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ABSTRACT 

Fault tolerance is an important issue to guarantee reliable execution of tasks in computational desktop grid environment 
where execution failures are frequently expected, requires the availability of efficient fault tolerant strategies able to 
effectively deal with resource failures and/or unplanned periods of unavailability. In this paper we present a Dynamic Fault 
Tolerant strategy that, rather than just tolerating faults as done by traditional fault-tolerant schedulers, exploit the 
information concerning size of task, resource speed and resource reliability by maintaining resource history to improve 
application performance. The performance of this strategy has been compared via simulation with those attained by 
traditional fault-tolerant strategy. Our results, obtained by considering a set of realistic scenarios modeled after real 
Desktop Grids, show that our approach results in better application performance and resource utilization. 
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1. INTRODUCTION  

A desktop grid is usually built on the Internet infrastructure in which computing resources are unreliable and frequently 
turned off or disconnected. In addition, communication bandwidth between these resources is not settled. Two 
considerable challenges can be addressed in desktop grids[1]. The first is fault tolerance, where participating machines 
are unreliable and may simply be turned off, disconnected or even terminate the grid application during a task execution. 
This will lead to the need for rescheduling the interrupted task to another computing resource (Worker) and restart 
execution from scratch which is time consuming. The second is the limited and unsettled bandwidth between participating 
nodes. This is a common problem that is always shown up when resources are connected via Internet 

In order to cope with resource failures, recent work has focused on fault-tolerant strategy [2,3, 4] relies on fault-handling 
mechanisms (such as task replication and checkpoint-and-restart) to deal with the occurrence of resource failures or 
unavailability. These strategies, however, being information-free, do not use any information concerning the tasks and the 
resources, with the consequence that their resource usage is suboptimal. 

In this paper we propose an alternative approach to fault-tolerant strategy in Desktop Grids (named Dynamic Fault 
Tolerance in Desktop Grids) that, instead of just tolerating resource failures, tries to avoid them as much as possible by 
jointly exploiting the fault handling mechanisms, and uses the knowledge of the effective speed delivered by resources 
[5,6] and the size of the task [7] to improve Fault Tolerance. We show how this information can be exploited to improve 
both task selection (the choice of the next task to be executed) and machine selection (the choice of the machine on which 
it will be executed) with respect to fault-tolerant schedulers. More specifically, we have calculated the reliability of a 
resource by calculating its delay time & maintain a resource history table on the basis of delay time. In order to show the 
effectiveness of our approach, we have conducted a thorough simulation study that has shown that our strategies 
outperform fault tolerant schedulers for a variety of operational scenarios. 

The rest of the paper is organized as follows. In Section II we place our work in the context of the related literature. In 
Section III we discuss existing fault-tolerant strategy. In section IV we discussed the proposed strategy i.e. Dynamic Fault 
Tolerant strategy in Desktop Grids. Finally, Section V concludes the paper and outlines future research work. 

2. RELATED WORK 

Most of the existing fault management mechanisms are reactive incomplete and application dependent. For example if a 
job execution machine fails during execution; jobs would be submitted on another machine from start. This technique is 
known as Retry. We cannot afford such kind of techniques for compute intensive jobs that require huge computational 
resources. An extension of this approach has been presented in [8]  that uses task replication to reduce the effects of poor 
task assignments, and automatic restart (possibly coupled with checkpointing) to deal with resource failures. 

Another problem faced is the cognitive problem. It becomes very difficult to detect, identify, isolate and recover from 
failures. An extension to the classification [9,10, 11] of errors, failures and faults with their expected occurrence at 
appropriate grid layer has already been presented in [12]. 

A proactive approach regarding job scheduling in computational grid has been proposed in [13]. It schedule jobs based on 
history maintained in grid information service about grid resources. 

An alternative proactive approach to BoT scheduling in Desktop Grids has been proposed in [14] that, exploit the 
information concerning resource availability to improve application performance. 

According to our knowledge, none of the techniques or frameworks deals with failures both in proactive and reactive way. 
Our strategy exploit task replication and checkpoint-and-restart, but their usage of task and resource information allows 
them to greatly reduce the amount of wasted CPU cycles that are instead used to improve application performance. 

