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Abstract: 

The concept of Public key cryptosystems based on error correcting codes was invented by McEliece in 1978. In 1991 
Gabidulin, Paramonov and Tretjakov proposed a new version of the McEliece cryptosystem (GPT) based on maximum 
rank distance codes instead of hamming distance codes. Respective structural attacks against different variants of the 
GPT cryptosystem were proposed by Gibson and lately by Overbeck. The Overbeck attack breaks all variants of the GPT 
cryptosystem and is turned out to be either polynomial or exponential depending on parameters of the cryptosystem. 
Furthermore, In 2013, Gaborit et al. have presented a decoding attack against the parameters of the simple variant of the 
GPT cryptosystem which were demonstrated to combat the GPT cryptosystem against Overbeck‘s attack. 

In this paper, we introduce two new secure approaches against both the structural (Overbeck‘s attack) and decoding 
(brute force) attacks. The first one is called Distortion Matrix Approach (DMA), and the second is called Advanced 

Approach for Reducible Rank Codes (ARC). The DMA based on proper choice of a distortion matrix X , while, the ARC 

based on a proper choice of a scramble matrix P . Furthermore, we evaluate the simple variant of GPT cryptosystem 
against Gaborit et al. attack and demonstrate a new set of parameters which are secure against all known attacks. Our 
results show the proposed approaches combat the structural and decoding attacks with a large reduction in the key size in 
comparison to the original McEliece cryptosystem. 
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1  Introduction 
 McEliece [1] introduced the first code-based public-key cryptosystem (PKC). The system is connected to the hardness of 
the general decoding problem. It is based on Goppa codes in the Hamming metric. It is a strong cryptosystem but the size 
of a public key is too large (500 000 bits) for practical implementations to be efficient. The choice of the code has a vital 
effect on the security of this type of cryptosystems. Some codes have a structure that can be recovered in polynomial 
time, hence breaking the cryptosystem completely. However, other codes still have protection against cryptanalysis. 
Niederreiter [2] introduced a new code based version of PKC based on check matrices of Generalized Reed-Solomon 
codes. It turned out that this cryptosystem is insecure [3]. Several modifications of this PKC [4, 5, 6], and [7] seem to be 
secure but no independent cryptanalysis was made on these cryptosystems. 

Also, Gabidulin, Paramonov and Tretjakov proposed in [8] other version of McEliece‘s public key cryptosystem based on 
rank error correcting codes, which is now called the GPT cryptosystem. The GPT cryptosystem has two advantages over 
McEliece‘s Cryptosystem. Firstly, it is more robust against decoding attacks than McEliece‘s Cryptosystem [9]; secondly, 
the key size of the GPT is much smaller and more useful in terms of practical applications than McEliece‘s cryptosystem. 
There are two types to attack against the GPT cryptosystem and its variants: the first is structural attack, an attacker 
attempts to recover the private key (the hiding procedure) from the public key, based on the structural properties of the 
rank codes; the second attack is decoding attack, an attacker tries to correct rank errors by a general algorithm without 
any knowledge of the structure of a rank code. Decoding attack ia generic and depends only on the code parameters. In 
1995, Gibson [10, 11] proposed the first structural attack which broke the GPT system for public keys of about 5 Kbits. The 

Gibson attack was efficient for practical values of parameters 30n , where n  is the length of rank code with the field 

N2
F

 as an alphabet. 

Several proposals of the GPT PKC were introduced to withstand Gibson‘s attack [12, 13]. One proposal was to use a 
rectangular row scramble matrix instead of a square matrix. The proposal allows working with subcodes of the rank codes 
which have much more complicated structure. Another proposal exploits a modification of Maximum Rank Distance (MRD) 
codes where the concept of a column scramble matrix was also introduced. Moreover, a new variant, which is called 
reducible rank codes, was also implemented to combat the GPT cryptosystem against structural attacks [14, 15]. All the 
above variants withstand Gibson attack. In 2005, R. Overbeck [16, 17], and [18] has proposed the second structural attack 

which is more effective than Gibson attack. His method is based on two factors: a) a column scrambler P  that is defined 

over the base field, and b) the unsuitable choice of a distortion matrix X . However, Overbeck managed to break 
completely all variants of the GPT cryptosystem based on the general and developed ideas of Gibson. In 2013, Gaborit et 
al. have presented two new generic approaches (decoding attacks) to attack Rank Syndrome Decoding (RSD) problem, 
both approaches have their own interest depending of the type of parameters considered [38]. Furthermore, they break 
the proposed parameters in [24], and [21] which were demonstrated to combat the GPT cryptosystem against Overbeck‘s 
attack. 

In this paper, we introduce two new secure approaches against both the Overbeck and the decoding attacks. The first one 
is called Distortion Matrix Approach (DMA), and the second is called Advanced Approach for Reducible Rank Codes 

(ARC). The DMA based on proper choice of a distortion matrix X , while, the ARC based on a proper choice of a scramble 

matrix P . The DMA is proposed to improve the security of the smart approach [19] against little vulnerability which may 
affect its security, and as a consequence the system may be broken. Therefore, we address and show these 

vulnerabilities, and then we will describe a new construction of distortion matrix X  which countermeasures the 
vulnerabilities of the smart approach. The ARC is designed to countermeasure Overbeck‘s attack against the reducible 
rank codes variant [14, 15]. Finally, we evaluate the simple variant of the GPT PKC which was proposed in [24] against 
Gaborit et al. attack and demonstrate a new set of parameters which are secure against all known attacks. Our results 

show the DMA is secure even the column scrambling matrix P  is chosen over the base field, and the ARC is secure even 

the distortion matrix X  does not exist. The proposed approaches combat the structural and decoding attacks with a large 
reduction in the key size in comparison to the original McEliece cryptosystem. 

