
Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan-Feb, 2013, ISSN 2277-3061

151 | P a g e w w w . i j c t o n l i n e . c o m

Study on Non Functional Software Testing

H.S Samra

Punjab Polytechnic College

dr_hssamra@yahoo.com

ABSTRACT

Improving software quality involves reducing the quantity
of defects within the final product and identifying the
remaining defects as early as possible. It involves both
its functionality and its non-functional characteristics,
such as usability, flexibility, performance, interoperability
and security. In fact, defects found earlier in the
development lifecycle cost dramatically less to repair
than those found later. However, engineers cannot
address non-functional quality requirements such as
reliability, security, performance and usability early in the
lifecycle using the same tools and processes that they
use after coding and at later phases. Approaches such
as stress testing for reliability, measuring performance
and gauging user response to determine usability are
inherently post-integration techniques. Accordingly,
defects found with these tools are more disruptive and
costly to fix.

Nonetheless, there has been a lop-sided emphasis in
the functionality of the software, even though the
functionality is not useful or usable without the
necessary non-functional characteristics.

This research highlights the sporadic industry
acceptance of some popular methods for designing for
non-functional requirements and suggests some
practical approaches that are applicable for companies
that also must consider the demands of schedule and
cost.

INTRODUCTION

Non Functional testing is the testing of a software
application for its non-functional requirements. The
names of many non-functional tests are often used
interchangeably because of the overlap in scope
between various non-functional requirements. For
example, software performance is a broad term that
includes many specific requirements like reliability and
scalability.

 Special methods exist to test non-functional
aspects of software. In contrast to functional testing,
which establishes the correct operation of the software
(for example that it matches the expected behavior
defined in the design requirements), non-functional
testing verifies that the software functions properly even
when it receives invalid or unexpected inputs. Software
fault injection, in the form of fuzzing, is an example of
non-functional testing. Non-functional testing, especially
for software, is designed to establish whether the device
under test can tolerate invalid or unexpected inputs,
thereby establishing the robustness of input validation
routines as well as error-management routines. Various
commercial non-functional testing tools are linked from
the software fault injection page; there are also
numerous open-source and free software tools available

that perform non-functional testing.

NON FUNCTIONAL CATEGORIES

Performance Testing

Performance is one of the most important aspects
concerned with the quality of software. It indicates how
well a software system or component meets its
requirements for timeliness. Performance testing is in
general executed to determine how a system or sub-
system performs in terms of responsiveness and
stability under a particular workload. It can also serve to
investigate measure, validate or verify other quality
attributes of the system, such as scalability, reliability
and resource usage.

Load Testing

Load testing is primarily concerned with testing that the
system can continue to operate under a specific load,
whether that be large quantities of data or a large
number of users. This is generally referred to as
software scalability. The related load testing activity of
when performed as a non-functional activity is often
referred to as endurance testing.

Load testing is the process of putting demand on a
system or device and measuring its response. Examples

– simulating multiple users accessing a web server

– giving a huge document to a word processor

– subjecting a mail server to a large amount of e-mail

traffic

– writing and reading data to and from a hard disk

continuously.

It helps to identify the maximum operating capacity of an

application as well as any bottlenecks and determine

which element is causing degradation

Volume Testing

 Volume testing refers to testing a software application
or the product with a certain amount of data. E.g., if we
want to volume test our application with a specific
database size, we need to expand our database to that
size and then test the application’s performance on
it.Volume testing is a way to test functionality. The
purpose of volume testing is to determine system
performance with increasing volumes of data in the
database.

Volume testing is done against the efficiency of the
application. Huge amount of data is processed through
the application (which is being tested) in order to check
the extreme limitations of the system.

Volume Testing, as its name implies, is testing that
purposely subjects a system (both hardware and
software) to a series of tests where the volume of data

mailto:dr_hssamra@yahoo.com

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan-Feb, 2013, ISSN 2277-3061

152 | P a g e w w w . i j c t o n l i n e . c o m

being processed is the subject of the test. Such systems
can be transactions processing systems capturing real
time sales or could be database updates and or data
retrieval.

