matrix X' as described in equation (24), although the system will

be vulnerable to an attack similar to Ovebeck’s one. Thus the smart approach is vulnerable for az2 .

The first open question: Is it possible to construct a matrix X to prevent the Overback attack for a= 1’?

F
N

Second case, allow matrix Y to be over the extension field 9 .

The second open question: Is it possible to construct the matrix X as in equation (24) in such way to prevent the

Overback attack forb = t,, a > 12

We give answers for the first question in this Section, while answers of the second question will be in Section 5.2.

An overview of the Smart approach is demonstrated as follows:

chol (Y | Fq) =S

Then cho' (Ye’“ |Fq) =S )

The following result is evident. Let the column rank of Y be

RK(Yeq [F n) < RK(Ye [F) =5 = Rk(Y|F,)
< F
Let tl <k Let X pea k th matrix over the base field 9:
So
S
X
Ska
= = F - =
Here S 1=0,....k-1, are row vectors over 9 of dimension tl. The corresponding (k—-1)xt, matrix Y =T(X)
in this case is as follows:
So—S1
S, —S
Y=T(X)=| .7
Sk—2 =Sk (25)
There exists a matrix X of full ordinary and column rank tl such that the matrix Y= T(X) has column rank tl _1.

gek

u u
uT = |: 1 2
9. Find all solutions

u T
tl}
Proof. Choose a nonzero column vector and a nonzero element

S Z{S} of the equation

(26)
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t, -1
1
The set S contains exactly q different row vectors S . Moreover, there exist among them subsets of tl vectors

F
which are linearly independent over ~ %. Use such a subset as rows of the matrix X' Fill other rows by vectors from the

set S . We have got the matrix X of full ordinary and column rank tl . Note that

So =S,
S, —S
YuT = 1 ) 2 uT - 0’
Sk-2 Sk

@7)

F
since the condition in equation (26) is valid. This means that columns of Y are linearly dependent over 9. Hence

Rk (Y |F,) =t, -1

N=n=12,k=8,d=5t=2,t, =4,=2°% a=1

Let
Publickeysize ¥ = NXKX (6 +M)x100,0_ 12:8x16x8 - 12288 e
- K 2
* Information rate t1 +n 16

aN (n +t1)3 : 296 . (14)3 = 2108.

» Minimum security — Overbeck’s attack q

3 (t-1)(k+1) L 85
« Minimum security — Decoding attacks by Eq.’s (7)-(10) O (Nt) q A ’ !

5.2 Distortion matrix approach (DMA)

E
We presented in the previous subsection the construction of the distortion matrix X over the base field ¢ satisfying
conditions in equation (24) forb = t1 -1,a=1. The crucial point is the equality

RK o (Y[ F;) =RKk(Y,, | FqN ) =t, —1. It seems that for b<t,a22 _ georion matrix X over the base field
Rk (Y| F,) =b

does not exist with property . Therefore we have to introduce a matrix X over the extension field

FqN b:tl,aZZ.

satisfying conditions in equation (24) for

One method to provide the conditions (24) is proposed independently in [20] and [21]. They recommend to choose the

F

N
matrix X over the extension field 9 in such a manner that the following conditions are satisfied:

1:1 chol(x“:q) > n-k

t,—a
Rk(X|F = |2 <k
(xIF) = |4

Ix
(28)

F
However, the column rank of matrix Y over the base field 9 has to be equal to tl . They neither mentioned this fact nor

proposed how the matrix X can be constructed. In addition, they recommended a set of parameters to be secure against
Overbeck’s attack. Although, all parameters sets proposed in [21] have been broken by Gaborit et al., the second set of
parameters which were supposed to be stronger than the first one can in fact by attacked in a few seconds with hybrid
Grbner bases attack as shown in [38].

The existing smart approach as described in the previous section has a column rank less than tl for the matrix Y .
Consequently, the main aim of this section is to show how the matrix X' can be constructed to meet the conditions in
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equation (24) with b= tl The new construction of matrix X is described as follows:
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m m,,....,Mm
Let O bea tl -vector of rank exactlytl. Let 1 k-1 pe tl -vectors and at least one of vectors has rank exactly
tl . Construct a matrix
my
[1]
my-+m,

[2] , mit
my " +m;~ +m,

= mB +m? 4+ mi
X=|mg'+m” +m;' +m,

miemd e em

This matrix has the column rank tl and the ordinary rank not greater than k .