The rest of this paper is structured as follows. Section 2 introduces the related work. Section 3 describes the GPT 
cryptosystems. Section 4 discusses decoding and Overbeck‘s attacks against the GPT cryptosystem. The DMA will be 
presented in Section 5. Section 6 first takes a short introduction on reducible rank codes, and then the ARC will be 
described. Section 7 gives a short introduction on the simple variant, and afterward we demonstrate new parameters 
against attacks. Finally, Section 8 concludes the paper with some remarks. 

2  Related Work 

Overbeck‘s attack is a potential attack which breaks all variants of the GPT cryptosystem in a polynomial time. However, 
there are few methods were proposed to combat Overbeck‘s attack against the GPT cryptosystem. Kshevetskiy in [20] 
suggested a secure approach towards the choice of parameters for avoiding Overbeck‘s attack based on suitable choice 

of the distortion matrix X . Independently, Loidreau proposed similar method in [21]. Although, they neither explained how 

the matrix X  can be constructed in a secure manner nor explored the implications of that approach. Moreover, they 
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recommended a set of parameters to be secure against Overbeck‘s attack. However, all parameters were proposed in [21] 
have been broken by Gaborit et al., and the second set of parameters which were supposed to be stronger than the first 
one are also attacked in a few seconds with hybrid Grobner bases attack as shown in [38]. In short, Both Kshevetskiy and 
Loidreau approaches are not considered to be secure against Gaborit et al. attack (decoding attack). 

Gabidulin presented in [22] a secure approach for the standard variant of the GPT cryptosystem called an advanced 

approach which defines a particular column scrambler matrix P  over the extension field without violating the standard 
mode of the GPT PKC. This approach is secure against all known attacks however it is not applicable for the reducible 
rank codes variant of the GPT PKC. Hence, the reducible rank codes have different constructions and principles than the 
standard rank codes [14]. In this paper, we will present the ARC approach as an appropriate secure approach for the 
reducible rank codes variant. We have applied the advanced approach for the simple variant of the GPT cryptosysrtem in 
[23], and reduced its public key size from 10 Kbits to 4 Kbits in [24]. Our method to reduce the public key size was based 
on choice of a set of parameters which were secure against all known attacks at that time. Recently, Gaborit et al. 
presented a decoding attack (new algorithm) which can break our proposed parameters in 5 days [38]. In this paper, we 
will evaluate the simple variant against Gaborit et al. attack and demonstrate secure parameters against all known attacks. 

We have introduced a new approach called smart approach [19] which based on a proper choice of the distortion 

matrix X . Recently, we have realized that the smart approach can be vulnerable to a new structural attack under certain 
conditions. Therefore, we will highlight the vulnerabilities of the smart approach, and then we will propose the DMA as an 
alternative approach for the Smart approach. In summary, the reducible rank codes variant is still vulnerable to Overbeck‘s 
attack, and the Smart approach requisites to be reconstructed in more powerful way in order to avoid any structural 
attacks in the future. In addition, both Kshevetskiy and Loidreau approaches are not considered to be secure against 
Gaborit et al. attack. Moreover, the simple variant GPT PKC is also vulnerable to Gaborit et al. attack using our proposed 
parameters in [24]. 

Our contributions are as follows: 

     1.  We present the ARC approach to secure the reducible rank codes variant of GPT PKC.  

    2.  We explore some vulnerabilities of the smart approach, and then, we will propose the DMA as an alternative 
approach for the Smart approach.  

    3.  We evaluate the simple variant of GPT PKC against Gaborit et al. attack and demonstrate a new set of parameters 
which are secure against all known attacks.  

3  The GPT Cryptosystem 

We give a short introduction to rank codes in Section 3.1; and provide a description of the standard GPT cryptosystem in 
Section 3.2. 

3.1  Rank Codes 

  Rank codes were introduced by Gabidulin in 1985 [34]. The rank codes are a linear codes generated by polynomial 
which can correct rank distance errors efficiently. The basic notions of rank codes are introduced as follows:  

Let qF
 be a finite field of 

q
 elements and let 

Nq
F

 be an extension field of degree N . 

Let 
),,,(= 21 nxxx x

 be a vector with coordinates in 
Nq

F
.  

The Rank norm of x  is defined as the maximal number of ix
, which are linearly independent over the base field qF

 and 

is denoted 
)|(Rk qFx

.  

Similarly, for a matrix M  with entries in 
Nq

F
, the column rank is defined as the maximal number of columns, which are 

linearly independent over the base field qF
, and is denoted 

)|(Rkcol qFM
. 

We distinguish two ranks of the matrix:   

    1.  The usual rank of matrix M  over 
Nq

F
 – 

)|(Rk Nq
FM

. 

    2.  The column rank of a matrix M  over the base field qF
 – 

)|(Rkcol qFM
.  

 The column rank of the matrix M  depends on the field. In particular, 
)|(Rk)|(Rk colcol Nqq FF MM
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The Rank distance between x  and 
y

 is defined as the rank norm of the difference 
yx

: 

 
) | (Rk=)( qd Fyxyx,
 

Any linear 
),,( dkn

 code 

n

Nq
FC

 fulfils the Singleton-style bound [34] for the rank distance:  

 },{max1)( nNdNnNk  (1) 

A code C  reaching that bound is called a Maximal Rank Distance (MRD) code. 