Volume testing will seek to verify the physical and logical
limits to a system’s capacity and ascertain whether such
limits are acceptable to meet the projected capacity of
the organization’s business processing.

Stress Testing

Stress testing is a way to test reliability under
unexpected or rare workloads. stress testing refers to
tests that determine the robustness of software by
testing beyond the limits of normal operation. Stress
testing is particularly important for "mission critical"
software, but is used for all types of software. Stress
tests commonly put a greater emphasis on
robustness, availability, and error handling under a
heavy load, than on what would be considered correct
behavior under normal circumstances.

Testing used to determine the stability of a system

• Testing beyond normal operational capacity, often to a

breaking point, in order to observe the results.

• The goals may be to ensure the software does not
crash in conditions of insufficient computational
resources (such as memory or disk space).

Stability Testing

 Stability testing (often referred to as load or endurance
testing) checks to see if the software can continuously
function well in or above an acceptable period.

There is little agreement on what the specific goals of
performance testing are. The terms load testing,
performance testing, reliability testing, and volume
testing, are often used interchangeably. In
a stability test, a component is pushed to the point of
crashing to learn where its limitations
are. Stability testing can also be used to determine how
long a component can operate under high stress, and at
what point errors other than a total crash start to occur.
A number of computer programs are designed to be
used in stability testing, with people loading the
software onto their computer and allowing it to run
the testing, and people can also conduct tests manually.

Stability testing is a very important part of product
development. It is used to determine the limitations of a
product before it is released, and to identify areas which
may need improvement or modification before product
release. The stability test is also part of the quality
assurance testing used to show stockholders the
capabilities of the product, and to assure them that the
product is being meticulously tested before it goes to
market.

Usability Testing

Usability testing is a technique for ensuring that the
intended users of a system can carry out the intended
tasks efficiently, effectively and satisfactorily. Usability
testing can be carried out at various stages of the design
process. In the early stages, however, techniques such
as walkthroughs are often more appropriate.

It is carried out in order to find out if there is any change
needs to be carried out in the developed system (may it
be design or any specific procedural or programmatic
change) in order to make it more and more user-friendly
so that the intended/end user who is ultimately going to
buy and use it receives the system which he can
understand and use it with utmost ease.
Any changes suggested by the tester at the time of
testing, are the most crucial points that can change the
stand of the system in intended/end user's view.
Developer/designer of the system need to incorporate
the feedback (here feedback can be a very simple
change in look and feel or any complex change in the
logic and functionality of the system) of usability testing
into the design and developed code of the system (the
word system may be a single object or an entire
package consisting more than one objects) in order to
make system more and more presentable to the
intended/end user.
Developer often try to make the system as good looking
as possible and also tries to fit the required functionality,
in this endeavor he may have forgotten some error
prone conditions which are uncovered only when the
end user is using the system in real time. Usability
testing helps developer in studying the practical
situations where the system will be used in real time.
Developer also gets to know the areas that are error
prone and the area of improvement.

Usability Evolution Method

Usability test, as mentioned above is an in-house
dummy release before the actual release of the system
to the intended/end user. Hence, a setup is required in
which developer and testers try to replicate situations as
realistic as possible to project the real time usage of the
system. The testers try to use the system in exactly the
same manner that any end user can/will do. Please note
that, in this type of testing also, all the standard
instruction of testing are followed to make it sure that the
testing is done in all the directions such as functional
testing, system integration testing, unit testing etc.

The outcome/feedback is noted down based on
observations of how the user is using the system and
what are all the possible ways that also may come into
picture, and also based on the behavior of the system
and how easy/hard it is for the user to operate/use the
system. User is also asked for his/her feedback based
on what he/she thinks should be changed to improve the
user interaction between the system and the end user.
Usability testing measures various aspects such as:

* How much time the tester/user and system took to
complete basic flow?
* How much time people take to understand the system
(per object) and how many mistakes they make while
performing any process/flow of operation?
* How fast the user becomes familiar with the system
and how fast he/she can recall the system's functions?
* And the most important: how people feel when they

are using the system.

