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Abstract 
 

    This paper represents TSP (Travelling Salesman 

Problem) by using Artificial Neural Networks. A 
comparative study of various methods of ANN is shown 
here for solving TSP problem.The Travelling Salesman 

Problem is a classical combinational optimization problem, 
which is a simple to state but very difficult to solve. This 
problem is to find the shortest possible tour through a set of 

N vertices so that each vertex is visited exactly once. TSP 
can be solved by Hopfield Network, Self-organization 
Map, and Simultaneous Recurrent Network. Hopfield net is 
a fully connected network, where every vertex is connected 
with each other forwardly and backwardly. So starting the 
walk from a vertex we can travel all the other vertex 
exactly once  and return to starting vertex again.    
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Introduction 
   A traveling sales person must visit a number of cities, 
each only once. Moving from one city to other have a cast 
e.g. the intercity distance associated the cost/distance 
traveled must be minimized. The salespersons have 

returned the starting point. 

   An implementation of an algorithm in neural network for 
an approximate solution for Traveling Salesman’s Problem.  
TSP is a classical example of optimization and constrain 
satisfaction problem which falls under the family of NP-
complete of problems. Here used continuous Hopfield 
network to find the solution for given problem. Hopfield 
Network is constructed from artificial neuron. 

The traveling salesman problem (TSP) is well known in 
optimization. The TSP problem is NP-complete problem. 
There is no algorithm for this problem, which gives a 
perfect solution. Thus any algorithm for this problem is 
going to be impractical with certain examples. 

Here we assume that we are given n cities, and a non-
negative integer distance Dij between any two cities I and j. 
We try to find the tour for the salesman that best fit the 
above mentioned criterion. There are various neural 

Network algorithm that can be used to try to solve such 
constrain satisfaction problems. Most solution have used 
one of the following method: 

Hopfield Network 

Elastic Net 

Simultaneous Recurrent Network 

  

1.Hopfield Network 
   In 1983, a physicist  John Hopfield published the famous 
paper “Neural network and physical system with emergent 
collective computational abilities”. Along with the 
rediscovery of Backpropagation and the introduction of 
cheap computing power, this helped to reignite the dormant 
world of Neural Networks once again. 

      A Hopfield artificial neural network is a type of 
recurrural network artificial network that is used to store 

one or more stable vectors. These stable vectors can be 
viewed as memories that the network recalls when provided 
with similar vectors that can act as a cue to the network 
memory. The binary units only take two different values for 
their states that are determined by whether or not the unit 
input exceeds their threshold. Binary unit can take either 
values of 1 or -1, or values of 1 or 0. Consequently there 
are two possible definitions for binary unit activation. 

Basic Operation 
 

    Hopfield was to add feedback connection to the network( 
the outputs are fed back into the inputs) and show that with 
these connections the network are capable of interesting 
behaviors which we might not expected of them, in 

particular they can holds memories. Networks with such 
connections are called “feedback” or “recurrent” networks. 

I/O-A                                               O/P-1 

   

 

I/O-B                                               O/P-2 

 

Fig: Free Forward Network 

 

 

 

   I/O-A                                                       O/P-1 

 

 

  I/O-B                                                       O/P-2 
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Fig: Free Forward Network with Feedback 
connection 

    Network with such connection are called “feedback” or 
“recurrent” networks. 

    Hopfield networks are constructed from artificial 
neurons. These artificial neurons have N inputs. With each 
input i there is a weight Wi associated. They also have an 
output. The state of the output is maintained until the 
neuron is updated. Updating the neuron entails the 
following operations: 

The value of each input, Xi is determined and the weighted 

sum of all inputs, Σi Wi Xi , is calculated. 

The output state of the neuron is set to +1 if the weighted 
input sum is larger or equal to 0. It is set to -1 if the 
weighted sum is smaller than 0. 

A neuron retains its output state until it is updated again.  

 Written as a formula: 

    O = 1 : Σi Wi Xi  ≥ 0 

              : Σi Wi Xi < 0 

   A Hopfield network is a network of N such artificial 
neurons, which are fully connected. The connection weight 
from neuron j to neuron I is given by a number wij. The 
collection of such number is represented by the weighted 
matrix W, whose components are Wij. 