3. EXISTING FAULT TOLERANT STRATEGIES 

The applications of Fault Tolerant Strategies on a Desktop Grid are a non trivial task, even for simple applications like 
those belonging to the BoT paradigm. As a matter of fact the set of Grid resources may greatly vary over time (because of 
resource additions and/or removals), the performance a resource delivers may vary from an application to another 
(because of resource heterogeneity), and may actuate over time (because of resource contention caused by applications 
competing for the same resource). Achieving good performance in these situations usually requires the availability of good 
information about both the resources and the tasks, so that a proper scheduling plan can be devised. Unfortunately, the 
wide distribution of Grid resources makes obtaining this information very difficult, if not impossible, in many cases. Thus, 
the so called knowledge-free Strategies, that do not base their decisions on information concerning the status of resources 
or the characteristics of applications, are particularly interesting. 

3.1 WQR-FT: The WorkQueue with Replication – Fault Tolerant Strategy 
WorkQueue with Replication Fault Tolerant (WQR-FT) is a knowledge free Scheduler for Bag-of-Tasks Grid applications 
on desktop grid. WQR-FT is able not only to guarantee the completion of all the tasks in a bag, but also to achieve 
performance better than alternative scheduling strategies to obtain fault tolerance. WQR-FT is obtained by adding 
checkpointing and replication to the WorkQueue with Replication (WQR) scheduling algorithm [15] with the purpose of 
keeping the number of running replicas of each task above a predefined replication threshold R[4]. In particular, when a 
replica of a task t dies and the number of running replicas of t falls below R, WQR-FT creates another replica of t that is 
scheduled as soon as a processor becomes available, but only if all the other tasks have at least one replica running. 
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Automatic restart ensures that all the tasks in a bag are successfully completed even in face of resource failures. 
However, each time a new instance must be started to replace a failed one, its computation must start from the beginning, 
thus wasting the work already done by the failed instance. In order to overcome this problem, WQR-FT uses 
checkpointing, that is the state of the computation of each running replica is periodically saved with a frequency set as 
indicated in [16] (we postulate the existence of a reliable checkpoint server where checkpoints are stored). In this way, the 
execution of a new instance of a failed task may start from the latest available checkpoint. In this paper we assume that an 
application may be restarted from its latest checkpoint only on a machine having the same operating system of that on 
which the checkpoint was taken. If such a machine cannot be found when a new replica is created (to replace a faulty 
one), its execution will start from the beginning. 

Following algorithm details the behavior of WQR-FT. 

                    …………… Data structures and functions ………….. 

1.  Q {is the queue of the tasks} 
2.  R {is the set of resources} 
3.  RPTH {is the maximum number of replicas for each task } 
4.  RPR(t) {returns the number running instances of task t} 
5.  resourceFree(R) {returns a resource available } 
6.  deleteInstances(t) {deletes all running instances of task t} 
7.  assign(r,t) {assigns task t to resource r} 
8.  assignChkpnt(r,t) {assigns task t to resource r but in this case the execution of task t on resource r will 

start from the checkpoint} 
9.  chkpnt(t,r) {returns true if task t has a checkpoint compatible with 

                     resource r} 
10. processwaitingqueue(){process jobs of waiting queue} 

 
…………… WQR-FT algorithm……………..  

11. For all jobs t in the Queue Q 
12. WaitEvent(); 
13. if (event =resourceFree(R)) then  
14. r=getResourceFree(R); 
15. t=popfront(Q); 
16. if (RPR(t) < RPTH) AND chkpnt(t;r) then 
17. assignChkpnt(r,t); {assigns task t to resource r so that execution will start from  checkpoint} 
18. else if (RPR(t) < RPTH) AND NOT chkpnt(t;r) then 
19. assign(r,t);  {assigns task t to resource r} 
20. end if 
21. else  
22. Push t into waiting Queue 
23. end if 
24. if (event=jobComplete) then 
25. deleteInstances(t); 
26. processwaitingqueue(); 
27. end if 
28. end for    

 
 The  Strategy WQR-FT checks after selecting a resource(r) and a task(t)  if the execution can start from a saved 
checkpoint (line 16 and 17). If a compatible checkpoint does not exists the execution of task t on machine r starts from the 
beginning (line 19). 

