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ABSTRACT 

The purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on Galerkin 
weighted residual approximation. In this method Hermite and Chebyshev piecewise, continuous and differentiable 
polynomials are exploited as basis functions. A rigorous effective matrix formulation is proposed to solve the linear and 
nonlinear Volterra integral equations of the first and second kind with regular and singular kernels. The algorithm is simple 
and can be coded easily. The efficiency of the proposed method is tested on several numerical examples to get the 
desired and reliable good accuracy.  
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INTRODUCTION 

Most mathematical models used in many applied problems of physics, biology, chemistry, engineering, and in other areas 

are transformed into integral equations, namely linear and nonlinear Volterra integral equations of the first or second kind. 

For this, many authors have paid attention to the study of these equations from the viewpoint of their theoretical 

properties, numerical treatment, as well as its applications. Consequently, various techniques [1, 2] have been presented 

for solving Volterra integral equations such as Adomian's decomposition method, series solution method, Laplace 

transform method and successive substitution method. These methods generally cover the analytic closed form solution of 

such equations. But many of the equations that govern the physical problems have no solution in closed form. Therefore, 

to find the solutions of such problems, we must resort to solving these equations numerically.  

Since piecewise polynomials are incredibly useful mathematical tools as they are simply defined, can be calculated quickly 

on computer systems and represent a tremendous variety of functions. They can be differentiated and integrated easily, 

and can be pieced together to form spline curves that can approximate any function to any accuracy desired. As a result, 

many numerical methods have been developed for solving differential and integral equations by many researchers using 

various piecewise polynomials in recent years. Bellour and Rawashdeh [3] used Taylor polynomials method to solve only 

first kind integral equations while a recursive scheme [4] were used by Maleknejad et al for the solutions of such type of 

problems. Also Shahsavaran [5 – 8] solved first and second kind linear and nonlinear Volterra integral equations by 

collocation method while spectral method has been used by Chen and Tang [9]. Maleknejad et al [10] used Chebyshev 

polynomials for numerical solution of nonlinear integral equations. On the other hand, Jafari et al [11] used Legendre 

wavelets for the solution of system of linear integral equations. Bernstein polynomials have been used by Bhattacharya 

and Mandal [12] to find out the solutions of Volterra integral equations of first and second kind. These polynomials further 

used to investigate the solution of such problems by Maleknejad et al [13]. Berenguer et al [14] proposed analytical 

techniques for numerical solutions of the second kind Volterra integral equations while Kamyad et al [15] solved linear and 

nonlinear equations and Babolian et al [16] studied on nonlinear Volterra-Fredholm Integral and Integro-Differential 

Equations. But none has attempted, to the knowledge of the present authors, using Hermite polynomials to solve the 

Volterra integral equations.  

However, in this paper, we provide a numerical approach for the Volterra integral equations based on Hermite and 

Chebyshev piecewise polynomials [17] basis by the technique of Galerkin weighted residual method [18]. Firstly, we give 

an introduction of Hermite and Chebyshev piecewise polynomials. Then, we drive a matrix formulation for general linear 

problems by the technique of Galerkin method while nonlinear case is given through numerical examples.  

 

HERMITE POLYNOMIALS  

Hermite polynomial, named after a French mathematician Charles Hermite (1822-1901), is a family of polynomial 

functions, which is the solution of a special case of differential equation in the treatment of harmonic oscillator in quantum 

mechanics. The general form of the Hermite polynomials [17] of nth degree is defined by 
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The first few Hermite polynomials from the equation (1) are given below: 

1)(0 xH , xxH 2)(1  , 24)( 2
2  xxH , xxxH 128)( 3

3  , 124816)( 24
4  xxxH ,    

xxxxH 12016032)( 35
5  , 12072048064)( 246

6  xxxxH       

 