   Now given the weighted matrix and the updating rule for 
neurons the dynamics of the network is defined if we tell in 
which order we update the neurons. There are two ways of 

updating them: 

Asynchronous: One picks one neuron, calculates the 
weighted input sum and update immediately. This can be 
done in a fixed order, or neurons can be picked at random, 
which is called asynchronous random updating. 

Synchronous: The weighted input sums of all neurons are 
calculated without updating the neurons. Then all neurons 
are set to their new value, according to the value of their 

weight input sum. 

 

 

Figure : A Hopfield network 

 

    A Hopfield Network as an autoassociator.  

    There are two type of Hopfield Network: 

1. The Discrete Hopfield Model 

2. The Continuous Hopfield-Tank Model. 
 

The Discrete Hopfield Model: 
 

  The original Hopfield neural network model is 

a fully inter connected network of binary units     

with  symmetric connection weights between the 
units. The connections weights are not learned 

but are defined a priori from problem data (the 

inter city distances in a TSP context).Starting 
from some arbitrarily chosen initial 

configuration, either feasible or infeasible, the 

Hopfield network evolves by updating the 

activation of each unit in turn (i.e. an activated 
unit can be turned off, and an inactivated unit 

can be turned on). The update rule of any given 

unit involves the activation of the units it is 
connected to as well as the weights on the connections. Via 

this update process, various configurations. In this final 
state, all units are stable according to the update rule and do 
not change their activation status. 

    The dynamics of the Hopfield network can be described 
formally in mathematical terms. To this end, the activation 
levels of the binary units are set to zero and one for “off” 
and “on” respectively. Starting from some initial           
configuration {vi}i=1,……….L. where L is the number of 

units and Vi is the activation level of unit i ,the network 
relaxes to a stable configuration according to the following 
rule  

set Vi to 0 if Σ TijVi < θi 

set Vi to 1 if Σ TijVi > θi 

      do not change if Σ TijVi = θi 

where Tij is the connection weight between units i  and j, 
and θi is the threshold of unit i. 

        The behavior of the network can be characterized by 

an appropriate energy function. The energy E depends only 
on the activation level Vi (the weight Tij thresholds θi are 
fixed and derived from problem data), and is such that it 
can only decrease as the network evolves over time. 

The energy functionis given by: 

E=-1/2 ΣiΣjTijViVj+ΣiθiVi ……..1        Since the 
connection weights Tij are symmetric, each term TijViVj 
appears twice within the double summation of equ(1). 

Hence, this double summation is divided by 2. 

    It is easy to show that a unit changes its activation level 
if and only if the energy of the network decreases by doing 
so. In order to prove that statement, we must consider the 
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contribution Ei of a given unit i to the overall energy E, that 
is, 

Ei= - ΣjTijViVj+θiVi 

consequently. 

If Vi to 1 then Ei= -ΣjTijViVj+θiVi 

If Vi to 0 then Ei= 0 

Hence, the change in energy due to a change ΔVi in the 
activation level of unit i is: 

ΔE=-ΔVi(ΣjTijVi- θi). 

      Now, ΔVi is one if unit I changed its activation level 
from zero to one, and such a change can only occur if the 
expression between the parentheses is positive. As a 
consequence, ΔEi is negative and the energy decreases. 

This same line of reasoning can be applied when a unit i 
changes its activation level from one to zero(i.e.,ΔVi=-1). 
Since the    energy       can     only decreases over     time    
and    the number of configuration is finite, the network 
must necessarily converge to a stable state (but not 
necessarily the minimum energy state). In the next section, 
a natural extension of this model to units with continuous 
activation levels is described. 

The Continuous Hopfield-Tank Model: 

    In Hopfield and Tank extended the original to a fully 
inter connected network of nonlinear analog units, where 
the activation level of each unit is a value in the interval [0, 
1].   

    The main motivation of Hopfield and Tank    for   
extending     the discrete network to a continuous one was 
to provide a model that be easily implemented using    

simple analog hardware. However, it seems that continuous 
dynamics also feasibility convergence. 