The theory of optimal MRD (Maximal Rank Distance) codes is given in [34]. 

The notation 

Niqi gg
 mod ][ :=

 means the i -th Frobenius power of 
g

. It allows to consider both positive and negative 

Frobenius powers i . 

For Nn , a generator matrix kG
 of a 

),,( dkn
 MRD code is defined by a matrix of the following form:  

 
1][1][

2

1][

1

[2][2]

2

[2]

1

[1][1]

2

[1]

1

21

=

k

n

kk

n

n

n

k

ggg

ggg

ggg

ggg











G

 (2) 

 Where nggg ,,, 21 
 are any set of elements of the extension field 

Nq
F

 which are linearly independent over the base field
qF

. 

A code with the generator matrix (2) is referred to as 
),,( dkn

 MRD code, where n  is code length, k  is the number of 

information symbols, d  is code distance. For MRD codes, 1= knd . Let 
),,,(= 21 kmmm m

 be an 

information vector of dimension k . The corresponding code vector is the n -vector  

 kmGmg =)(
 

 If 
emgy )(=

 and 2

1
==)|(Rk

d
tsqFe

 , then the information vector m  can be recovered uniquely from 
y

 
by some decoding algorithm. There exist fast decoding algorithms for MRD codes [34], [35]. A decoding procedure 

requires elements of the 
nkn )(

 parity check matrix H  such that 
0HG =T

k . For decoding, the matrix H  should 
be of the form  

,=

2][2][

2

2][

1

[2][2]

2

[2]

1

[1][1]

2

[1]

1

21

d

n

dd

n

n

n

hhh

hhh

hhh

hhh











H

 (3)  

where elements nhhh ,,, 21 
 are in the extension field 

Nq
F

 and are linearly independent over the base field qF
. 

 

3.2  Description of the GPT Cryptosystem 

 Overview of the GPT Cryptosystem. 

 The GPT cryptosystem is described as follows: 

Plaintext: A Plaintext is any k -vector 
),,,(= 21 kmmm m

, 
ksm Nqs ,1,2,= , F

. 
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Public key: In previous works, different representations of the public key are given. All of them can be reduced to the 
following form.  

The Public key is a 
)( 1tnk

 generator matrix  

 

P
GX

SG
k

pub =

 (4) 

 Let us explain roles of the factors.   

    • The main matrix kG
 is given by equation (2). It is used to correct rank errors. Errors of rank not greater than 

2
=

kn
t

 can be corrected.  

    • A matrix S  is a row scrambler. This matrix is a non singular square matrix of order k  over the extension field
Nq

F
.  

    • A matrix X  is a distortion 
)( 1tk

 matrix over 
Nq

F
 with full column rank 1col =)|(Rk tX qF

 and rank 

1 ,=)|(Rk ttt XXNq
FX

. The matrix kGX
 has full column rank 

1col =)|(Rk tnq

k
F

GX

.  

    • A nonsingular matrix P  is a square column scramble matrix of order 
)( 1 nt

 over the base field qF
.  

    • 
nt1  may be greater than N , but Nn .  

 The Private keys are matrices 
PXGS  , , , k  separately and (explicitly) a fast decoding algorithm of an MRD code. Note 

also, that the matrix X  is not used to decrypt a ciphertext and can be deleted after calculating the Public key. 

Encryption: Let 
,),,,,(= 21 Nqjk mmmm Fm
 be a plaintext. The corresponding ciphertext is given by  

 
,== pub ePGXmSemGc k  (5) 

 where e  is an artificial vector of errors of rank 2t  or less. It is assumed that 2
=2

kn
tt

 

Decryption: The legitimate receiver upon receiving c  calculates  

 
=),,,(= '

1

'

2

'

1

'

ntccc c
 

  

11 = eP
GX

mScP
k

 

Then from 
'

c  the extracts the subvector  

 
,=),,,(= ''

1

'

2
1

'

1
1

'
emSGc knttt ccc 

 (6) 

  where 
'

e  is the subvector of 
1

eP . Then the legitimate receiver applies the fast decoding algorithm to correct the error 
'

e , extracts mS  and recovers m  as 
1)(= SmSm
. 

In this system, the size of the public key is 
qNntkV log)(=

21  bits, and the information rate is nt

k
R

1

=

. 

Figure 3.2 depicts how the GPT cryptosystem operates, and shows where the attacks can be made. 
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4  The security of the GPT PKC 

 There are two types of attacks against the GPT cryptosystem and its variants. The first one is the decoding attacks which 
are described in Section 4.1. The second is structural attacks, we focus on Overbeck‘s attack in this paper as one of the 
most powerful structural attack against GPT cryptosystem. Overbeck‘s attack is discussed in Section 4.2. 

4.1  Decoding Attacks 

  An important part of a decryption procedure is correcting rank errors using a fast decoding algorithm known to the 
legitimate party. An unauthorized party may attempt to correct rank errors by a general algorithm without any knowledge of 
the structure of a rank code. We consider algorithms described in [36], [37] and [38]. 

Johannson and Ourivski proposed two algorithms for decoding an arbitrary 
),( kn

 linear rank distance code over 
Nq

F
 

[36]. These algorithms correct errors of rank 
2

=
kn

t

 in operations over qF
.  

