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ABSTRACT 

Desktop Grid is different from Grid in terms of the characteristics of resources as well as types of sharing. Particularly, 
resource providers in Desktop Grid are volatile, heterogeneous, faulty, and malicious. These distinct features make it 
difficult for a scheduler to allocate tasks. Moreover, they deteriorate reliability of computation and performance. Availability 
metrics can forecast unavailability & can provide schedulers with information about reliability which helps them to make 
better scheduling decision when combined them with information about speed. This paper using these metrics for deciding 
when to replicate jobs & how much to replicate. In particular our metrics forecast the probability that a job will complete 
uninterrupted & our schedulers replicate those jobs that are least likely to do so. Our policy outperforms other replication 
policies as measured by improved Total CPU Time & reduced Waiting Time & Failure count. 
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1. INTRODUCTION  

Grid computing technology provides resource sharing and resource virtualization to end-users, allowing for computational 
resources to be accessed as a utility. By dynamically coupling computing, networking, storage, and software resources, 
Grid technology enables the construction of virtual computing platforms capable of delivering unprecedented levels of 
performance. However, in order to take advantage of Grid environments, suitable application-specific scheduling 
strategies, able to select, for a given application, the set of resources that maximize its performance, must be devised [1]. 
The inherent wide distribution, heterogeneity, and dynamism of Grid environments makes them better suited to the 
execution of loosely-coupled parallel applications, such as Bag-of-Tasks [2] (BoT) applications, rather than of tightly-
coupled ones. Bag-of-Tasks applications (parallel applications whose tasks are completely independent from one another) 
are particularly able to exploit the computing power provided by Grids [3] and, despite their simplicity, are used in a variety 
of domains, such as parameter sweep, simulations, fractal calculations, computational biology, and computer imaging. 
Therefore, scheduling algorithms tailored to this class of applications have recently received the attention of the Grid 
community [3, 4, 5]. Although these algorithms enable BoT applications to achieve very good performance, they suffer 
from a common drawback, namely their reliance on the assumption that the resources in a Grid are perfectly reliable, i.e. 
that they will never fail or become unavailable during the execution of a task. Unfortunately, in Grid environments faults 
occur with a frequency significantly higher than in traditional distributed systems, so this assumption is overly unrealistic. A 
Grid may indeed potentially encompass thousands of resources, services, and applications that need to interact in order 
for each of them to carry out its task. The extreme heterogeneity of these elements gives rise to many failure possibilities, 
including not only independent failures of each resource, but also those resulting from interactions among them. Moreover, 
resources may be disconnected from a Grid because of machine hardware and/or software failures or reboots, network 
misbehaviors, or process suspension/abortion in remote machines to prioritize local computations. Finally, configuration 
problems or middleware bugs may easily make an application fail even if the resources or services it uses remain 
available [6]. 

In order to hide the occurrence of faults, or the sudden unavailability of resources, fault-tolerance mechanisms (e.g., 
replication or checkpointing-and restart) are usually employed. Although scheduling and fault tolerance have been 
traditionally considered independently from each other, there is a strong correlation between them. As a matter of fact, 
each time a fault-tolerance action must be performed, i.e. a replica must be created or a checkpointed job must be 
restarted, a scheduling decision must be taken in order to decide where these jobs must be run, and when their execution 
must start. A scheduling decision taken by considering only the needs of the faulty task may thus strongly adversely 
impact non-faulty jobs, and vice versa. Therefore, scheduling and fault tolerance should be jointly addressed in order to 
simultaneously achieve fault tolerance and satisfactory performance. Fault-tolerant schedulers [7, 8, 9] attempt to do so by 
integrating scheduling and fault management, in order to properly schedule both faulty and non-faulty tasks.  However, to 
the best of our knowledge, no fault-tolerant scheduler with dynamic replication for BoT applications has been proposed in 
the literature. This paper aims at filling this gap by proposing a novel fault-tolerant scheduler with dynamic replication for 
BoT applications, in which resources will be selected not only on the basis of computation and memory power but also on 
the basis of resource reliability. 