    The evolution of the units over time is now characterized 
by the following differential equations (usually called 
"equations of motion”) 

dui/dt=ΣjTijVi+Ii-Ui,i=1,…...L.(2) where Ui ,Ii and Vi are 
the input, input  bias, and activation  level  of unit i, 
respectively.  The activation level of unit I   is    a function 
of its input, manly  

Vi = g(Ui) = 1/2  (tan(h) Ui/Uo)    

     =1/(1+e^-2Ui/Uo) ,………….(3). 

The activation function g is the well-known sigmoidal 
function. 

3.The Eleastic Net 

    Durbin and Willshaw’s (1987) elastic    net    algorithm   
for solving     the           traveling salesperson problem 
(TSP) is based    on     a    method    for developing                 

topology preserving       maps   between the   eye   and    
brain   (lateral geniculate nucleus and cortex for mammals) 
due to von der Malsburg and Willshaw(1977) and 
Willshaw and von Malsburg(1979). 

    The elastic net approach is fundamentally  different from  
the approach  of  Hopfield  and  Tank.  It  is  a  

geometrically inspired algorithm, and is  closely related  to  
the  self  organizing map. 

3.Sumultaneous Recurrent Network 

    A learning based recurrent neural search algorithm is 
expected to offer significant performance improvements 

over a non- learning based algorithm. One such neural 
paradigm, the Simultaneous Recurrent Neural Network 
(SRN)  incorporates powerful features: it is a recurrent 
algorithm with relaxation search capability, while also 
begin trainable. The simultaneous Recurrent network has 
the potential to develop, through “ learning”, the ability to 
address the computationally challenging task of large-scale 
static optimization. This forms a very important first step 

towards eventually addressing dynamic optimization 
problems through algorithm that can formulate learning 
based solution. 

       A Simultaneous Recurrent (SRN) is an artificial neural 
network [werbos 1994; Pang and werbos,1997]with the 
graphical representation as in figure. 

 

 

 

 

 

 

 

 

 

fig: Simultaneous Recurrent Network graphical 

representation 

   The system has external inputs in the form of a vector x, a 
feed-forward vector function F. (any feed-forward network, 
including the multi-layer perceptron is appropriate), outputs 
in the form of a vector z, and a feedback path which copies 
the output to the input without a time delay. 

   The feed-forward network F will also induce a wait 
matrix w, which represent the inter connection topology of 
the network. The network starting from an initial state as 

indicated by initial value of the output vector, will iterate 
until the output vector z stabilizes and converges to a stable 
point given that one exists. In other terms, an SRN is based 
on a feed-forward network with simultaneous feedback 
from output of the network to its input. An  SRN  exhibits  
complex  temporal  behavior:  it  follows a  trajectory in the 
state. 

    Space to relax to a fixed point.    One  "relaxation"  of  

the  network consists  of  one  or  more Iterations of output 
computation and propagation along the feed-forward and 
feedback paths until the outputs converge to a stable 
equilibrium value. A more formal description of SRN is 
formulated in [Werbos; 1992] who defines an SRN as a 
mapping  

Feedfoward 

Mapping 

 

F(z,x,W) 
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        Z=F(x,W)……..(1a) 

where x and W are the external inputs and weights, 
respectively and z is the equilibrium value of e.g. : 

         z=lim za………..(1b). 

which can be computed by the following iteration                        

        zn-1 =F(zn ,x.W)……..(1c). 

where F is a feedforward network and n is the iteration 
index with very fast  computation cycle compare to 
feedback  delays found in the time lagged recurrent 
networks. 

    The  network  is  provided  with  the  external  inputs  
and  initial  outputs,  which  are  typically assumed 
randomly in the absence of a priori information.  The 

output of previous iteration is fed back to the network along 
with the external inputs to compute the output of next 
iteration. 

    The network is allowed to iterate until it reaches a stable 
equilibrium point, assuming at least one exists.    External 
inputs are applied throughout the complete relaxation cycle.    
When a stable equilibrium point is reached, the outputs stop 
changing (i.e. the output value of Z(n+1) is most equal to or 

very close to Z(n)). It is important to note that the feedback 
from the output layer to the input in SRN is not delayed: 
the feedback is, theoretically speaking, simultaneous. 

Solution Methodology 

1.Hopfield Network 
 

 Here used continuous Hopfield network to find the 
solution for given problem. Hopfield Network is 

constructed from artificial neuron. 