 
})(,)({min

)
1

1)((331)1)((3 ttNtkt qttkqNt OO
 (7) 

 

Furthermore, Levy-dit-Vehel et al introduced an algorithm which was described in [37]. It requires  

 

)
1

3(

1)()(log
ttN

tNqO
 (8) 

 Operations over qF
 which is more complex than the Johannson and Ourivski algorithms. 

Recently, Gaborit et al. proposed two new algorithms in [38], the first algorithm is combinatorial and generalizes a 
particular Hamming distance attack based on the error support in a rank metric context; the second algorithm introduced a 
new algebraic setting for solving the Rank Syndrome Decoding (RSD) problem. These algorithms require  

 

.)(,)(min

1)(
1)(

3333 n

Nk
r

n

kN
r

qNknqNkn OO

 (9) 

 Operations in 
Nq

F
.If there exists an integer kv  such that 

1)11)(( vkrvn
 then an algorithm exists 

with an average complexity bounded above by  

 
))(( 33 tvqktnkvO

 (10) 

 operations in 
Nq

F
.Let us consider the following example as case study in order to evaluate the GPT cryptosystem 

against Decoding attacks. Complexities of the above attacks to correct 2=t  rank errors are as follows: 

 
2=5,=,2=8,= 4,= 12,== 8

1 tdqktnN
. 

     1.  Public key size  
qntkNV log)(=

21 = 816812  = 12288 bits.  

    2.  Johannson and Ourivski algorithms Eq.(7) – 
852  operations in 256F

.  

    3.  Levy-dit-Vehel et al Eq. (8) – 
1712  operations in 256F

.  

    4.  Gaborit et al. first algorithm Eq. (9) – 
882  operations in 256F

.  

    5.  Gaborit et al. second algorithm Eq. (10) – 
1402  operations in 256F

.  

In brief, the Decoding attacks are infeasible for practical implementations against the GPT cryptosystem and its variants. 
Hence, the GPT cryptosystem is secure against the Decoding attacks. 
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4.2  Overbeck’s Attack 

 Overbeck introduced a potential structural attack against the GPT cryptosystem and its variants [16, 17], and [18]. We 
summarize Overbeck‘s attack below. We outline the following notations to representing the fundamentals of Overbeck‘s 

attack. For 
Nq

x F
 let 

qxx =)(
 be the Frobenius automorphism. 

For the matrix 
)(= ijtT

 over 
Nq

F
, let 

)(=))((=)( q

ijij ttT
.  

For any integer s , let 
))((=)( 1

TT
ss

.  

It is clear that =N

. Thus the inverse exists 
11 = N

.  

The following simple properties if  are useful:   

    • 
)()(=)( baba

.  

    • 
)()(=)( baab

.  

    • In general, for matrices 
TT)(

.  

    • If P  is a matrix over the base field qF
, then 

PP =)(
.  

 Description of Overbeck‘s attack: To break the GPT cryptosystem, a cryptanalyst constructs an integer u  from the public 

key 
PGXSG k=pub  , to provide its corresponding extended public key pubext,G

. Overbeck‘s attack is described as 
follows: 

 

=

)(

)(

)(

=

pub

pub

2

pub

pub

pubext,

G

G

G

G

G

u



 

  

PGXS

PGXS

PGXS

PGXS

)()()(

      

)()()(

)(  )()(

          

222

k

uuu

k

k

k



 (11) 

The property that 
PP =)(

, if P  is a matrix over the base field qF
, as described in equation (11). 

Rewrite this matrix as  
,= extextextpubext, PGXSG
 (12) 

 where  

 

)(

)(

=,

)(

)(

=

)()(Diag=

extext

ext

k

u

k

k

u

u

G

G

G

G

X

X

X

X

SSSS




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Choose  1= knu  (13) 

For a matrix  

 

,

      

=

1
,,2,1

1
1,1,21,1

1
2,2221

1
1,1211

tkkk

tkkk

t

t

XXX

XXX

XXX

XXX











X

 (14) 

 let  

 

1
1,1,21,1

1
2,2221

1
1,1211

1 =

tkkk

t

t

XXX

XXX

XXX









X

 (15) 

 be the 11)( tk
 matrix, obtained from X  by deleting the last row. Let  

 

      

=

1
,,2,1

1
1,1,21,1

1
2,2221

2

tkkk

tkkk

t

XXX

XXX

XXX









X

 (16) 

 be the 11)( tk
 matrix, obtained from X  by deleting the first row. 

Define a linear mapping 

1
1)(

1:
tk

Nq

tk

Nq
T FF

 by the rule: if 

1
tk

Nq
FX

, then  

 21)(==)( XXYXT
 

Let  

 

)(

)(

)(

=

1

2

ext

Y

Y

Y

Y

Y

u



 (17) 

 

Using suitable transformations of rows, therefore, equation (12) can be rewritten on the following form:  

 

PY

GZ

SG 0|

|
~

=
~

ext

1

extextpub,

n

 (18) 

 where 1nG
 is the generator matrix of the 

1,2),( nn
 MRD code. 
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Let us try to find a solution u  of the system  

 

,=0|

|
~

ext

1

ext 0PuY

GZ

S
T

n

 (19) 

 where u  is a vector-row over the extension field 
Nq

F
 of length 

nt1 . Represent the vector 
T

Pu  as  

 
,=

TT
hyPu

 

Where the subvector 
y

 has length 1t  and h  has length n . Hence, equation (19) is equivalent to the following equation:  

 
,=1 0hGZy

T

n

T

 (20) 

 
0yY =ext

T

 (21) 

 Assume that the next condition is valid:  

 
1ext =)|(Rk tNq

FY
 (22) 

 Then the equation (21) has only the trivial solution 
0y =T

. Thus, the equation (20) becomes  

 
0hG =1

T

n  (23) 

 It allows to find the first row of the parity check matrix for the code with the generator matrix equation (18) (see,[16, 17], 
and [18], for details). Hence this solution breaks a GPT cryptosystem and its variants in a polynomial time. The Overbeck 

attack requires 
))(( 3

1tnO
 operation over 

Nq
F

 in order to break the system. 