Compatibility Testing

Compatibility testing is a type of testing used to ensure
compatibility of the system/application/website built with
various other objects such as other web browsers,

http://en.wikipedia.org/wiki/Stress_testing

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan-Feb, 2013, ISSN 2277-3061

153 | P a g e w w w . i j c t o n l i n e . c o m

hardware platforms, users (in case if its very specific
type of requirement, such as a user who speaks and can
read only a particular language), operating systems etc.
This type of testing helps find out how well a system
performs in a particular environment that includes
hardware, network, operating system and other software
etc. as shown in figure 1.

Developers generally lookout for the evaluation of
following elements in a computing environment
(environment in which the newly developed
system/application is tested and which has similar
configuration as the actual environment in which the
system/application is supposed to fit and start working).

Hardware: Evaluation of the performance of
system/application/website on a certain hardware
platform. For example: If an all-platform compatible
game is developed and is being tested for hardware
compatibility, the developer may choose to test it for
various combinations of chipsets (such as Intel,
Macintosh), motherboards etc.

Browser: Evaluation of the performance of
system/website/application on a certain type of browser.
For example: A website is tested for compatibility with
browsers like Internet Explorer, Firefox etc. (usually
browser compatibility testing is also looked at as a user
experience testing, as it is related to user’s experience
of the application/website, while using it on different
browsers).

Network: Evaluation of the performance of
system/application/website on network with varying
parameters such as bandwidth, variance in capacity and
operating speed of underlying hardware etc., which is
set up to replicate the actual operating environment.

Peripherals: Evaluation of the performance of
system/application in connection with various
systems/peripheral devices connected directly or via
network. For example: printers, fax machines, telephone
lines etc.

Compatibility between versions: Evaluation of the
performance of system/application in connection with its
own predecessor/successor versions (backward and
forward compatibility). For example: Windows 98 was
developed with backward compatibility for Windows 95
etc.

Softwares: Evaluation of the performance of
system/application in connection with other softwares.
For example: Software compatibility with operating tools
for network, web servers, messaging tools etc.

Operating System: Evaluation of the performance of
system/application in connection with the underlying
operating system on which it will be used.

Databases: Many applications/systems operate on
databases. Database compatibility testing is used to
evaluate an application/system’s performance in
connection to the database it will interact with.

Figure 1: Compatibility Matrix

Endurance Testing

It is also known as Soak testing. Endurance testing
involves testing a system with a significant load
extended over a significant period of time, to discover
how the system behaves under sustained use. For
example, in software testing, a system may behave
exactly as expected when tested for 1 hour but when
the same system is tested for 3 hours, problems such
as memory leaks cause the system to fail or behave
randomly.

The goal is to discover how the system behaves under
sustained use. That is, to ensure that the throughput
and/or response times after some long period of
sustained activity are as good as or better than at the
beginning of the test. It is basically used to check the
memory leaks. Endurance testing involves examining a
system while it withstands a huge load for a long period
of time, and measuring the system's reaction
parameters under such conditions. Performance quality
may also be tested to make sure that both the result and
the reaction times - after a defined long period of
continuous load - are degraded no more than a certain
specified percentage from their values at the beginning
of the test. For instance, in program testing, a system
may perform exactly as anticipated when tested for one
day. However, when it is tested for three days, hardware
resource issues, such as a memory shortage, can
cause the system to crash or function improperly.

In the field of software, endurance testing may involve
testing the operating system and the computer
hardware up to or above their maximum ratings for a
long period of time. Some companies may endurance
test a software package for up to a year, while also
applying external loads such as Internet traffic or user
actions. During endurance tests, memory consumption
is observed to determine potential failures. Performance
quality is sometimes also monitored during endurance
testing.