    These artificial neurons haven inputs. With each input i 
there is a weight wi associated. They also have an output. 
The state of the output is maintained, until the neuron is 
updated. Updating the neuron entails the following 
operations: 

The value of each input, xi  is determined and the weight 
sum of all input, ∑wi xi  is calculated. 

The output state of the neuron is set to +1 if the weighted 

input sum is larger or equal to 0. It is set to -1 if the 
weighted input sum is smaller than 0. 

A neuron retains its output state until it is updated again. 

 Written as formula: 

             O = 1 : wixi >=0 

                       : wixi <=0 
 

TSP of Hopfield Network 
    Hopfield network is a dynamic network, which iterates 
to converge from an arbitrary input state. The Hopfield 
Network as minimizing an energy function. 

    The Hopfield net is fully connected network. It is a 
weighted network where the output of the network is fed 

back and there are weights to each of this link. The fully 
connected is shown in following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Here we use n2 neuron in the network, where n is the total 
number of cities. The neurons here have a threshold and 

step function. The inputs are given to the weighted input 
node. The network then calculates the output and then 
based on Energy function and weight update function, 
converges to the stable solution after few iteration. The 
most important task on hand is to find an appropriate 
connection weight. It should be such that invalid tour 
should be prevented and valid tour should be preferred. 

    The output result of TSP can be represented as 

following. The example here is for 4 cities. The 4 cities 
TSP need 16 neurons. 

 

 1 2 3 4 

A 0 1 0 0 

B 1 0 0 0 

C 0 0 0 1 

D 0 0 1 0 

 

Figure: Tour Matrix obtained as the output of the network. 

   The corresponding visiting route, in the above example is 
City BCity ACity DCity CCity B. 

      So the total distance is: D=AB+BC+CD+DA 

Network Input  
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    The inputs to this network are chosen arbitrarily. The 
initial state of the network is thus not fixed and is not 
biased against any particular route. If as a consequence of 
the choice of the inputs, the activation works out to give 
outputs that add up to the number of cities, and initial 

solution for the problem, a legal tour will result.    Also 
there are inputs that are taken from user. The user is asked 
to input the number of cities user want to travel and the 
distance between those cities which are used to generate the 
distance matrix. 

    The distance matrix in n*n square matrix whose 
principal diagonal is zero. The figure below shows a typical 
distance matrix is shown below: 

 1 2 3 4 

A 0 15 13 17 

B 15 0 14 2 7        

C 13 14 0 25 

D 17 27 25 0 

 

Fig: distance matrix generated after getting 

inputs from user 

 

    Here the distance between city A and city C is 13 and 
distance between a city itself is zero. 

Energy Function 
    The Hopfield network for the application of the neural 

network can be best understood by the energy function. The  

energy function that is developed by Hopfield and Tank is 
used for the project. The energy function has various 
hollows that represent the patterns stored in the network. 
An  unknown input pattern represent a particular point in 
the energy landscape and the pattern iterates its way to a 

solution, the point moves through the landscape towards 
one of the hollows. The iteration is carried on till some 
fixed number of time or till the stable state in reached. 

    The energy function used should satisfy the following 
criterions: 

The energy function should be able to lead to a stable 
combination matrix. 

 The energy function should lead to the shorter traveling 

path. 

    The energy function used for the Hopfield neural 
network is  

E=A/2∑nx=1∑ni=1∑nj=1,j≠I vxivxj 
+B/2∑ni=1∑nx=1∑ny≠xvxivyi 

+C/2(∑nx=1∑ni=1vxi-n)2 

+D/2∑nx=1∑ny=1,y≠x∑ni=1dxyvxi(vy,i+  1+vy,i-1) 

  A,B,C,D are the constants, to be determined by trial and 

error 

  If all vxi approach either 0 or 1,and if those with vxi ≈1 
represents a Hamiltonian circuit, then 

dxyvxi(vy,i+1+vy,i-1)=dxy (if city y is either before or 
after city x in the circuit) 

                             = 0 otherwise. 
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Row Term 
    (A/2∑nx=1∑ni=1∑nj=1,j≠I vxivxj) in the energy 

function the first triple sum is zero if and only if there is 
only one “1” in each order column. Thus this takes care that 
no two or more cities are in same travel order. i.e. no two 

cities are visited simultaneously. 