CHEBYSHEV POLYNOMIALS 

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal polynomials which are related to 

de Moivre's formula and which can be defined recursively. The general form of the Chebyshev polynomials [17] of nth 

degree is defined by 

http://en.wikipedia.org/wiki/Pafnuty_Chebyshev
http://en.wikipedia.org/wiki/Polynomial_sequence
http://en.wikipedia.org/wiki/Orthogonal_polynomials
http://en.wikipedia.org/wiki/De_Moivre%27s_formula
http://en.wikipedia.org/wiki/Recursion
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The first few Chebyshev polynomials from the equation (2) are given below : 

1)(0 xT , xxT )(1 , 12)( 2
2  xxT , xxxT 34)( 3

3  , 188)( 24
4  xxxT , xxxxT 52016)( 35

5  , 

 1184832)( 246
6  xxxxT           

 

Now the first six Hermite polynomials over the interval [-1, 1] are shown in Fig. 1(a), and the first six Chebyshev 

polynomials are shown in Fig. 1(b). 

 

 

 

  

 

 

 

                 Fig. 1(a). Graph of first 6 Hermite polynomials                                            Fig. 1(b). Graph of first 6 Chebyshev polynomials 

                                  over the interval [-1, 1]                                                                                   over the interval [-1, 1] 

  

MATHEMATICAL FORMULATION OF INTEGRAL EQUATIONS  

In this section, first we consider the Volterra integral equation (VIE) of the first kind [1, 2], given by  

bxaxfdttutxk
x

a

 ,)()(),(           (3) 

where )(xu  is the unknown function, to be determined, ),( txk is the kernel function, continuous or discontinuous and 

)(xf  being the known function satisfying 0)( af . 

Now we use the technique of Galerkin method, [Lewis, 14], to find an approximate solution )(~ xu  of (3). For this, we 

assume that 
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where )(xNi  are Hermite or Chebyshev polynomials of degree i  defined in equation (1-2), ic  are unknown parameters, 

to be determined and n is the number of piecewise polynomials. An approximate solution )(~ xu  will not produce an 

identically zero function but a function called the residual function. Substituting (4) into (3), we get the residual function as 
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Now the Galerkin equations of (3) corresponding to the approximation (4), given by 
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Using (5) and (6) after minor simplification, we obtain 
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The above equations (7) are equivalent to the matrix form  

BDC             (8) 

where the elements of the matrix DC, and B  are jii dc ,,  and ,jb  respectively, given by   

 Tni ccccc ................,,, 321          (9a) 

njidxxNdttNtxkd j

b
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a
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njdxxfxNb
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a
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Now the unknown parameters ic  are determined by solving the system of equations (9) and substituting these values of 

parameters in (4), we get the approximate solution )(~ xu of the integral equation (3). 

 

Now, we consider the Volterra integral equation (VIE) of the second kind [1, 2] given by 

bxaxfdttutxkxu
x

a

  ,)()(),()(          (10) 

where )(xu , is the unknown function to be determined, ),( txk is the kernel function, continuous or discontinuous, )(xf  

being the known function and   is the constant. Then applying the same procedure as described above, we obtain the 

matrix form  

BDC             (11) 

where the elements of the matrix DC, and B  are jii dc ,,  and ,jb  respectively, given by   

 Tni ccccc ................,,, 321          (12a) 
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Now the unknown parameters ic  are determined by solving the system of equations (12) and substituting these values of 

parameters in (4), we get the approximate solution )(~ xu  of the integral equation (10). The absolute error for this 

formulation is defined by 

Absolute Error )(~)( xuxu           (13) 

The formulation for nonlinear integral equation will be discussed by considering numerical problems in the next section. 
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NUMERICAL EXAMPLES 

To verify the proposed method, we consider some linear and nonlinear Volterra integral equations with regular and weakly 

singular kernels, because the exact solutions for these problems are available in the literature. For all the examples, the 

solutions obtained by the proposed method and are thus compared with the exact solutions using two piecewise 

polynomials, namely, Hermite and Chebyshev polynomials. The convergence of each linear Volterra integral equations is 

calculated by  

  )(~)(~
1 xuxuE nn            

where )(~ xun denotes the approximate solution by the proposed method using nth degree polynomial approximation and 

  varies from 
710  (Hermite polynomials) and 

610  (Chebyshev polynomials) for 10n . 