The property that 
PP =)(

 is valid if matrix P  is over the base field qF
, as shown in equation (11). As a result of that, 

the first row of the parity check matrix H  of the rank code can be obtained as described by Overbeck, and then the 

cryptosystem can be broken easily. However, if a matrix P  is over the extension field 
Nq

F
, then 

PP)(
. 

Consequently, the Overbeck‘s attack cannot be applied even the distortion matrix X  does not exist. The distortion matrix 

X  is an additional parameter to the GPT cryptosystem to increase its security. although, it is a fundamental parameter of 
the GPT cryptosystem.  

5  Solution based on distortion matrix X   

 In the following Sections: the Smart approach is described briefly in Subsection 5.1, and the Distortion matrix approach 
(DMA) is presented in Subsection 5.2.  

5.1  Smart Approach 

 The smart approach was introduced in [19]. It is based on a particular choice of the distortion matrix X . It allows for 

withstanding all known attacks even if the column scrambler matrix P  over the base field qF
. In this Section, our 

intentions are to review and evaluate the overall security of the smart approach. 

The cryptographer should choose the matrix X  of the public key 

P
GX

SG
k

=pub

 in the following manner in order to 
countermeasure Overbeck‘s attack: 
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,=)|(Rk

,=)|(Rk

,=)|(Rk

1ext

1col

at

b

t

Nq

qcol

q

F

F

F

Y

Y

X

 (24) 

 where 
1,1 atb

. In this case, equation (21) has 
aNq

 solutions 
T

y
. Hence the exhaustive search over 

T
y

 is 

needed. The work function has order 
))(( 3

1tnqaNO
 and Overbeck‘s attack fails. However, it is not always the case 

therefore we consider two other cases to evaluate security of the Smart approach. 

First case, consider that a matrix X  is chosen in such a manner that the matrix 
)(XY

 has all entries in the base 

field qF
, 

atb 1= ,
 2a . It is possible to construct matrix X  as described in equation (24), although the system will 

be vulnerable to an attack similar to Ovebeck‘s one. Thus the smart approach is vulnerable for 2a . 

The first open question: Is it possible to construct a matrix X  to prevent the Overback attack for 1=a ? 

Second case, allow matrix Y  to be over the extension field
Nq

F
. 

The second open question: Is it possible to construct the matrix X  as in equation (24) in such way to prevent the 

Overback attack for 1,= 1 atb ? 

We give answers for the first question in this Section, while answers of the second question will be in Section 5.2. 

An overview of the Smart approach is demonstrated as follows: 

The following result is evident.  Let the column rank of Y  be 
sq =)|(Rkcol FY

. Then
sq =)|(Rk extcol FY

.   

)|(Rk==)|(Rk)|(Rk extext qqNq
s FFF YYY

.  

Let 
kt1 . Let X  be a 1tk

 matrix over the base field qF
:  

 

.=

1

1

ks

s

s

X

0



 

Here 
1,,0,=, kii s

 are row vectors over qF
 of dimension 1t . The corresponding 11)( tk

 matrix 
)(= XY T

 
in this case is as follows:  

 

.=)(=

12

21

10

kk

T

ss

ss

ss

XY


 (25) 

  There exists a matrix X  of full ordinary and column rank 1t  such that the matrix 
)(= XY T

 has column rank 
11t .   

Proof. Choose a nonzero column vector 

1
21

=
tuuu 

u

 and a nonzero element qg F
. Find all solutions 

}{= sS
 of the equation  

 
.= gsu
 (26) 
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 The set S  contains exactly 

1
1
t

q
 different row vectors s . Moreover, there exist among them subsets of 1t  vectors 

which are linearly independent over qF
. Use such a subset as rows of the matrix X . Fill other rows by vectors from the 

set S . We have got the matrix X  of full ordinary and column rank 1t . Note that  

 

0,==

12

21

10

u

ss

ss

ss

Yu

kk



 (27) 

 since the condition in equation (26) is valid. This means that columns of Y  are linearly dependent over qF
. Hence 

1=)|(Rk 1col tqFY
.  

 Let 
1= ,2= 4,= 2,= 5,= 8,= 12,== 8

1 aqttdknN
 

     • Public key size  
qntkNV log)(=

21 = 816812  = 12288 bits.  

    • Information rate  

0.5=
16

8
==

1 nt

k
R

.  

    • Minimum security – Overbeck‘s attack  
1083963

1 2=(14)2=)( tnqaN

.  

    • Minimum security – Decoding attacks by Eq.‘s (7)-(10)   
851)1)((3 2=)( ktqNtO

.  

 5.2  Distortion matrix approach (DMA) 

 We presented in the previous subsection the construction of the distortion matrix X  over the base field qF
 satisfying 

conditions in equation (24) for 1=1,= 1 atb . The crucial point is the equality 

1=)|(Rk=)|(Rk 1ext tNqqcol FYFY . It seems that for 
2,< 1 atb

 a distortion matrix X  over the base field 

does not exist with property 
bqcol =)|(Rk FY

. Therefore we have to introduce a matrix X  over the extension field 

Nq
F

 satisfying conditions in equation (24) for 
2,= 1 atb

. 