Column Term 
    (B/2∑ni=1∑nx=1∑ny≠xvxivyi) in the energy function 

the 2nd  triple sum is zero if and only if there is only one 
city appears in each order column. Thus this takes care that 
each city is visited only once. 

Total number of  “1” term 
   (C/2(∑nx=1∑ni=1vxi-n)2)   the third triple sum is zero if 
and only N number of 1 appearing in the whole n*n matrix. 
Thus this takes into care that all cities are visited. 

    The first three summation are up to satisfy the condition 
1, which is necessary to produce a legal traveling path. 

Shortest distance term 
    (D/2∑nx=1∑ny=1,y≠x∑ni=1dxyvxi(vy,i+1+vy,i-1)) the 
fourth triple summation provides the term for the shortest 
path. D is the distance between city i  and city j. the value 
of this term is minimum when the total distance traveled 

shortest. 

THE HOPFIELD TSP ALGORITHM 
Steps1: Initialization n is the number of cities, D[]n×n is 
the distance matrix, and I[]n×n is the identity matrix. 
tour=0. 

Steps2: Using identity matrix we create i number of tour 
matrix where tour matrix is T[]n×n. And the total tour 
matrix is s=n!.P[s]=T[]n×n . 

Steps3: for j=1 upto s 

Steps4: P[s] 

Steps5: for x=1 upto n 

Steps6: for y=1 upto n 

               Set i=y 

Steps7: if T[x][1] equal to 1 then 

             Set s1=x; 

Steps8: if T[x][n] equal to 1 then 

             Set s1=x; 

Steps9: if i-1 equal to 0 then  

             Set i-1=s1 

Steps10: if  i+1 garter then n then  

               Set i+1=s2 

Steps11:d=D[x][y]×T[x][i]×(T[y][i+1]+T[y][i-1]) 

Steps12: tour=tour + d 

Steps13: end 
 

 

Start 

 
Initialization cities=n; distance matrix=D[]n×n ;  identity 

matrix=I[]n×n; tour=0; j=1 

 
Create tour matrix T[]n×n ;Total number of tour matrix s=n!; 

P[s]=T[]n×n  

 
J<=s 

 
P[s] 

 
x=1 

 
if x<=n  

 
y=1 

 
if y<=n 

 
i=y 

 
if t[x][1]==1 

 
s1=x 

 
if t[x][1]==1 

 
s2=x 

 
if i-1 ==0 

 
i-1=s1 

 
if i+1==n 

 
i+1=s2 

 
d=D[x][y]×T[x][i]×(T[y][i+1]+T[y][i-1]) 

 
tour=tour + d 

  
tours[k]=tour 

 
TSP=find(tour==min(tour)) 

 
End 
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Steps14: end 

Steps15: tours[k]=tour 

Steps16: end 

Steps17: set TSP=find(tour==min(tour)) 

Steps18: end 

2.The Elastic Network 
  The Elastic Net algorithm is an iterative procedure when 
M points , with M larger than the number of cities N, are 
like on a circular ring or “ rubber band” originally located 
at the center of the cities. The rubber band is gradually 

elongated until it passes sufficiently near each city to define 
a tour. During that process two forces apply: 

One for minimizing the length of the ring. 

The other one for minimizing the distance between the 
cities and points on the ring. 

  This forces  are gradually adjusted as procedure evolves. 

  The solution can be done by the following equation: 

∆Yj=α∑iWij(xi-yj)+βK(yj+1+yj-1-2yj)  

j=1,……M  

Wij=Φ(dxiyj,k)/∑kΦ(dxiyk,k)  

α and β are the constant parameter.  

K is the “scale”  parameter.  

Wij is a measure of the “influence” of city I on point j.  

The α term drives the points on the ring towards the cities, 
so that for each city I there is at least one ring point j within 
distance k. the β term is aimed at keepingneighboring 

points together so as to produce a short tour. 

 

 

 

Fig: Evolution of elastic net over time and final 

tour. 