 

Example 1: Consider the LVIE of first kind with continuous kernels [2, pp 43] 

 
x

xxxdttutx

0

32 10,5)()335(         (14) 

The exact solution is xxu 2)(  . Using Hermite and Chebyshev polynomials and the formula derived in the equation (8) 

for 1n , we get the approximate solution is xxu 2)(~  , which is the exact solution. 

 

Example 2: Consider the LVIE of second kind with continuous kernels [14] 

 
x

x
x

xdttutxxu

0

8
5 10,

7
)()(         (15) 

The exact solution is
5)( xxu  . Using Hermite and Chebyshev polynomials and the formula derived in the equation (11) 

for 5n , we get the approximate solution is 
5)(~ xxu  , which coincides with the exact solution. On the other hand, the 

absolute errors were obtained in the order upto 
510  for 65n (number of Biorthogonal functions), 3m  (number of 

functions) by Berenguer et al [14].    

 

Example 3: Consider first kind Abel’s integral equation of the form [13] 

 


x

xxxxdttu
tx0

32

105
2 10)4856105()(

)(

1
      (16) 

The exact solution is 1)( 23  xxxu . Results have been shown in Table 1 for 10n . The absolute errors are 

obtained in the order of 
1610  for Hermite polynomial basis. Also approximate solutions are same as exact solutions in 

the case of Chebyshev polynomials basis. On the other hand, the absolute errors were obtained in the order of 
710  for 

10n (degree of Berstein’s polynomials) by Maleknejad et al [13]. 

 

Example 4: Here we consider the first kind Abel integral equation [12] given by  

 


x
r xxdttu

tx0

10,)(
)(

1
         (17) 

where r is any positive number. This is a first kind Volterra integral equation with weak singularity. The exact solution of 

the integral equation (17) is given by,  
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In one numerical example r is chosen as 5r  (integral value) while in another it is chosen as 
2
3  (non-integral value). 

For 5r  the exact solution is 
2/9

315
1280)( xxu


 . Numerical results with both polynomials have been shown in Table 2 for 

10n .  The absolute errors are obtained in the order of 
810  for both polynomial basis while the absolute errors were 

obtained in the order of 
710  for 10n (degree of Berstein’s polynomials) by Bhattacharya and Mandal [12].    

 

For 
2
3r  the exact solution is xxu

4
3)(  . Using Hermite and Chebyshev polynomials and the formula derived in the 

equation (8) for 1n , we get the approximate solution is xxu
4
3)(~  , which is the exact solution. On the contrary, the 

absolute errors were obtained in the order of 
1610  for 5n (degree of Berstein’s polynomials) by Bhattacharya and 

Mandal [12]. 

 

Table 1: Numerical results with analytical solutions of example 3 for 10n  

Example 3 

 Hermite Polynomials Basis Chebyshev Polynomials Basis  

x  Exact Solutions 
Approximate 

Solutions 
Absolute Error 

Approximate 

Solutions 
Absolute Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.000000000000000 

0.990999999999999 

0.967999999999999 

0.936999999999999 

0.904000000000000 

0.875000000000000 

0.855999999999999 

0.852999999999999 

0.872000000000000 

0.919000000000000 

1.000000000000000 

1.000000000000000 

0.990999999999999 

0.967999999999999 

0.936999999999999 

0.903999999999999 

0.875000000000000 

0.855999999999999 

0.852999999999999 

0.871999999999999 

0.919000000000000 

1.000000000000000 

0.0000000E+000 

0.0000000E+000 

0.0000000E+000 

0.0000000E+000 

1.1102230E-016 

0.0000000E+000 

1.1102230E-016 

0.0000000E+000 

1.1102230E-016 

0.0000000E+000 

0.0000000E+000 

Same as exact 

solutions for 3n  

that means using 4 

pieces Chebyshev 

Polynomials 

 