One method to provide the conditions (24) is proposed independently in [20] and [21]. They recommend to choose the 

matrix X  over the extension field 
Nq

F
 in such a manner that the following conditions are satisfied:  

 

k
kn

at
r

knt

NqX

q

1

col1

=)|(Rk=

>)|(Rk=

F

F

X

X

 (28) 

However, the column rank of matrix Y  over the base field qF
 has to be equal to 1t . They neither mentioned this fact nor 

proposed how the matrix X  can be constructed. In addition, they recommended a set of parameters to be secure against 
Overbeck‘s attack. Although, all parameters sets proposed in [21] have been broken by Gaborit et al., the second set of 
parameters which were supposed to be stronger than the first one can in fact by attacked in a few seconds with hybrid 
Grbner bases attack as shown in [38]. 

The existing smart approach as described in the previous section has a column rank less than 1t  for the matrix Y . 

Consequently, the main aim of this section is to show how the matrix X  can be constructed to meet the conditions in 
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equation (24) with 1= tb
. The new construction of matrix X  is described as follows: 

Let 0m
 be a 1t  -vector of rank exactly 1t . Let 11 ,, kmm 

 be 1t  -vectors and at least one of vectors has rank exactly 

1t . Construct a matrix  

 

1

2][

1

1][

0

3

[1]

2

[2]

1

] 3 [

0

2

[1]

1

] 2 [

0

1

] 1 [

0

0

=

k

kk
mmm

mmmm

mmm

mm

m

X





 (29) 

 This matrix has the column rank 1t  and the ordinary rank not greater than k . 

Calculating the matrix 21)(= XXY
 gives  

 

1

3

2

1

21 =)(=

km

m

m

m

XXY


 (30) 

Let one of vectors, say, im
 be of rank 1t . Choose other vectors either as multiples of im

, or as the all zero vectors. 
Therefore 

 
1=)|(Rk

but,=)|(Rk 1col

Nq

q t

F

F

Y

Y

 (31) 

 It follows that  

 
1==)|(Rk

but,=)|(Rk

ext

1extcol

knu

t

Nq

q

F

F

Y

Y

 (32) 

 Now choose 
atkn 1=1

, or 
aknt 1=1 . Then the equation (24) will be satisfied. 

 Let 
5=1= 2,= ,2= 2,= 5,= 8,= 12,== 1

8 akntaqtdknN
.   

    • Public key size  
qntkNV log)(=

21 = 817812  = 13056 bits.  

    • Information rate  

0.47=
17

8
==

1 nt

k
R

.  

    • Minimum security – Overbeck‘s attack  
20431923

1 2=(17)2=)( tnqaN

.  

    • Minimum security – Decoding attacks by Eq.‘s (7)-(10)   

851)1)((3 2=)( ktqNtO
.  
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 As can be seen clearly from this Section that the DMA is secure against Overbeck‘s and decoding attacks. 

6  Solution based on scramble matrix P 

In the following Sections: firstly, we give a short introduction about reducible rank codes in Section 6.1; secondly, we 
review the GPT cryptosystem which based on reducible rank codes in Section 6.2; finally, we propose the Advanced 
approach for Reducible rank codes in Section 6.3. 

6.1  Reducible rank codes 

 Let 
r

GGG ,,, 21 
 be generator matrices of linear 

),( ii kn
 codes over the field 

Nq
F

,  
ri ,1,= 

. We shall 

consider the case, when all 
nni =

, 
kki =

 and all k

i
GG =

. The matrix kG
 is the generator matrix of a MRD 

),,( dkn
 code. 

A code C  is called reducible if its generator matrix G  can be represented as  

 krrrr

krr

k

k

GGGG

0GGG

00GG

00GG

000G

=G

1,,2,1

1,21,1

3,23,1

2,1













 (33) 

 Matrices ji,G
 are random nk  matrices, 

ri ,2,= 
,  

1,1,= rj 
, over 

Nq
F

. This matrix defines a MRD 

reducible rank code with parameters: length 
nrn =total , dimension 

krk =total , rank code distance 1= knd . 

Let rmmmm ,,,= 21 
 be an information sequence with entries in 

Nq
F

. This sequence can be viewed as a 

concatenation of r  subblocks of length k . Then the codeword is defined by  

 
),,,,(= 21 rgggmG=g 

 

 where ig
, 

,,1,2,= ri 
 is a subblock of length n :  

 
,= ,12,1211 rrk GmGmGmg 
 

 
,= ,23,2322 rrk GmGmGmg 
 

   

 
,= 1,11 rrrkrr GmGmg

 

 krr Gmg =
 

To decode, begin with the last subblock rg
 by applying to it a usual fast decoding algorithm for MRD codes, and obtain 

the last information subblock rm
. Proceed further with krrrrr GmGmg 11,1 =

 to obtain 1rm
, and so on until 

1m
.  

6.2  The GPT PKC Based on Reducible Rank Codes 

 The GPT cryptosystem based on reducible rank codes is described as follows: 

Plaintext: A Plaintext is any 
krk =total -vector 

),,,(= 21 rmmmm 
 consisting of r  subblocks 
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rsm k

Nqs ,1,2,= , F
. 

The Public key is the following generator matrix with size 
Lktotal , where 1total= tnL

:  

P
GX

SG =pub

 (34) 

 Let us explain roles of the factors. 

The  matrix G  is a generator matrix (33). 