The energy function E=k(dE/dyj) 

                                               

                                    City i 

 

 

                         j-1                              j 

      

 

 

 

          ------------------     j+1 

               fig: forces that impact ring point j  

  Here, in contrast to the TSP problem, the circular form of 
rings is predefined. It is convenient to represent the net 

geometrically not as a set of nodes. But as a continuous 
curve in order to keep the circular form. Since there are no 
preferences on the ring parameters, the first evolution rule 
can be formulated as : 
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                    *the net has no internal  

                     Forces.  

  In case of special preferences on the ring parameters(such 
as elliptical form) additional constraints can be easily 
introduced.  

  The second distinction from TSP is that the desired ring 
does not pass through all hits but only through a maximum 
possible number of them. Therefore the problem of single 
ring finding is divided into two steps: recognition of ring 
hits and further reconstruction of ring parameters.  

  At the recognition step a special energy function is used to 
separate ring hits from others. 

 

 

 

 

 

 

 

Fig: selection of ring hits at the recognition step xi is the ith 
hit. 

yi is the elastic net point closest to the ith hit.  

di  =(xi-yi) distance between the hit and net. 

Algorithm: 

Start 

 

Initialize with M points, where M>N.(N is the number of 
cities)  

 

Imagine a circular ring at the center    of the cities.  

 

The circle is elongated until all cities are covered.  

 

Updated the ring points in parallel. 

 

Computing the output. 

 

Stop 

 4.Sumultaneous Recurrent Network 

 

    The traveling sales problem (TSP) was chosen as the 
benchmark for the performance evaluation of the SRN 
because it is representative of NP-hard optimization 
problems. In the TSP, a salesman spends his time visiting N 

cities (or nodes) cyclically. In one tour he visits each  city  
just  once,  and  concludes  where  he  starts.    The  goal  is  
to  find  the  order  he  should  visit the cities to minimize 
the total distance traveled.  Selection of the TSP as the 
benchmark is  appropriate  because  almost  all  non-

learning  neural  search  algorithms  fail  to  deliver 
acceptable  quality  solutions  with  reasonable  
computational  cost  and  time  for  large-scale variants of 
this problem. 

SRN Topology for the TSP 

    N-city  TSP  is  represented  by  an N×N  array,  where  
each  row  represents  a  different  city and  each  column  
represents  the  possible  positions  of  the  cities in the 

path. 

        One  set  of N×N  neurons  in  the  input  layer  
represents  the  distance  between  cities  and  an  additional  
N×N  neurons  are  used  to  receive  the  simultaneous  
feedback  from N×N  output  layer  neurons.  Exploratory 
simulation studies indicated that only one hidden layer with 
four neurons is sufficient for satisfactory  training  of  the  
network,  which  most  likely  represents  the  lower  limit  

of  neurons.    The  matrix  of N×N  neurons  in  the  output  
layer  represents  the  path  of  the  travelling  salesman.   
An active node at row r and column c in the output layer 
array represents that the path from city r to city c is 
included in  the  travelling  salesman’s  itinerary represent  
an N-city  TSP  using  the  SRN. 

    In the tour matrix there is only one “1”in each row or 
column. And diagonally there are zeros in the matrix for 

the distance from one city to itself is zero. .In  order  to 
represent  an N-city  TSP  using  the  SRN,  the  feed 
forward  network F in  the  SRN  consists  of two layers.  
The output layer is an N×N matrix of nodes, with each row 
representing a city and each column representing a possible 
position in the path.  Additionally, there is a single layer of 
hidden nodes.    In the TSP, the inputs to  the problem  are 
the distances between the cities,  represented  by  the  cost  
matrix.    As  presented  in  the  next  section,  the  cost  

matrix  is used in the calculation of the error function of the 
training algorithm.      Therefore,  in  the  case  of  the  TSP  
the external  inputs x  in  Figure   are  not applied to the 
network.  The  SRN  for  the  TSP  consists  of  a  two-layer  
network  with  a  relatively  small  number  of hidden  
nodes  and  an N×N  array  of  output  nodes,  with  a  
recurrent  connection  between  the nodes in the output 
layer and the hidden layer.  Since no external inputs exist, 

the network is simply initialized with small random values 
for the weights and the outputs z and allowed to relax.After 
the outputs of the network converge to a fixed point, the 
outputs can be compared against problem-specific error 
function and the weights modified using a suitable learning 
algorithm. the  architecture  of  the  SRN  for  the TSP,  
where  the  feed forward  network F consists of one hidden 
layer and one output layer.  The SRN has trainable 

connections from each neuron of the hidden layer to each 
neuron of the output layer, which is represented with the 
forward weight matrix P.    The simultaneous recurrent 
connections, which are also trainable, exist from each node 
in the output layer to each node in the hidden layer, and are 
represented by the backward weight matrix V.  There are 

    

              

Xi      
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             yi                                                  
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no connections among the nodes in either the hidden layer 
or the output layer. The  outputs z  of  the  network  are  
taken  from  each  output  layer  neuron.    As discussed 
above, the external inputs x are not necessary. 