Calculating the matrix Y =o(X)-X, gives
'm. B
m,
m
Y=0o(X))-X,=-. \
My

m; . .
Let one of vectors, say, ' be of rank tl. Choose other vectors either as multiples of
Therefore

Rk, (Y|F,) = t,, but
RK(Y|F ,)=1

It follows that
RI'(col (Yext | Fq) = tl’ bUt
RK (Y, |FqN):u =n-k-1

n-k-1=t-a _t=n-k-1+a
or

(29)

(30)

m;
, or as the all zero vectors.

(1)

(32)

Now choose , . Then the equation (24) will be satisfied.
g N=n=12,k=8,d=5,t=2,g=2",a=2,t, =n-k-1+a=5
« Public key size V= Nxkx(t, +n)xlog,q_ 12x8x17x8 _ 13056 bits.
- kK -8 o4
« Information rate L+n 17

aN (n+tl)3 - 2192(17)3 = 2204

* Minimum security — Overbeck’s attack q

3 (t-1)(k+1) L ~85
» Minimum security — Decoding attacks by Eq.’s (7)-(10) O (Nt) q > 2 .
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As can be seen clearly from this Section that the DMA is secure against Overbeck’s and decoding attacks.

6 Solution based on scramble matrix P

In the following Sections: firstly, we give a short introduction about reducible rank codes in Section 6.1; secondly, we
review the GPT cryptosystem which based on reducible rank codes in Section 6.2; finally, we propose the Advanced
approach for Reducible rank codes in Section 6.3.

6.1 Reducible rank codes

1 2 r F H
- k. N =
Let G ’G ""’G be generator matrices of linear (n"k') codes over the field 9 | 1,...,[’_ We shall
_ — i

consider the case, when all M = n, ki =k and all G = Gk. The matrix Gy is the generator matrix of a MRD
(n’k'd) code.
A code C is called reducible if its generator matrix G can be represented as

_Gk 0 0 0 |

G,, G, 0 0

G G 0 0

G - 3,1 ; 3,2
Gr—l,l Gr—l,2 Gk O
_Gr,l Gr,z Gr,r—l Gk_ (33)
G. . = = — F N

Matrices ") are random kxn matrices, I 2""’r, J=1..r 1, over % . This matrix defines a MRD

. . Ny = N0 K = kr _ -n—
reducible rank code with parameters: length =t , dimension ' total , rank code distance d=n-k+1

v F

m= m,,...,m . ] . w N . )
‘nl' 21-- 77 r ~ pe an information sequence with entries in % . This sequence can be viewed as a

Let
concatenation of I' subblocks of length k . Then the codeword is defined by

9=mG =(9:,9,,---.9,),
0; i:1,2,...,r

where =!, ' is a subblock of length n.

g, =mG, +m,G, +...+mG, .,

g, =m,G, +m;G,,+...+m G, ,,

gr-l = mr—le +er

r,r-1?

gr = erk

To decode, begin with the last subblock 9 by applying to it a usual fast decoding algorithm for MRD codes, and obtain

gr—l _err,r—l =m

, , m . Gy m_, .
the last information subblock r . Proceed further with to obtain r-1. and so on until

ml
6.2 The GPT PKC Based on Reducible Rank Codes

The GPT cryptosystem based on reducible rank codes is described as follows:

Kiotar = KI m=(m,;,m,,...,m,)

-vector consisting of I  subblocks

Plaintext: A Plaintext is any
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m,eF,s=12,...,r
q

k. xL L=n
The Public key is the following generator matrix with size ot , Where toral + tl:

(34)

Let us explain roles of the factors.

The matrix G is a generator matrix (33).

SGXP

The Private keys are matrices separately and (explicitly) a fast decoding algorithm of an MRD code.

~

m= ‘nl' My, M, be a plaintext. Note that the product

msk G

Encryption: Let

can be represented as

[901911921---’gr]’ (35)

where 9o is a distortion subblock of length tl, while all the other subblocks of length N each form a code vector of
reducible rank code. The corresponding ciphertext is calculated as

¢ =mG,,+e=mSK GP+e=[g,,0,,0,.....9, P +&,

(36)
n—k
( B+t <0 e
where € is an artificial vector of errors of rank 2 or less. It is assumed that 2
Decryption: The legitimate receiver knows the matrix P and upon receiving C calculates
, ;. X G 3
c =cP7=mS +eP
=190,91,9;:---,9,]+€
=[9,+€:,0, +€,,9, +€,,...,0, +€,] @37)
Assume that design parameters are chosen such that
Rk(e, |F,)<t,i=12,...,r
(¢ IF,) -

Then the legitimate user can recover the information sequence M starting with the last subblock and using known to him
a fast decoding algorithm.