Security Testing

The security testing is performed to check whether there
is any information leakage in the sense by encrypting
the application or using wide range of software’s and
hardware's and firewall etc. The six basic security
concepts that need to be covered by security testing are:
confidentiality, integrity, authentication, availability,
authorization and non-repudiation.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan-Feb, 2013, ISSN 2277-3061

154 | P a g e w w w . i j c t o n l i n e . c o m

•Authentication - Testing the authentication schema
means understanding how the authentication process
works and using that information to circumvent the
authentication mechanism. Basically, it allows a receiver
to have confidence that information it receives originated
from a specific known source.

•Authorization - Determining that a requester is allowed
to receive a service or perform an operation.

•Confidentiality - A security measure which protects the
disclosure of data or information to parties other than the
intended.

•Integrity – Whether the intended receiver receives the
information or data which is not altered in transmission.

•Non-repudiation - Interchange of authentication
information with some form of provable time stamp e.g.
with session id etc.

CONCLUSION

Clearly, software doesn't have to be 100% bug free. In
fact, one of the hardest problems with testing is to know
when to stop. If your company puts a team of testers on
a project, and they spend four weeks on the finished
product, they may find a lot of bugs the first week, some
the second week, few the third week, and none the
fourth week. But just because they found no bugs in the
fourth week doesn't mean there are none. There is no
practical way to prove that any piece of real world
software is devoid of bugs, even a well-tested piece of
software. In addition, functionality for expert users of
software often doesn't get tested as well as the basic
functionality, because testers are rarely expert users. No
one wants to get a reputation for software that is not
robust in the eyes of their expert users, because expert
users have an impact on the usage habits of novice
users. If these users get upset, your entire user base
could slowly migrate to another product, even if you
tested it fairly thoroughly!

Testing is generally considered costly and a nuisance.
But as we have just seen, it is a necessary nuisance.
The goal for most companies should be to do the best
job testing possible and to minimize the costs. The idea
that seems to work best is "test early and test often."
Robustness isn't a module that can be bolted onto the
side of a preexisting system -- it is far more cost-
effective to develop robust software if you strive for this

quality from day one. Similarly, the more software is
tested, the more bugs will be found (although bad test
strategies are often ineffective ones).

Testing can show the presence of faults in a system; it
cannot prove there are no remaining faults

REFERENCES

[1] Myers, Glenford J. (1979). The Art of Software
Testing. John Wiley and Sons. ISBN 0-471-04328-
1..

[2] Srinivasan Desikan, Gopalaswamy Ramesh
Software Testing: Principle & Practise. Pearson
Education.

[3] Andreas Spillner, Tilo Linz, Hans Schaefer
Software Testing Foundations Shoff publisher &
distributor

[4] Exploratory Testing, Cem Kaner, Florida Institute of
Technology, Quality Assurance Institute Worldwide
Annual Software Testing Conference, Orlando, FL,
November 2006.

[5] Wasif Afzal *, Richard Torkar, Robert Feld A
systematic review of search-based testing for non-
functional system properties . Information and
software Technology Journal.

[6] J. Nielsen, "Heuristic Evaluation". In Jakob
Nielsen and Robert L. Mack, editors, "Usability
Inspection Methods". John Wiley and Sons, Inc.

1994.

[7] Mauro, C.L.: Professional usability testing and
return on investment as it applies to user
interface design for web-based products and
services.

[8] Y. Lei, K.-C. Tai, In-parameter-order: A test
generation strategy for pairwise testing, in:
HASE’98: The Third IEEE International Symposium
on High Assurance Systems Engineering, IEEE
Computer Society, Washington, DC, USA, 1998,
pp. 254–261.

[9] P. McMinn, Search-based software test data
generation: a survey, Software Testing, Verification
and Reliability 14 (2) (2004) 105–156

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-04328-1
http://en.wikipedia.org/wiki/Special:BookSources/0-471-04328-1