Coincide with the 

exact solutions for 

3n  that means 

using 4 pieces 

Chebyshev 

Polynomials 

 

 

 

Example 5: Consider the second kind Abel’s integral equation [8, 12] of the form 

 



x

xxxdttu
tx

xu

0

7 10),
6435

4096
1()(

)(

1
)(        (18) 

The exact solution is
7)( xxu  . Numerical results are shown in Table 3 for 10n .The absolute errors are obtained in 

the order of 
1510 for Hermite polynomial basis. Also there is no error in the case of Chebyshev polynomials basis.  On 

the other hand, the absolute errors were obtained in the order of 
710  for 10n (degree of Berstein’s polynomials) by 

Bhattacharya and Mandal [12] and in [8] Shahsavaran reported the error upto 
510  for 64k (number of block pulse 

function).  
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Table 2: Numerical results with analytical solutions of example 4 for 5r and 10n  

Example 4 for 5r  

 Hermite Polynomials Basis Chebyshev Polynomials Basis  

x  Exact Solutions 
Approximate 

Solutions 
Absolute Error 

Approximate 

Solutions 
Absolute Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.000000000000000 

0.000040902470789 

0.000925517262805 

0.005738457762588 

0.020942065044315 

0.057162940708387 

0.129846476719332 

0.259830855487891 

0.473864838556323 

0.805083332553239 

1.293449696238895 

0.000000130065256 

0.000040923323991 

0.000925505766090 

0.005738474293789 

0.020942045606297 

0.057162953563043 

0.129846477741079 

0.259830841672036 

0.473864859780821 

0.805083306075578 

1.293449495167074 

1.3006526E-007 

2.0853202E-008 

1.1496714E-008 

1.6531200E-008 

1.9438018E-008 

1.2854656E-008 

1.0217471E-009 

1.3815856E-008   

2.1224498E-008 

2.6477660E-008 

2.0107182E-007 

0.000000130065245 

0.000040923323982 

0.000925505766081 

0.005738474293786 

0.020942045606303 

0.057162953563045 

0.129846477741060 

0.259830841672036 

0.473864859780843 

0.805083306075595 

1.293449495167062 

1.3006525E-007 

2.0853193E-008 

1.1496724E-008 

1.6531197E-008 

1.9438012E-008 

1.2854658E-008 

1.0217281E-009 

1.3815855E-008 

2.1224520E-008 

2.6477644E-008 

2.0107183E-007 

 

Table 3: Numerical results with analytical solutions of example 5 for 10n  

Example 5 

 Hermite Polynomials Basis Chebyshev Polynomials Basis  

x  Exact Solutions 
Approximate 

Solutions 
Absolute Error 

Approximate 

Solutions 
Absolute Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.000000000000000 

0.000000100000000 

0.000012800000000 

0.000218700000000 

0.001638400000000 

0.007812500000000 

0.027993599999999 

0.082354299999999 

0.209715200000000 

0.478296900000000 

1.000000000000000 

0.000000000000000 

0.000000099999998 

0.000012799999999 

0.000218700000000 

0.001638399999997 

0.007812500000000 

0.027993599999999 

0.082354300000000 

0.209715199999996 

0.478296899999995 

1.000000000000003 

0.0000000E+000 

1.0518363E-015 

5.2011042E-016 

1.5883562E-017 

2.1811979E-015 

0.0000000E+000 

5.9674488E-016 

2.4980018E-016 

3.4694470E-015 

4.1633363E-015 

3.5527137E-015 

Same as exact 

solutions for 7n  

that means using 8 

pieces Chebyshev 

Polynomials 

Coincide with the  

exact solutions for 

7n  that means 

using 8 pieces 

Chebyshev 

Polynomials 

 