6.3 Advanced Approach for Reducible Rank Codes (ARC)

The legitimate user should choose its design parameters similar to equation (38). It was assumed in the previous works,

Rk(e|F,) = Rk(eP™| F)

. It is clear that

RK(e|F)<t

F
that a column scrambler P is chosen over the base field 9. In this case,
Rk(e |F,)<Rk(e |F
aways RKEIF)<RKE|F)
satisfy equation (38).

€

. Hence it was enough to choose artificial errors with rank

On the other hand, the crucial point of Overbeck’s attacks is just the assumption that a column scrambler P is chosen

F
over the base field 9. If it is not a case, then his attacks fail.

F

N
We establish conditions, when equation (38) is valid for a matrix P over the extension field 9

+t " Rk(e“:q) :tz. Let L pe a (Mg +1,) %N

n . .
Let € be a vector of length @ "1 anpd le matrix of ordinary rank n
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Fx

F _
and consisting of V' columns having entriesin = % and N—=V columns having entries in ¢

Rk(eL|F,) <min{t,,v}+n—v (39)

Proof. The column rank of the row vector eL is not greater than the sum of ranks of two subvectors. The first subvector

F
originates from the product € and those columns of L which have entries in * 9. It is clear that the rank of this part
- F
N
equals mm{tz’v}. The second part originates from the product € and those columns of L which have entries in ¢
Its rank is not greater than N—=V  This concludes proof.

n—-v<t-—t

Choose 2, Then

Rk(eL|F,) <t, +(t-t,) =t (40)

-1
We will show now how the matrix P can be constructed. Therefore, its inverse matrix P should be chosen and
concatenated of submatrices as follows:

P_lz[Lo - Lr}
F
£ X N
The submatrix L is a (N +8) 1, matrix. Choose its entries in the extension field ¢
i, +1)x . - W V=N- i
Submatrices L"I 12,..r, are (n“"a' tl) ' matrices. Choose in each matrix * n-t+t, columns with
ny F. Bn =t & o, S\
entries in the base field and 2 columns with entries in the extension field

i=12,...,r Rk(eL|F) <t.

By definition that an artificial error € has rank t2 . Therefore we have for ' that
We construct a proper column scrambler P , which makes Overbeck’s attacks invalid.

 N=n=15k=7,d=9,t=4,, =21t,=2,q=2",r =2,n,,, =30,k
F15

14

total = ) ot the extension field be

total

2

* Public key size is a ktotal X (ntotal +t1) x N x Iogz q = 14x32x15x8 =53760 bits

ktotal = E
« Information rate (ntotal +t1) 32 = 0.44

O(q?" (N +1,)°) =2*

* Minimum security — Overbeck’s attack

3, (t-1)(k+1) L ~209
» Minimum security — Decoding attacks by Eq.’s (7)-(10) O (Nt) 9 = 2 .

According to this section Overbeck’s attack based on reducible rank codes is ineffective.
7 Description of the Simple Variant of the GPT cryptosystem

The GPT cryptosystem is described as follows.

G = SG,P. "

« The main matrix X is given by equation (2). It is used to correct rank errors. Errors of rank not greater than
n—k
t= L_

2 can be corrected.
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F N
* A matrix S is a row scrambler. This matrix is a non singular square matrix of order k over the extension field 9
F N
* A nonsingular matrix Pisa square column scramble matrix of order N over the extension field ¢
Consider the public key of Eq. (41). No distortion matrix X is used. A ciphertext has the following form
c=mSG,P +e,
: (42)

n-k
t:|__
2

€ it depends on the number of error

Rk(e|F,) =t
where the rank ( | q) S of an artificial error € is less or equal to

Decoding attacks are based on the exhaustive search of possible artificial errors

t
- . t _ el
vectors. If artificial errors are all possible N _vectors of rank S , then the complexity against Overbeck’s attack is -

V =Nxnxkxlog,q.

The Public key size is
| b . _F o P
Assume first that the column scrambler is a matrix over the base field 9. The legitimate user knows the secret key

-1
and P The Decryption algorithm is as follows:

1. Get a ciphertext B MaSiP +e .

-1
2. Multiply to the right by P~ Get an intermediate ciphertext
e 1 -1
c =cP7"=mSG, +eP . 43)

Fq.

—k
Rk(eP|F,) = Rk(e|F,) =t <t = L”T

|
Note that since P is over the base field

3. Decode using a fast decoding algorithm and get mS -

1
4. Getaplaintext M as (mS)S :

F
The situation is quite different if P is a matrix over the extension field 9
We can assume from now on that Overbeck’s attack cannot be implemented. But the cryptographer should select a secret

E
N
column scrambler P over the extension field 9 and a public set E of artificial errors € such that

Rk(eP™|F,) <t = {”;k J
2 (44)

-1
where eP is an error in the intermediate ciphertext (43).