 

    Hidden Layer   n×n node o player 

 

 

   

Fig: SRN architecture for TSP 

Training SRN with RBP 

    In  order  to  train  the  SRN,  it  is  necessary  to  define  
a  measure  of  the  error  for  the  output neurons.    The  
error  function  needs  to  ensure  valid solutions,  as  well  
as  a  minimum  path length.  Given the problem  
representation  presented  above,  each  row  and  column  
in  the N×N  output  array  must  have exactly one neuron 

active: the output value of an active neuron should be close 
.  

The  traveling  salesman  should  travel  all  cities  at least  
and  only  once.    Thus,  when  network converges to a 
solution, there should be exactly  one node active per each 
row and per  each column.    This  constraint  can  be  
implemented  using  inhibition  among  the  nodes  in  a  
given row and column.  The error term for the column 

constraint is defined by 

Ecol= gcol∑Ni=1∑Nj=1[1- ∑Nm=1zmj(∞)2 
…………….(a) 

where i and  j are the indices for rows and columns, 
respectively, m is the index for rows of the network,  ( 
∞)mj z  is the stable value of mj-th neuron output upon 
convergence to a fixed point, and gcol is a positive real 
weight parameter.  When each column of the output matrix 

has  exactly  one  active  neuron,  this  error  term  will  be  
zero.    The  first  summation  over  the indexing variable i 
is included because the error function needs to be defined 
for each neuron in the output layer   similarly for the row 
constrain 

Erow=grow∑Ni=1∑Nj=1[1- ∑Nn=11znj(∞)]2 
………….(b) 

where, i  and j  are  the  indices  for  rows  and  columns,  

respectively,  of  the  network, n  is  the index for columns 

and g row is a positive real weight parameter.  This error 
term will have a value of zero when each row of the output 
matrix has exactly one active neuron.  Again, the second 
summation over the index variable j is included since the 
error function needs to be defined for every ij-th neuron in 

the output layer an error term is also introduced that force 
the neuron output to limiting the value as 

Ebin= gbin∑Ni=1∑Nj=1[-(zij(∞)-α2+β] ………………(c) 

The error term associated with the distance between the 
cities can be formulated as 

Edis=gdis∑Ni=1∑Nj=1∑Nm=1zij(∞)zm(j+1)( ∞)dim 
…………………….(d) 

Where dim is the cost associated with the path from city i 

to city m and gdis is the positive real weight parameter for 
the constraint. For each neuron Zij the index m search each 
neuron in the (j+1)st column, indicated by the Zm(j+1) 
term. If both neurons are active, the distance from city 
m,dim will be included in this error term, where the 
minimum value is achieved if the total distance of the path 
is minimum. 

   The total function is the sum of each individual error term 

defined by 

E =  Ecol+ Erow + Ebin + Edis...(e) 

In order to converge on a valid and good (with minimum 
total distance) solution for the TSP, the  state  space  
portrait  of  the  SRN  must  be  changed  by  moving  the  
fixed  points  towards preferably  good  solutions  of  the  
TSP.     

   The full derivation of the RBP algorithm can be found in 

[Pineda, 1987; Werbos, 1988].  The RBP  training  
algorithm  requires  an  adjoint  network,  which  is  
topologically  identical  to  the SRN except all signal 
directions reversed, to be set up and relaxed to compute 
updates for the weights  of  the  SRN.      The  adjoint  
network  accepts  the  error,  which  is  computed  using  
the stable values of neurons in the output layer of the SRN 
upon convergence to a fixed point, as external inputs to 
neurons in the input layer, which is the output layer for the 

SRN. 

