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rough thei
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n real time. Data mining takes this evolutionary process
ive and proactive information delivery. Data mining is ready
orted by three technologies that are now sufficiently mature:

e Massive data collection
e  Powerful multiprocessor computers
e Data mining algorithms

1.1  Separate and Conquer paradigm:

Among the rule induction methods, the "separate and conquer" approaches are very popular during the 90's. The goal is
to learn a prediction rule from data If Premise Then Conclusion « Premise » is a set

of conditions « attribute — Relational Operator — Value ». For instance, Age > 45 and Profession = Workman

In the supervised learning framework, the attribute into the conclusion part is of course the target attribute. A rule is related
to only one value of the target attribute. But one value of the target attribute may be concerned by several rules.

1.2 Compared to classification tree algorithms:

Which are based on the divide and conquer paradigm, their representation bias is more powerful because it is not
constrained by the arbores cent structure. It needs sometimes a very complicated tree to get an equivalent of a simple rule
based system. Some splitting sequences are replicated into the tree. It is known as the "replication problem".

1.3 Compared to the predictive association rule algorithms:
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They do not suffer of the redundancy of the induced rules. The idea is even to produce the minimal set of rules which
allows classifying accurately a new instance. It enables to handle the problem of collision about rules, when an instance
activates two or several rules which lead to inconsistent conclusions.

We describe first two separate and conquer algorithms for the rule induction process. Then, we show the behavior of the
classification rules algorithms implemented by a tool.

Separate and Conquer algorithms
e Induction of ordered rules(Decision list induction)
e Induction of unordered rules

Induction of ordered rules (Decision list induction)

The induction process is based on the top down separate and conquers approach. We have nested procedures that are
intended to create the set of rules from the target attribute, the input variables and the instances.

The rule based system has the following structure:

IF Condition 1 Then Conclusion 1
Else If Condition 2 Then Conclusion 2
Else If...
Else If (Default rule)
Decision list induction algorithm:
Decision List (target, inputs, inst

Ruleset = «

If (Rule I=NULL) T
Ruleset = Rulese
Instances = Instal
End if
Until (Rule = NULL

Ruleset = Ruleset +

{Instances covered by the rule}

rule (instances)}
Return (Ruleset)
Induction of unordered r

Ordered set of rules, when wi
have a large number of rules.

ider the (i-1) preceding rules. It is impracticable when we

The classifier is now outlined as the
If Condition 1 Then Conclusion 1

If Condition 2 Then Conclusion 2

(Default rule) Conclusion M
(Ruleset)

2 PREVIOUS WORKS

There are number of practical works have been presented where most existing rule induction algorithms are used. Authors
in [1] proposed Discovery of spatial association rules in georeferenced census data. It was relational mining approach.
Authors in [3, 4] proposed Top down induction of model trees with regression and splitting nodes and Ranking
Mechanisms in Metadata Information Systems for Geospatial Data. Authors in [8] proposed Rule Induction with CN2 with
Some recent improvements over traditional algorithms. They also proposed post pruning and hybrid pruning technique
along with rule induction method to obtain high rate of accurate results. They also reduced the induced set of rules and
computational time with high coverage of data from large data set. They also used decision tree and rule induction method
with the help of data mining software.
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3 SOLUTIONS
3.1

Dataset

Induction of Ordered Rules
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We take life insurance policy data; we want to detect the customers who having good policy based on customer categories

and we have to obtain accurate result with less computational time.

Importing the database

After the launching of Tanagra, we create a new diagram by clicking on the FILE / NEW menu. We import the life

insurance .xls file.

Sampling Algorithm

We want to subdivide the dataset into a learning sample (50%) and a test sample. We use the SAMPLING Component.

Sampling Algorithm

We want to subdivide the dataset into a learning sample i-st sample. We use the SAMPLING Component.
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Fig 1

We set now “target” as TARGET attribute and the others as INPUT ones using the DEFINE STATUS component.
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We validate these settings and we click on the VIEW menu. We obtain 20 rules in 703 ms.
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We validate these settings and we

3.2 Induction of unordered rules
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We validate them. We click on the VIEW menu. We obtain only 1 rule in 250 ms.
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induction, Misclassification Rate Static s
inimum number of rules is 01.

ed algorithm is a best as compare to other
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¢ supervised algorithm is a best as compare to other

4.4  Using Association Rule
Error Rate: 33%

No. of Rules: 1815
Computation Time: 11500 ms
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Order Eule Induction Alsorithm
IDecision List Induction
Supervised Parameters
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Significance hiim Significance viam
Support Support
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5 CONCLUSIONS

In this Research paper, we wanted to highlight thetapproaches for the/induction of prediction rules. They are mainly
available into academic tools from thegmachine learning.community. We/note thatithey are an alternative quite credible to
decision trees and predictive association rules, both in terms of accuracy than in terms of,processing time. After analysis
Order Rule Induction algorithm is mare suitable to find acecuratexand consuming-less access time to mine data with
minimum error rate 24.76%.

The theory of Apriori algorithmygis,that “All neanempty. subsets of a frequent,item set must also be frequent.” This property
prune the candidate whi€h is not in‘any of the category. & thus to reduce number of candidates. | collect the data from Life
Insurance Corporatioh and apply the data mining algorithms to find out the assaeiation between the attributes.
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