The Private keys are matrices 
PXGS  , , ,

 separately and (explicitly) a fast decoding algorithm of an MRD code.  

Encryption: Let rmmmm ,,,= 21 
 be a plaintext. Note that the product  

 
GXmS

 

can be represented as  

 
],,,,,[ 210 rgggg 

 (35) 

 where 0g
 is a distortion subblock of length 1t , while all the other subblocks of length n  each form a code vector of 

reducible rank code. The corresponding ciphertext is calculated as  

 
,],,,,[=== 210pub ePggggePGXmSemGc r

 (36) 

 where e  is an artificial vector of errors of rank 2t  or less. It is assumed that 2
=21

kn
ttt

 

Decryption: The legitimate receiver knows the matrix P  and upon receiving c  calculates  

 
],,,,[=

],,,,[=

==

221100

210

11'

'

rr

'''

'

r

egegegeg

egggg

eP
GX

mScPc





 (37) 

 Assume that design parameters are chosen such that  

 
ritq

'

i ,1,2,=,)|(Rk Fe
 (38) 

 Then the legitimate user can recover the information sequence m  starting with the last subblock and using known to him 
a fast decoding algorithm. 

6.3  Advanced Approach for Reducible Rank Codes (ARC) 

 The legitimate user should choose its design parameters similar to equation (38). It was assumed in the previous works, 

that a column scrambler P  is chosen over the base field qF
. In this case, 

)|(Rk=)|(Rk 1

qq FF ePe
. It is clear that 

always 
)|(Rk)|(Rk q

'

q

'

i FF ee
. Hence it was enough to choose artificial errors e  with rank 

tq )|(Rk Fe
 to 

satisfy equation (38). 

On the other hand, the crucial point of Overbeck‘s attacks is just the assumption that a column scrambler P  is chosen 

over the base field qF
. If it is not a case, then his attacks fail. 

We establish conditions, when equation (38) is valid for a matrix P  over the extension field 
Nq

F
. 

Let e  be a vector of length 1total tn
 and let 2=)|(Rk tqFe

. Let L  be a 
ntn )( 1total  matrix of ordinary rank n  
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and consisting of  columns having entries in qF
 and n  columns having entries in 

Nq
F

.   

 
ntq },{min)|(Rk 2FeL

 (39) 

  Proof. The column rank of the row vector eL  is not greater than the sum of ranks of two subvectors. The first subvector 

originates from the product e  and those columns of L  which have entries in qF
. It is clear that the rank of this part 

equals 
},{min 2t . The second part originates from the product e  and those columns of L  which have entries in 

Nq
F

. 

Its rank is not greater than n . This concludes proof.  

 Choose 2ttn
. Then  

 
ttttq =)()|(Rk 22FeL

 (40) 

 We will show now how the matrix P  can be constructed. Therefore, its inverse matrix 
1

P  should be chosen and 
concatenated of submatrices as follows: 

 

rLLLL
P

2101 =

 

The submatrix 0L
 is a 11total )( ttn

 matrix. Choose its entries in the extension field 
Nq

F
. 

Submatrices 
,,1,2,=, rii L

 are 
ntn )( 1total  matrices. Choose in each matrix 2= ttn

 columns with 

entries in the base field qF
 and 2= ttn

 columns with entries in the extension field 
Nq

F
. 

By definition that an artificial error e  has rank 2t . Therefore we have for 
,,1,2,= ri 

 that 
.)|(Rk tqFeL
 

We construct a proper column scrambler P , which makes Overbeck‘s attacks invalid. 

 Let 
14= 30,= 2,= ,2= 2,=2,= 4,= 9,= 7,= 15,== totaltotal

8

21 knrqtttdknN
. Let the extension field be 

152
F

. 

    • Public key size is a 
qNtnk log)(

21totaltotal  = 53760=8153214  bits 

    • Information rate   
32

14
=

)(
=

1total

total

tn

k
R

 0.44=  

    • Minimum security – Overbeck‘s attack 

2553

1total

)
2

(
2=))(( tnq

Nt
O

.  

    • Minimum security – Decoding attacks by Eq.‘s (7)-(10)  

2091)1)((3 2=)( ktqNtO
. 

According to this section Overbeck‘s attack based on reducible rank codes is ineffective. 

7  Description of the Simple Variant of the GPT cryptosystem 

 The GPT cryptosystem is described as follows. 

 
.=pub PSGG k  (41) 

    • The main matrix kG
 is given by equation (2). It is used to correct rank errors. Errors of rank not greater than 

2
=

kn
t

 can be corrected.  
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    • A matrix S  is a row scrambler. This matrix is a non singular square matrix of order k  over the extension field 
Nq

F
.  

    • A nonsingular matrix P  is a square column scramble matrix of order n  over the extension field 
Nq

F
. 

Consider the public key of Eq. (41). No distortion matrix X  is used. A ciphertext has the following form  

 
,= ePmSGc k  (42) 

 where the rank sq t=)|(Rk Fe
 of an artificial error e  is less or equal to 2

=
kn

t
. 

Decoding attacks are based on the exhaustive search of possible artificial errors e . It depends on the number of error 

vectors. If artificial errors are all possible n -vectors of rank st , then the complexity against Overbeck‘s attack is 
s

nt
qO

. 

The Public key size is  
.log=

2
qknNV

 

Assume first that the column scrambler P  is a matrix over the base field qF
. The legitimate user knows the secret key P  

and 
1

P . The Decryption algorithm is as follows: 

     1.  Get a ciphertext 
ePmSGc k=

.  