The rest of the paper is organized as follows. In section 2, we review some related works. In Section 3 we discuss the 
performance of a Knowledge free Scheduler called Work Queue with Replication(WQR) is an extension of the classical 
WorkQueue(WQ) Scheduling algorithm & performance of a knowledge free fault –tolerant scheduler called Work Queue 
with Replication and Fault Tolerant(WQR-FT). In Section 4 we discuss how it is possible to build The WorkQueue with 
Dynamic Replication – Fault Tolerant Scheduler able to outperform The WorkQueue with Replication - Fault Tolerant 
Scheduler(WQR-FT).Finally, Section 5 concludes the paper & outlines future research work. 

2. RELATED WORK 

Existing algorithms for scheduling BoT applications on Desktop Grids can be classified along two dimensions, namely (a) 
their reliance on task/resource information (i.e., we have knowledge-free and knowledge-aware strategies), and (b) the 
way they handle resource failures (i.e., we have fault-agnostic and fault-aware strategies). Although this classification 
gives rise to four different combinations, the literature provides examples belonging to only three of them. 

knowledge-free schedulers [10] adds task replication to the classical Workqueue(WQ) scheduler to avoid task failures 
near the end of the application, and unpredictably slow hosts can cause major delays in application execution. Using the 
replication approach, hosts are assigned to execute replicas of tasks that are still running. Tasks are replicated until a 
predefined maximum number of replicas are achieved. When a task replica finishes, its other replicas are canceled. This 
policy has the drawback of wasting CPU cycles (due to the replicas that do not contribute to the completion of the tasks), 
which could be a problem if the Desktop Grid is to be used by more than one application. Knowledge-based fault-agnostic 
schedulers[11] rely on resource/task information, but are based on the implicit assumption that resources never fail. 
Schedulers in this class assume the  knowledge of the execution time of individual tasks, and exploit various type of static 
[12], [13] or dynamic [11], [14] resource information to perform machine selection. Knowledge-free, fault-tolerant 
schedulers[7,15] improve over their knowledge free counterparts by using task replication to reduce the effects of poor 
task assignments, and automatic restart (possibly coupled with checkpointing) to deal with resource failures. 

An alternative approach to BoT scheduling in Desktop Grids named fault-aware schedulers has been proposed in [16] 
that, rather than just tolerating faults as done by traditional fault-tolerant schedulers, exploit the information concerning 
resource availability to improve application performance.An extension of this approach has been proposed in [17] that 
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uses three general techniques for resource selection: resource prioritization, resource exclusion, & task duplication. we 
used these technique to instantiate several scheduling heuristics. 

A decentralized scheduler for BoT applications on desktop grids has been proposed in [18] which ensures a fair and 
efficient use of the resources. It aims to provide a similar share of the platform to every application by minimizing their 
maximum stretch, using completely decentralized algorithms and protocols. 

3. EXISTING SCHEDULERS 

Scheduling applications on a Grid is a non trivial task, even for simple applications like those belonging to the BoT 
paradigm. As a matter of fact the set of Grid resources may greatly vary over time (because of resource additions and/or 
removals), the performance a resource delivers may vary from an application to another (because of resource 
heterogeneity), and may actuate over time (because of resource contention caused by applications competing for the 
same resource). Achieving good performance in these situations usually requires the availability of good information about 
both the resources and the tasks, so that a proper scheduling plan can be devised. Unfortunately, the wide distribution of 
Grid resources makes obtaining this information very difficult, if not impossible, in many cases. Thus, the so called 
knowledge-free schedulers, that do not base their decisions on information concerning the status of resources or the 
characteristics of applications, are particularly interesting. 

