
Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan - Feb, 2013

15 | P a g e w w w . i j c t o n l i n e . c o m

THE PLACE OF THE STORED PROCEDURES IN THE CLOUD
DATABASES

Dr. Constantin Florin Sîrbu
Al. I. Cuza University of Iaşi, Romania

Department of Business Information Systems

ABSTRACT

The software as a service model ensures not only cloud

applications, but also cloud databases. In this paper we
analyze the impact on stored procedures of the switch of the
existing application to cloud applications and cloud databases.
We demonstrate that the stored procedures and cloud
applications have common advantages and we emphasize also
other advantages of the stored procedures. As a contribution
we propose a list of improvements to stored procedures that
can be considered in the new versions of the SQL standard
and implemented by the database management systems

providers. For the moment the SQL standard does not include
any feature related to the cloud databases, so we expect that
once again the software industry will be one step forward to
the SQL standard.

Keywords

Stored procedures, cloud databases, SQL standard, SQL
implementations.

1. INTRODUCTION
Classical data processing in client-server architecture involves
transfer of the data from the database management system to

the client application, and after their processing the transfer of
the results back to the database server. From this point of
view, the stored procedures have common advantages with
the cloud applications. We will name in this article classical
systems the systems that do not include cloud technologies.

The processing of data where is stored diminishes
considerably the use of the network resources and benefits
from the important resources of the servers. By using stored

procedures and/or cloud applications, data processing
operations are performed on systems much faster than
workstations, which may decrease the waiting time of the
system.

2. ADVANTAGE OF USING THE

STORED PROCEDURES
Performance of the stored procedures comes also from the
preparation for their processing at definition time. A query
done outside a stored procedure has the disadvantage that
each time it is sent by a client application to the database
server it undergoes a process of decomposition, analysis and

optimization in order to formulate a plan. A stored procedure
is decomposed, analyzed, optimized and stored in an
executable form when it is created. A stored procedure is not
subject to a process of preparing the execution each time it is
called and so, it runs faster than an equivalent query.

When a database is used by more applications, the stored
procedures ensure avoiding duplication of code and of all the
disadvantages arising from this. This is also the case of using

more cloud applications with the same database.

One advantage of stored procedures over cloud applications or
any other type of application is the possibility of
implementing data validation restrictions that are not included
in the relational constraints, using triggers. The classical
referential restrictions cannot be specified in distributed

databases over data from different servers. These restrictions
may be implemented in the database environment only with
stored procedures.

Stored procedures provide via triggers a possibility to
implement access policies, controlling who, what, when, from

where and with what tool makes the changes. This role of the
stored procedures may still exist in the cloud databases only
with the direct contribution of the cloud applications, because
these would be the clients of the cloud databases.

The contribution of the stored procedures to the data
protection is not only through the access policies, but also in
the implementation of the logging mechanism.

The new versions of the major DBMS include or will include
the functionality of storing procedures in the database

environment, and so, the migration to clouds will be easier if
in the old systems were used stored procedures.

Stored functions extend the data manipulation capability of a
DBMS because they can be used in SQL queries. By
expanding the data processing capability of the database
queries the cloud applications will became lighter and less
complex.

Stored procedures written in generalized programming

languages (Java, C) have the advantage of portability,
scalability and rapid development. Such a stored procedure
written in a general programming language can be used on
any platform (software and hardware) on which that language
can be compiled. Furthermore, a stored procedure can run
with small changes in a different type of application, making
once again the move to clouds more easily. A great portability
is achieved between different DBMS's that support the same

programming languages for writing stored procedures.

3. THE CHALLENGES OF USING

STORED PROCEDURES
Like any other functionality in a system, the stored procedures
bring new challenges to data protection and security. For
attackers, stored procedures are not only new targets, but also
new ways of accessing data from databases.

Stored procedures that are written in traditional programming
languages may contain Trojans, worms or viruses, but the
stored procedures written in a SQL dialect may not contain
malicious programs because the dynamic SQL environments

were created in such a way to avoid code multiplication.