    2.  Multiply to the right by 
1

P . Get an intermediate ciphertext  

 
.== 11

ePmSGcPc k

'

 (43) 

 Note that 2
==)|(Rk=)|(Rk 1 kn

ttsqq FF eeP
 since 

1
P  is over the base field  qF

.  

    3.  Decode 
'

c  using a fast decoding algorithm and getmS .  

    4.  Get a plaintext m  as 
1)( SmS
.  

The situation is quite different if P  is a matrix over the extension field 
Nq

F
. 

We can assume from now on that Overbeck‘s attack cannot be implemented. But the cryptographer should select a secret 

column scrambler P  over the extension field 
Nq

F
 and a public set E  of artificial errors e  such that  

 

,
2

=)|(Rk 1 kn
tqFeP

 (44) 

 where 
1

eP  is an error in the intermediate ciphertext (43).  

 Choice of E  

 The public set of artificial errors is chosen as the set consisting of all n -vectors in 

n

Nq
F

 with rank 
tts <

:  

 
.=)|(Rk,:= sq

n

Nq
tFFE eee

 

Choice of P  

 The cryptographer chooses an inverse matrix 
1

P  in the form 21

1 = QQP
, where 1Q

 is a submatrix of size 

)( sttn
 with entries in the extension field 

Nq
F

 while 2Q
 is a submatrix of size 

)( sttnn
 with entries in the 
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base field qF
.  Let e  be any n -vector of rank st . Then the condition Eq. (44) is hold.   

Proof. We have 2121

1 == eQeQQQeeP
. A vector e  can be represented as 

Awwwe
s

t21=
, where jw

‘s are linearly independent over qF
 and A  is the 

nts  matrix over qF
 of 

rank st . Then 
1211 = BwwweQ

s
t

, where 11 = AQB
 is the 

)( ss ttt
 matrix over the extension field 

Nq
F

. It is clear that sq tt)|(Rk 1 FeQ
. Similarly, 

2212 = BwwweQ
s

t
, where 22 = AQB

 is the 

)( ss ttnt
 matrix over the base field qF

. It follows that sssq tttnt ),(min=)|(Rk 2 FeQ
. Hence  

 

.
2

==)()|(Rk)|(Rk)|(Rk 21

1 kn
tttt ssqqq FFF eQeQeP

 

  The matrix 
1

P  can be replaced by a matrix QPP
1

1

=


, where Q  is any nn  non singular matrix over the base 

field qF
.     

Code parameters 

),,,,,( qttkNn s  

  
Over  

   
OJ1   

   
OJ2  

  
MINI  

  
HGb1  

  
HGb2  

  Public 
Key   

  
Security  

5,4,2)(20,20,10,
   

802    
642    

782   
 

2612   
 

662   
672    4000  

 
Insecure  

)5,4,2(20,20,10, 2

  
 

1602   

 
1082   

 
1382   

 
2622   

 
1102   

1162   8000  
 Secure 

)5,4,2(20,20,10, 4

  
 

3202   

 
1962   

 
2582   

 
2632   

 
1982   

2162  
 

16000  

 Secure 

)5,4,2(20,20,10, 8

  
 

6402   

 
3722   

 
4982   

 
2642   

 
3742   

4162  
 

32000  

 Secure 

 

Table 1: Comparison between Decoding &  Structural attacks of simple variants of the GPT PKC 

   In Table 1, we evaluate the security of the simple variant of the GPT PKC against both Overbeck and Decoding attacks 
using same parameters which were presenter by Gaborit et al. in [38] regarding the code is used. According to Table 1: 
â€™OJ1â€™ stands for the improved basis enumeration by Ouriski and Joahsson, â€™OJ2â€™ stands for coordinates 
enumeration as described in Eq.(7); â€™Overâ€™ stands for the complexity of the Overbeck attack, â€™MINIâ€™ 
stands for the complexity of the Levy-dit-Vehel et al algorithm Eq. (8), â€™HGb1â€™ stands for the complexity of Gaborit 
et al. first algorithm Eq. (9), and â€™HGb2â€™ stands for the complexity of Gaborit et al. second algorithm Eq. (10). 

Our Results show that all known (decoding & structural) attacks are infeasible with 
22=q

 and above.\ 

8  Conclusion 

 We have presented two approaches as techniques of withstanding Overbeck‘s attack against the GPT cryptosystem and 

its variants. 1.  Distortion Matrix Approach. It is shown that proper choice of the distortion matrix X  over the extension 

field 
Nq

F
 allows the decryption by the authorized party and prevents the unauthorized party from breaking the system by 

means of any known attacks. This approach is more powerful against Overbeck‘s attack than the Smart approach. 

    2.  Advanced Approach for Reducible Rank Codes. It is shown that a proper choice of the column scramble matrix P  

over the extension field 
Nq

F
 makes all new attacks ineffective. This approach is designed to secure the GPT 

cryptosystem based on reducible rank codes.  
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The two approaches are proposed to countermeasure the attack of the GPT public key cryptosystem based on rank 
codes. They provide better security comparing with other GPT cryptosystem approaches. Furthermore, We have 
evaluated the simple variant of GPT PKC against all known attacks including Gaborit et al. attack and demonstrated a new 
set of parameters which were secure against all known attacks. It has been demonstrated that the decoding attacks are 

infeasible for practical implementations with 
22=q

 and above. With all these merits, The GPT cryptosystem can be 
effectively used in many practical applications such as mobile applications. 
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