3.1 The Standard WQR Scheduler 

In the classical WorkQueue (WQ) scheduling algorithm, tasks in a bag are chosen in an arbitrary order and are sent to the 
processors as soon as they become available. WQR adds task replication to WQ in order to cope with task and host 
heterogeneity, as well as with dynamic variations of the available resource capacity due to the competing load caused by 
other Grid users.WQR works very similarly to WQ, in the sense that tasks are scheduled the same way. However, after 
the last task has been scheduled, WQR assigns replicas of already-running tasks to the processors that become free (in 
contrast, WQ leaves them idle). Tasks are replicated until a predefined replication threshold is reached. When a tasks 
replica terminates its execution, its other replicas are canceled. By replicating a task on several resources, WQR 
increases the probability of running one of the instances on a faster machine, thereby reducing task completion time. As 
shown in [3], WQR performance are equivalent to solutions that require full knowledge about the environment, at the 
expenses of consuming more CPU cycles. 

3.2 The WorkQueue with Replication – Fault Tolerant Scheduler 

In its original formulation, WQR does not do anything when a task fails. Consequently, it may happen that one or more 
tasks in a bag will not successfully complete their execution. In order to obtain fault tolerance, we add automatic restart, 
with the purpose of keeping the number of running replicas of each task above a predefined replication threshold R[15]. In 
particular, when a replica of a task t dies and the number of running replicas of t falls below R, WQR-FT creates another 
replica of t that is scheduled as soon as a processor becomes available, but only if all the other tasks have at least one 
replica running. Automatic restart ensures that all the tasks in a bag are successfully completed even in face of resource 
failures. However, each time a new instance must be started to replace a failed one, its computation must start from the 
beginning, thus wasting the work already done by the failed instance. In order to overcome this problem, WQR-FT uses 
checkpointing, that is the state of the computation of each running replica is periodically saved with a frequency set as 
indicated in [19] (we postulate the existence of a reliable checkpoint server where checkpoints are stored). In this way, the 
execution of a new instance of a failed task may start from the latest available checkpoint.  

Following algorithm details the behavior of WQR-FT. 

1: ----------- data structures and functions --------------- 

2:  Q {is the queue of the tasks (Qi is the ith task)} 

3:  R {is the set of resources (Ri is the ith resource)} 

4:  RLTH {is the maximum number of available replicas for each task} 

5:  RLR(t) {returns the number running instances of task t} 

6:  getRscFree(R) {returns a resource available} 

7:  deleteInstances(t) {deletes all running instances of task t} 

8:  allocate(r,t) {assigns task t to resource r} 

9:  allocateChk(r,t) {assigns task t to resource r but in this case the execution  of task t on resource r will start from the 
checkpoint} 

10: chkpnt(t,r) {returns true if task t has a checkpoint compatible with resource r} 

11: --------------WQR-FT algorithm --------------- 

12: while Q is not empty do 

13: wait(event) 
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14: if (event == "RscFree") then 

15: r=getRscFree(R); {r is a resource available} 

16: t=pop front(Q); {extracts the first task t of the queue} 

17: if (RLR(t) < RLTH) AND chkpnt(t; r) then 

18: allocateChkpnt(r,t); {assigns task t to resource r} 

19: else if (RLR(t) < RLTH) AND NOT chkpnt(t; r) then 

20: allocate(r,t); {assigns task t to resource r} 

21: end if 

22: pushback(Q,t); {adds task t to the end of the queue} 

23: else {event=="TaskDone"} 

24: deleteInstances(t); {deletes all running instances of task t} 

25: end if 

26: end while 

As a matter of fact, once that a resource and a task has been selected (lines 15 and 16), the scheduler checks if the 
execution can start from a saved checkpoint (line 17 and 18). If a compatible checkpoint does not exists the execution of 
task t on machine r starts from the beginning (line 20). 

4. PROPOSED SCHEDULER 

WorkQueue with Replication is a knowledge-free scheduling algorithm that adds task replication to the classical 
WorkQueue scheduler. WQR-FT, adds both automatic restart and checkpointing to WQR, and properly coordinates the 
scheduling of faulty and non-faulty tasks in order to simultaneously achieve fault-tolerance and good application 
performance.  

Our scheduler, WQDR-FT: A Fault-Tolerant Scheduler with dynamic replication for BoT Applications adds dynamic 
replication to WQR-FT, in which resources will be selected not only on the basis of computation and memory power but 
also on the basis of resource reliability. 