4. PROPOSED STRATEGY 
Although WQR-FT has shown good results, a knowledge-free strategy that do not use any information concerning the 
tasks & the resources but is not able to fully exploit the computational power of Desktop Grids. For this reason, we have 
proposed new fault tolerant strategy based on WQR-FT that uses the information concerning size of task, resource speed 
and resource reliability  to improve Fault Tolerance. We show how this information can be exploited to improve both task 
selection (the choice of the next task to be executed) and machine selection (the choice of the machine on which it will be 
executed) with respect to fault-tolerant schedulers 

4.1 (DFTDT) :Dynamic Fault tolerance on the basis of of delay time of resource  
In our proposed strategy the selection of resources will be based upon the average of ratio of delay time of resource with 
respect to the task and size of task. Delay time is the difference between estimated time and actual time taken by task for 
its execution. Hence delay time of jth resource with respect to ith task can be calculated as: 

 
D i j = (E i j - A I j)/ Size (TI) where 

 
D i j is the delay time of ith  task on jth resource 
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E i j is the estimated execution time of ith task on jth resource 

A i j  is the actual execution time of ith  task on jth resource 

Thus average delay time of Jth resource is : 

  Dj=∑ D ij / N  
 

Here i=1...N 
         J=1...M 

 
Following algorithm details the behavior of DFTDT. 

…………… Data structures and functions ………….. 

1.  Q {is the queue of the tasks} 
2.  R {is the set of resources} 
3.  RPTH {is the maximum number of replicas for each task } 
4.  RPR(t) {returns the number running instances of task t} 
5. getResourceList();{returns all available resources} 
6.  resourceFree(R)) {returns a resource available } 
7.  deleteInstances(t) {deletes all running instances of task t} 
8.  assign(r,t) {assigns task t to resource r} 
9.  assignChkpnt(r,t) {assigns task t to resource r but in this case the execution 

of task t on resource r will start from the checkpoint} 
10.  chkpnt(t,r)  {returns true if task t has a checkpoint compatible with 

   resource r} 
11. processwaitingqueue(){process jobs of waiting queue} 
12. getResourceHistorytable(){returns the resource history table according to delay  time  } 
13. manageResourceList() {Sort resourceList in ascending order according to average delay time from 

resource history table} 
14. updateHistoryTable(){updates the resource history table} 

 
…………… DFTDT algorithm …………… 

15. getResourceList(); 
16. getResourceHistorytable(); 
17. manageResourceList(); 
18. For all jobs t in the Queue Q 
19. WaitEvent(); 
20. if (event =resourceFree(R)) 
21. r=getResourceFree(R); 
22. t=popfront(Q); 
23. if (RPR(t) < RPTH) AND chkpnt(t;r) then 
24. assignChkpnt(r,t);  {assigns task t to resource r so that execution will start from  checkpoint } 
25. else if (RPR(t) < RPTH) AND NOT chkpnt(t;r) then 
26. assign(r,t); {assigns task t to resource r} 
27. end if 
28. else  
29. Push t into waiting Queue 
30. end if 
31. if (event=jobComplete)  
32. updateHistoryTable() 
33. deleteInstances(t); 
34. processwaitingqueue(); 
35. end if 
36. end for    

 
As a matter of fact our strategy will manage resource list ( line 17 )  as per the  resource history table by sorting them on 
the basis of average delay time of all resources that has been calculated and the resources having minimum average 
delay will assigned the tasks first.The DFTDT algorithm is able not only to guarantee performance (Total CPU time) better 
than WQR-FT, but also reduce the relative waiting time and failure count occurred during execution of gridlet . 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we propose optimum resource selection framework based on its reliability of resource to achieve maximum 
fault tolerance and performance. We have presented (DFTDT)- Dynamic Fault tolerance on the basis of delay time of 
resource with respect to the task, a fault-tolerant scheduling algorithm for Bag-of-Tasks Grid applications based on the 
WQR-FT algorithm. DFTDT is able not only to guarantee the completion of all the tasks in a bag, but also to achieve 
performance better than alternative Fault Tolerant Strategies; we can conclude that DFTDT outperforms these Strategies 
when Total CPU time, Waiting time and Failure Count of resources are taken into account. 
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As future work, we plan to study the behavior of DFTDT in more complex scenarios, such as task reliability and system 

load to carry on dynamic fault tolerance .We are planning to extend the  DFTDT with dynamic replication and 

checkpointing .  
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