Example 6: Consider the second kind Abel’s integral equation [5] 

 
10,

15

16
)(

1
)( 2

5

2

0




  xxxdttu
tx

xu
x

       (19) 

The exact solution is
2)( xxu  . Using Hermite and Chebyshev polynomials and the formula derived in the equation (11) 

for 2n , we get the approximate solution is 
2)(~ xxu  , which is the exact solution. On the other hand, the absolute 

errors were obtained in the order of 
310  for 32k (number of block-pulse functions) by Shahsavaran [5].   
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Example 7: Consider the nonlinear Volterra integral equation [15] 

10,
12

1
2)()(25.0)( 4

0

2   xxxdttutxxu
x

       (20) 

The exact solution is xxu 2)(  . We approximate )(xu  as 





n

i
ii xNcxu

0

)()(~           (21) 

where )(xNi  are Hermite or Chebyshev polynomials of degree i . Using (21) into Eqn. (20), the Galerkin weighted 

residual equations are: 

0)(
12

1
2)(~)(25.0)(~

1

0 0

42 











  xNxxdttutxxu j

x

; nj ,,3,2,1        (22) 

Using the method discussed in section 3 and with minor simplifications, the above equations (22) are equivalent to 

BDC             (23) 

where the elements of the matrix DC, and B  are jii dc ,,  and ,jb  respectively, given by   

 Tni ccccc ................,,, 321          (23a) 

njidxxNdttNtNctxxNd j

x

a
i

n

k
kkiji ,,1,,)()()()(25.0)(

1

0 1
, 


























   



    (23b) 

njdxxNxxb jj ,,1,)(
12

1
2

1

0

4 







          (23c) 

Now the initial values of the coefficients ic  are obtained by applying the modified Galerkin method to the Volterra integral 

equation (20) converting it to linear. That is to find initial coefficients we will solve the system only 

BDC             (24) 

where the elements of the matrix DC, and B  are jii dc ,,  and ,jb  respectively, given by   

 Tni ccccc ................,,, 321          (24a) 

njidxxNdttNtxxNd j

x

a
iiji ,,1,,)()()(25.0)(

1

0
, 


























        (24b) 

njdxxNxxb jj ,,1,)(
12

1
2

1

0

4 







          (24c) 

Once the initial values of the ic  are obtained from Eqn. (24), they are substituted into Eqn. (23) to obtain new estimates 

for the values of ic . This iteration process continues until the converged values of the unknown parameters are obtained. 

Substituting the final values of the parameters in Eqn. (21), we obtain the approximate solutions of the integral equations 

(20). Numerical results are shown in Table 4. 

 

Example 8: Consider the nonlinear Volterra integral equation [2, 15] 

 
x

xxxdttutxu

0

53 10,
5

1
)()(          (25) 
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The exact solution is xxu )( . Approximate results and analytical solutions are given in Table 5. 

Table 4: Numerical results for nonlinear problem in example 7. 

Example 7:  

n=5, Iteration=8 Hermite Polynomials Basis Chebyshev Polynomials Basis  Method in [15], 

h=0.1,n=10 

x  Exact 

Solutions 

Approximate 

Solutions 

Absolute Error  Approximate 

Solutions 

Absolute Error Approx. 