Choice of E
n
. e . - n . FqN
The public set of artificial errors is chosen as the set consisting of all '’ -vectors in

E=e‘]"eeF;N,Rk(e|Fq):tS.

with rank ts

Choice of P

-1 e )
The cryptographer chooses an inverse matrix P™ in the form P Dl QZ -, where Ql is a submatrix of size

F

X — N x —t+
n (t tS) with entries in the extension field % while Q2 is a submatrix of size n (n t tS)

with entries in the
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F
base field 9. Let € be any N _vector of rank ts . Then the condition Eq. (44) is hold.
-1 _ -
Proof. We have ep~=e Dl Q2 } [Ql eQZ - A vector € can be represented as

e= W, ... W W. F X
Ill 2 's A where  1’s are linearly independent over 9 and A s the L xn matrix over 9 of
eQ, = l/l W, ... WtS §1 B, = AQ, i tox (t-t,)

rank ts. Then , Where

Fx Rk(eQ, |F,) <t -t

9 It is clear that
tox(n—t+t,)

s the matrix over the extension field
e = w .. W -

Q lll 2 s ﬁzy where B,=AQ, is the
Rk(eQ, |F,) =min(t;,n—t+t,) <t

$. Similarly,

F
matrix over the base field 9. It follows that $ . Hence

Rk(ep—l | Fq) < Rk(te | Fq)+ Rk(eQ2 |Fq) < (t_ts)+ts =t= [L;(J

-1
-1 —p-1
The matrix P~ can be replaced by a matrix P =P7Q , Where Q is any NXN pon singular matrix over the base

F
field 9.

Code parameters Public
(n,N,k,t,t.,q) Over(0J1 |0J2 MINIHGb1HGb2[Key Security
) IRAS SIS

(20,20,105,4,2) | 2% 25| 27%| | 2% | 257 | 4000

261
) Insecure|

(20,20,105,4,2%) oto[ »116| 80QQ | Secure

2160 2108 2138 2262

1 198 | ~216 S
(20,20:105!4’2 ) 2320 2196 2258 2253 2 - 16000 i

3 374| H416 S
(20,20,105,4,2°) 0640 372 498 264 2 . 32000 y

Table 1: Comparison between Decoding & Structural attacks of simple variants of the GPT PKC

In Table 1, we evaluate the security of the simple variant of the GPT PKC against both Overbeck and Decoding attacks
using same parameters which were presenter by Gaborit et al. in [38] regarding the code is used. According to Table 1:
a€™OJ1a€™ stands for the improved basis enumeration by Ouriski and Joahsson, 4€™O0OJ238€™ stands for coordinates
enumeration as described in Eq.(7); &€™Overd€™ stands for the complexity of the Overbeck attack, a€™MINIGE™
stands for the complexity of the Levy-dit-Vehel et al algorithm Eq. (8), 8€™HGb18€™ stands for the complexity of Gaborit
et al. first algorithm Eqg. (9), and 4&€™HGb23€™ stands for the complexity of Gaborit et al. second algorithm Eq. (10).

— "2
Our Results show that all known (decoding & structural) attacks are infeasible with q= 2 and above.\
8 Conclusion

We have presented two approaches as techniques of withstanding Overbeck’s attack against the GPT cryptosystem and
its variants. 1. Distortion Matrix Approach. It is shown that proper choice of the distortion matrix X' over the extension

F

N
field 9 allows the decryption by the authorized party and prevents the unauthorized party from breaking the system by
means of any known attacks. This approach is more powerful against Overbeck’s attack than the Smart approach.

2. Advanced Approach for Reducible Rank Codes. It is shown that a proper choice of the column scramble matrix P

=

N
over the extension field % makes all new attacks ineffective. This approach is designed to secure the GPT
cryptosystem based on reducible rank codes.
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The two approaches are proposed to countermeasure the attack of the GPT public key cryptosystem based on rank

codes. They provide better security comparing with other GPT cryptosystem approaches. Furthermore, We have

evaluated the simple variant of GPT PKC against all known attacks including Gaborit et al. attack and demonstrated a new

set of parameters which were secure against all known attacks. It has been demonstrated that the decoding attacks are
2

infeasible for practical implementations with q= 2 and above. With all these merits, The GPT cryptosystem can be
effectively used in many practical applications such as mobile applications.
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