As we know that there is only one visiting city in a walk in 
a column, so in the error function the portion of  the Ecol 
will be error free. Similarly in case of row, there is only one 
visiting city in a row, so the portion of the Erow will be 
error free. For this reason the third portion Ebin will be 
error free. So by calculating the fourth and the last portion 
Edis we can find the minimum distance of the traveling 

path.  

Result & Discussion 

   In case of Hopfield network there are four constrain in 
the energy function. The first three constrain of them will 
be zero as per there is only one “1” in each row and column 
in a valid tour. So to get the minimum traveled path or the 
shortest path to cover all the city once at a time we have to 
use the fourth constrain as :(D/2 

∑nx=1∑ny=1,y≠x∑ni=1dxyvxi(vy,i+1+vy,i-1)), Where 
D/2 is a constant, vxi should be in the form of 0 or 1, 

P 

V 
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because it indicates the city is present in path or not. dxy is 
the distance from a city to another. Here by taking 4 city 
we can get 24 iteration using MATLAB 12,  taking the 
values from the tour matrix i the minimum tour is: dDA + 
dAB + dBC + dCD=17+15+ 14+25=71. 

 In case of SRN here  we have four error constrain. If there 
is only one “1” in a row or column in a valid tour then the 
first thee error constrain term will be error free its means 
the constrain term will be zero. So by just putting value in 
the last or fourth   term: 
Edis=gdis∑Ni=1∑Nj=1∑Nm=1zij(∞)zm(j+1)(∞)dim  We 
get the shortest or minimum path covering all the city once 
at a time. Where dim is the cost associated with the path 

from city i to city m and gdis is the positive real weight 
parameter for the constraint. For each neuron Zij the index 
m search each neuron in the (j+1)st column, indicated by 
the Zm(j+1) term. If both neurons are active, the distance 
from city m,dim will be included in this error term, where 
the minimum value is achieved if the total distance of the 
path is minimum. By using MATLAB , and taking 4 city in 
the tour we get 24 iteration to solve the TSP problem. 

Among these tour the minimum tour matrix is So the total 
minimum distance is EDA + DAB + DBC + DCD  = 17 + 
14+ 15 + 25 = 71. 

In Elastic network firstly considering a neuron ring among 
all the cities. Here the ring work as a rubber band which 
increase to cover all the cities. So there is only one result in 
this method to solve the traveling salesman problem. So 
here we calculate the only the outer most path to calculate 

the minimum   distance 71. 

Comparing these three different process of solving the 
Traveling Salesman Problem (TSP) we can say that the 
Hopfield Network is  the process by which the total 
distance to cover all the city in a tour exactly once, will be 
the minimum than Simultaneous Recurrent Network and 
The Elastic Network. in case of  HN and SRN taking 4 city 
in tour we can get 24 different iteration by using MATLAB 
to reach the starting city by covering all the city exactly 

once in the tour. Using MATLAB we can also get the 
minimum tour among these 24 tours. In SRN we calculate 
distance from the error term. If  the row, column, bin 
constrain is zero as for the there is only one 1 in column or 
row. In this two process there is energy function and error 
calculation respectively so there is difficult to get the result. 
There is no energy function in EN to calculate the 
minimum distance to TSP problem. There is only one way 

to get the distance, by adding the outer distance from each 
city to another. So this process is quite easy to solve TSP. 
But in HN we get the  least distance. 

Conclusion 

  In this comparative study on traveling salesman 
problem(TSP) we use Hopfield network,  elastic net, 
simultaneous recurrent network to reach to optimal tour 
with less total distance. In developing the solution we can’t 

get the exact optimal solution, it always be near the optimal 
solution. Few changes in energy function or update on them 
may create a better result. If any city is added or deleted 
from the tour we have to start from the starting city. As the 
number of city will increase then the number of iteration 
will also increase. In case of EN, it does not produce 
unfeasible solutions. There is no need of any energy 
function parameter to solve tsp problem. It produce sub 

optimal solutions that gives better results, it scales with 
problem size. In case of  SRN is easy to compute and to get 
good quality result. Here neuron-optimizer does not require 
any weights as HN. Results are encouraging since the 
network was able to locate near optimal solutions. The 
SRN is able to identify solution with average intercity 
distance. 
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