The existing implementations of the stored procedures run
after the "first come - first served" rule. In classical systems,
this may cause problems when the procedures have different
importance labels. In the cloud databases the processing
resources of the clouds may be huge, triggering from this
advantages and disadvantages. An advantage is the fact that
an important process will always find the necessary resources

to run and a disadvantage may arise if the developers will not
consider the optimization issues. In time, the old performance
problems will became new financial problems, depending on
the contract with the database-service provider.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan - Feb, 2013

16 | P a g e w w w . i j c t o n l i n e . c o m

It is difficult to follow a stored procedure while running (and
in some implementations impossible) without accepting, from
time to time, the changes made over the data. Although SQL
standard does not include such specifications, there are
mechanisms that can be used to improve communication

between the client that launched a specific stored procedures
and the database server (e.g. pipes, autonomous transactions).

The stored procedures cannot be optimized by DBMSs as well
as the declarative solutions, and therefore part of the optimize
efforts belong to developers. Even when the stored functions
are triggered by declarative instructions, their code remains
outside optimizer’s actions [4]. When is scheduled a move to
cloud applications because of the performance problems
encountered with the classical systems, the need of code

optimization will still be an issue because of the effects over
costs. We recall in this regard Date’s advice "declarative
solutions, when available, are always to be preferred to
procedural onces". [3]

4. PROPOSED IMPROVEMENTS FOR

STORED PROCEDURES
Despite evident advantages of stored procedures, there are a
number of possibilities for improving them. We present a list
with proposals for improving the SQL standard and the SQL
implementation of the stored procedures.

4.1 The code management
We propose to save in the database dictionary not only the
code of the stored procedures, but also code management
information, like the different versions of a stored procedure
and information regarding the changes brought by a new

version of a stored procedure, or the reasons of these changes.

Choosing the version of a stored procedure may be done in at
least three different ways:

- By default using the latest version;

- Using dynamically the latest version accessible with
the rights of the client at runtime, in case the access
control list contains also version data;

- Choosing expressly a specific version to be run.

All this logic should be implemented now in the logical
design of each database instead of using the declarative
features of SQL.

4.2 The package management
The actual stored procedures may be organized in packages
that group procedures and functions that belong to the same

system functionality. In large systems, organizing the stored
procedures just in packages and simple procedures and
functions may not be sufficient for code readability. That is
way we propose the creation of a bigger code hierarchy, like
subpackages stored in other packages or the possibility to
develop groups of packages.

Also related to package management, in the actual SQL
standard and SQL dialects one package may be modified just

by replacing it entirely, which is an inconvenience in the code
management when dealing with large development groups.
The creation, modification or deletion of the package’s
components should be made without affecting the other
components of the same package.

4.3 The process management

4.3.1 The relative importance of the procedures
The rule "first come - first served" used in the actual stored
procedures lets the database administrator to manage the
resource loading. In cloud architecture the developer should
be able to specify the relative importance of the stored

procedures or the database-service provider should create
tools for their clients to administer their own processes. Such
tools could be used also for cost optimizations, for example,
some procedures that have to run during the night may receive
an importance label to run during the night at the cheapest rate
(when the cloud is less loaded) independently on the exact
hour.

4.3.2 Asynchronous processes
The stored procedures are used also for building ETL tools.
One of their disadvantages regarding these tools is that the
SQL stored procedures do not support multiple threads and as
a consequence they cannot be used to run asynchronously

different tasks in big business processes.

Till now this weakness had as a workaround the solution of
using two or more database jobs scheduled at exactly the same
time. But in cloud databases, the possibility of establishing
jobs for a time interval instead of an exact time could lower
the costs.

4.4 Improvements on security
The only action that can be specified for a privilege over a
SQL stored procedure is now EXECUTE. In practice, more
actions are needed for such privileges, like: READ (to be able
to read its code), COMPILE (to allow the compilation of a
stored procedure), REPLACE (to allow changes over the
stored procedures definition and body). These improvement

are not directly linked with the cloud features of the
databases, but may be implemented for a better security.

4.5 Improvements on triggers

4.5.1 The order of execution
According to the SQL standard “the order of execution of a
set of triggers is ascending by value of their timestamp of
creation in their descriptors, such that the oldest trigger
executes first”[11]. This is one example in which the SQL
standard remained one step before the implementations. For

example in Oracle 11g the clause FOLLOWS lets the
developer to specify the relative firing order of triggers of the
same type [9].

4.5.2 Multi base tables
According to the SQL standard “a trigger is an object
associated with a single base table or a single viewed
table”[11].