4.1 The WorkQueue with Dynamic Replication – Fault Tolerant Scheduler 

Although WQR-FT has shown good results, we believe that knowledge free schedulers cannot exploit the full potential of 
Desktop Grids, as these algorithms usually require the use of much more resources than necessary in order to tolerate 
some bad decisions made when these algorithms usually are using same replication threshold for all tasks. 

Following algorithm details the behavior of WQDR-FT.      

1: ----------- data structures and functions --------------- 

2:  Q {is the queue of the tasks (Qi is the ith task)} 

3:  R {is the set of resources indexed according to Success Rate (Ri is the ith resource)} 

4:  T { is the total no of successful jobs) 

5:  N {Total no of jobs submitted for execution} 

6:  SR  { Success rate } 

7:  RLTH {is the maximum number of available replicas for each task calculated dynamically} 

8:  RLR(t) {returns the number running instances of task t} 

9:  getRscFree(R) {returns a resource available} 

10: deleteInstances(t) {deletes all running instances of task t} 

11: allocate(r,t) {assigns task t to resource r} 

12:  allocateChk(r,t) {assigns task t to resource r but in this case the execution of task t on resource r will start from the 
checkpoint} 

13: chkpnt(t,r) {returns true if task t has a checkpoint compatible with resource r} 

14: getresourcelist() 

15: getResourceHistory() 

16: --------------WQDR-FT algorithm --------------- 
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17: getResourcelist(); 

18:getResourceHistory(); 

19:sort resource list according to Resource history. 

20:while Q is not empty do.. 

21: wait(event) 

22: if (event == "RscFree") then 

23: r=getRscFree(R); {r is a resource available} 

24: t=pop front(Q); {extracts the first task t of the queue} 

25: SR=T/N; 

26: RLTH=1+1/SR; 

27: if (RLR(t) < RLTH) AND chkpnt(t; r) then 

28: allocateChkpnt(r,t); {assigns task t to resource r} 

29: else if (RLR(t) < RLTH) AND NOT chkpnt(t; r) then 

30: allocate(r,t); {assigns task t to resource r} 

31: end if 

32: push back(Q,t); {adds task t to the end of the queue} 

33: else {event=="TaskDone"} 

34:updateResourceHistoryTable();  

35: deleteInstances(t); {deletes all running instances of task t} 

36: end if 

37: end while 

Our algorithm tries to find a node with the most suitable resource for a task by calculating the Success Rate of all the 
resources & then this value will be used to sort the resources as per the Resource History table (lines 19) and the 
resources having maximum relibility will assigned the tasks first & then Replication Threshold(RLTH) value(line 26) for 
each task will be calculated to make the replication of tasks on the resources dynamic.  

5. CONCLUSION AND FUTURE WORK 

In this paper we have presented WQDR-FT, a fault-tolerant scheduler with dynamic replication for Bag-of-Tasks Grid 
applications based on the WQR-FT algorithm. By considering the dynamic threshold value for replication, WQDR-FT is 
able not only to guarantee the completion of all the tasks in a bag, but also to achieve performance better than alternative 
scheduling strategies. As a matter of fact, being WQR-FT able to attain performance higher than other (non fault-tolerant) 
alternative strategies, and being WQDR-FT to achieve performance better than WQR-FT, we can conclude that WQDR-
FT outperforms these strategies when resource failures and/or unavailability’s are taken into account. 

   There are a number of ways in which this work can be extended. For example, checkpoint policies can be improved. 
First of all, in our study we assumed that tasks submitted always terminate, but in the case of buggy task that never 
terminates because it cores dump half way through, the scheduling algorithms proposed never going to terminate. In order 
to avoid this situation, we can consider a timeout technique: a task will be forced to terminate if it has not completed yet 
within a certain amount of time. In this way, the BoT will always finish its execution, and the broker can execute the next 
BoT. 

    Also the checkpoint policy can be improved considering a specific process on each machine that carry out to save the 
checkpoint in order to reduce the suspension of the task execution.  Moreover, each time the process must save its 
checkpoint, it should be able to decide if it is effectively useful to save the checkpoint or it is better to retrieve a newer 
checkpoint. 
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