Solutions 

Absolute 

Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0000000000 

0.2000000000 

0.4000000000 

0.6000000000 

0.8000000000 

1.0000000000 

1.2000000000 

1.4000000000 

1.6000000000 

1.8000000000 

4.730367E-014 

0.2000000000 

0.4000000000 

0.6000000000 

0.8000000000 

1.0000000000 

1.2000000000 

1.4000000000 

1.6000000000 

1.8000000000 

4.730367E-014 

7.827072E-015 

2.026157E-014 

8.437695E-015 

9.658940E-015 

1.976197E-014 

1.465494E-014 

4.662937E-015 

2.464695E-014 

1.532108E-014 

7.990960E-016 

0.2000000000 

0.4000000000 

0.6000000000 

0.8000000000 

1.0000000000 

1.2000000000 

1.4000000000 

1.6000000000 

1.8000000000 

7.990960E-016 

1.110223E-016 

3.885781E-016 

3.330669E-016 

1.110223E-016 

2.220446E-016 

0.00000000000 

0.00000000000 

2.220446E-016 

2.220446E-016 

0.0000 

0.2000 

0.4000 

0.5999 

0.7999 

0.9998 

1.1997 

1.3995 

1.5993 

1.7991 

00000000 

00000000 

00000000 

1.00E-004 

1.00E-004 

2.00E-004 

3.00E-004 

5.00E-004 

7.00E-004 

9.00E-004 

 

Table 5: Numerical results for nonlinear problem in example 8. 

Example 8:  

n=7, Iteration=15 Hermite Polynomials Basis Chebyshev Polynomials Basis  Method in [15], 

h=0.1,n=10 

x  Exact 

Solutions 

Approximate 

Solutions 

Absolute Error  Approximate 

Solutions 

Absolute Error Approx. 

Solutions 

Absolute 

Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0000000000 

0.1000000000 

0.2000000000 

0.3000000000 

0.4000000000 

0.5000000000 

0.6000000000 

0.7000000000 

0.8000000000 

0.9000000000 

-3.23667E-012 

0.1000000000 

0.2000000000 

0.3000000000 

0.4000000000 

0.5000000000 

0.6000000000 

0.7000000000 

0.8000000000 

0.9000000000 

3.236672E-012 

1.308995E-012 

2.685074E-013 

1.004197E-012 

4.030110E-014 

8.981704E-013 

4.498624E-013 

7.689405E-013 

6.270540E-013 

1.226685E-012 

-6.79107E-014 

0.1000000000 

0.2000000000 

0.3000000000 

0.4000000000 

0.5000000000 

0.6000000000 

0.7000000000 

0.8000000000 

0.9000000000 

6.791065E-014 

3.153033E-014 

8.992806E-015 

2.836620E-014 

2.109424E-015 

2.620126E-014 

1.687439E-014 

1.898481E-014 

2.253753E-014 

2.775558E-014 

0.0000 

0.1000 

0.2001 

0.3003 

0.4011 

0.5027 

0.6056 

0.7104 

0.8172 

0.9261 

00000000 

00000000 

1.00E-004 

3.00E-004 

1.10E-003 

2.70E-003 

5.60E-003 

1.04E-002 

1.72E-002 

2.61E-002 

 

Example 9: Consider the nonlinear Volterra integral equation [2, 6, 7, 16] 

10,
4

1
2sin

8

1
sin)(5.0)(

0

2   xxxxdttuxu
x

       (26) 

The exact solution is xxu sin)(  . The computational results together with the exact solutions are summarized in Table 

6.  
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Table 6: Numerical results for nonlinear problem in example 9 

 

 

CONCLUSIONS 

We have obtained the approximation solutions of linear and nonlinear Volterra integral equations using Hermite and 

Chebyshev polynomials as trial function in the basis by the technique of Galerkin method. The proposed method has been 

applied to solve several number of Volterra integral equations both second and first kind with regular as well as weakly 

singular kernels. The numerical results obtained by the proposed method are in good agreement with the exact solutions. 

Observe that the numerical solutions coincide with the exact solutions even a lower degree both polynomials are used in 

the approximation. Also we notice that the both polynomials provide us the smaller absolute error than the absolute error 

obtained in [5 – 8, 12 – 16], and the Chebyshev polynomials gives the best solutions than the Hermite polynomials, which 

are shown in Table [1- 6]. The author’s concluding remark is that this technique may be applied to other integral equations 

to get the desired and reliable good accuracy. 
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