In practice, we may need triggers that look exactly the same
or with the same basic structure, but defined on different
tables. For example, the logging mechanisms implemented in
the logical design of the database suppose such triggers. To

avoid code duplication, we look for solutions that suppose the
definition of the same trigger on different tables and the
ability to find dynamically the current base table, at run time,
during the execution of a trigger.

The problems encountered in this case by DBMS's producers
would be in pre-compiler, when there has to be created a list
with the columns accessible at runtime. Maybe a simple and
fast solution would be to use in such triggers only the

common columns of the group of tables defined for a trigger.

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan - Feb, 2013

17 | P a g e w w w . i j c t o n l i n e . c o m

4.5.3 New trigger events and clauses
The SQL standard restricts the events of the triggers just for
DML operations on tables, but in the SQL implementations
there are more event types (DDL events, schema events, and
database events). Besides the trigger events already
implemented even without standard specifications, there may
be invented new trigger events like “the end of the
transaction”. In practice, there are businesses rules that cannot
be implemented entirely into the database environment

without any workarounds because of this lack.

 In business information systems, the generation of the
accounting journal using the transaction journal may be
implemented online or with batch processing. Because all the
transaction data is in the database, the output data is saved
also in the database, and there is no need for user intervention,
the best place to implement this algorithm is the database
environment with stored procedures. Both processing

strategies (batch and online) may use stored procedures.

The online generation of the accounting notes need to capture
the event when the algorithm has to run with triggers declared
on the tables used for storing transaction data.

When there are no references between the transactions tables,
on these tables can be created INSERT triggers that contain
specific logic to generate the correspondent accounting
articles. These may be AFTER triggers, to ensure that in the

BEFORE triggers were already imposed some business rules.

When there are references between the transactions tables
(such as the child table INVOICE_PRODUCTS references
the parent table INVOICES) the use of triggers to generate
accounting articles is challenging because:

- the rows from the child table may be inserted only after the
correspondent insert on the parent table.

- in the body of a trigger the base table is mutating (cannot be
queried).

These triggers may not be defined on the INSERT event of
the parent table because these accounting articles may need
amounts from the child table, but in the child table the
correspondent rows were not inserted yet.

Also the child table cannot be the base table of such trigger
because is not known what child row is the last that refers to a
specific transaction (for example, which is the last line of an
invoice) and because these tables cannot be queried from their

own triggers.

The actual solutions of such algorithms implemented with
stored procedures suppose to capture the moment when the
accounting articles may be generated, for example when is
updated a status column from the parent table. The risk would
be in this case to lose such an event, which does not have a
correspondence in the business logic.

In addition to this solution we propose two extensions on the

trigger’s functionalities, features that do not exist in the actual
DBMSs or in the actual SQL standard:

- a new option for triggers to postpone them until the end of
the database transaction (just as a check constraint may be
delayed with the DEFERRABLE option). In the example
above, such a DEFERRABLE trigger should be implemented
on the INSERT event of parent table (INVOICES).

- a new trigger event to execute a stored routine after the end

of the database transaction (TRIGGER ON COMMIT) and to
be able to track whether an individual event took place in the

current database transaction. This solution would have the
disadvantage that such trigger would be too often executed.

4.6 A standard warning and error

management system
The business rules imposed with stored procedures may use
errors and warnings. The error stops the existing data
processing and does not let the users to break a rule. The
warning lets the user to insert some data that break a business

rule, but informs him/here about this. In business information
systems, when data has to be stored about business transaction
that took place, the data has to be saved into the database even
if some business rules failed. For these situations the entire
warning mechanism affects the application design without any
help from the database dictionary and the database built in
packages. That is way we propose to extend the error
management system with warnings that do not stop the

database operations.

4.7 A new DBA role
In the classical systems the DBA roles works at the instance
level on all the schemas of a database. In the cloud databases,
beside the DBAs of the cloud database, there should be also

the role of the tenant’s DBAs.

4.8 Stored procedure as a service
Since the stored procedures are also software, the model
software as a service may be customized for stored
procedures.

The functionality of the stored procedures should be subject
of a service, not only between the cloud owner and its tenants,
but also between tenants.

The cloud database and its dictionary should ensure the
architecture that makes possible stored procedures as a
service.

5. CONCLUSIONS
Stored procedures are now widely used in relational and
object-relational DBMS market. The main reasons for this
spread are their advantages and the need for computational
completeness in the database environment.

Thanks to stored procedures, the database servers (in cloud or
not) are not only data storage resources, but also data
processing and data publishing resources.

Further researches relate to the changes that had to be done to
stored procedures for their migration into clouds. The cloud
migration of the stored procedures implies certain changes
required by the new security challenges that come from
sharing the same IT resources. These changes were shortly
presented in a recent Oracle article [12].

6. ACKNOWLEDGMENTS
This work was cofinanced from the European Social Fund
through Sectoral Operational Programme Human Resources
Development 2007-2013, project number
POSDRU89/1.5/S/56287 „Postdoctoral programs at the
forefront of the excellence research in the technologies of the
informational society and innovative product and process

development”, partner University of Oradea.

7. REFERENCES
[1] Ben-Gan, I., Sarkaand, D., Wolter, R., 2006 Inside

Microsoft SQL Server 2005: T-SQL Programming,
Microsoft Press

Council for Innovative Research International Journal of Computers & Technology
www.cirworld.com Volume 4 No. 1, Jan - Feb, 2013

18 | P a g e w w w . i j c t o n l i n e . c o m

[2] Curino, C., Jones, E. P. C., Popa, R. A., Malviya, N.,
Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N.
2011 Relational Cloud: A Database-as-a-Service for the
Cloud, CIDR, pages 235–241
http://people.csail.mit.edu/nickolai/papers/curino-
relcloud-cidr.pdf

[3] Date, C.J. 2004 An Introduction to Database Systems,
8th Edition, Pearson Education.

[4] Faroult, S., Robson, P. 2006 The Art of SQL, O'Reilly,
subchapter. 2.15.

[5] Feuerstein, S., Nanda, A., 2005 Oracle PL/SQL for
DBAs, O'Reilly

[6] Feuerstein, S., Pribyl, B., 2005 Oracle PL/SQL
Programming, O'Reilly

[7] Fotache, D., Hurbean, L., Dospinescu, O., Pavaloaia, V.
2010 Procese organizaţionale şi integrare informaţională.
Entreprise Resource Planning, Ed. Universităţii
“Al.I.Cuza” Iaşi

[8] Fotache, M. 2005 Proiectarea bazelor de date.
Normalizare şi postnormalizare. Implementări SQL şi
Oracle, Editura Polirom, Iaşi

[9] Moore, S., Belden, E. 2009 Oracle Database PL/SQL
Language Reference 11g Release 1 (11.1), Oracle

[10] Velte, A. T., Velte T. J., Elsenpeter, R. 2010 Cloud
Computing: A Practical Approach, McGraw Hill
http://neuron.csie.ntust.edu.tw/homework/100/CC/materi
als/Cloud%20Computing%20-
%20A%20practical%20Approach.pdf

[11] *** 2011 ISO/IEC 9075-1:2011 Part 1: Framework
(SQL/Framework) Working Draft Documents
http://www.wiscorp.com/sql20nn.zip

[12] *** 2012 Oracle Database Cloud Service security
lockdown, an Oracle White Paper,
http://www.oracle.com/technetwork/database/database-
cloud/public/dbcs-security-lockdown-1844133.pdf

http://people.csail.mit.edu/nickolai/papers/curino-relcloud-cidr.pdf
http://people.csail.mit.edu/nickolai/papers/curino-relcloud-cidr.pdf
http://neuron.csie.ntust.edu.tw/homework/100/CC/materials/Cloud%20Computing%20-%20A%20practical%20Approach.pdf
http://neuron.csie.ntust.edu.tw/homework/100/CC/materials/Cloud%20Computing%20-%20A%20practical%20Approach.pdf
http://neuron.csie.ntust.edu.tw/homework/100/CC/materials/Cloud%20Computing%20-%20A%20practical%20Approach.pdf
http://www.wiscorp.com/sql20nn.zip
http://www.oracle.com/technetwork/database/database-cloud/public/dbcs-security-lockdown-1844133.pdf
http://www.oracle.com/technetwork/database/database-cloud/public/dbcs-security-lockdown-1844133.pdf

