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ABSTRAC

In this paper, an optimal q-homotopy analysis method (Og-HAM) is proposed. We present some examples to show the
reliability and efficiency of the method. It is compared with the one-step optimal homotopy analysis method. The results
reveal that the Og-HAM has more accuracy to determine the convergence-control parameter than the one-step optimal
HAM.
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1. INTRODUCTION

The search for a better and easy to use tool for the solution of nonlinear equations illuminating the nonlinear
phenomena of our life keeps continuing. A variety of methods therefore were proposed to find approximate solutions. Liao
[10-14] employed the basic ideas of the homotopy in topology to propose a general analytic method for linear and
nonlinear problems, namely homotopy analysis method (HAM). In recent years, this method has been successfully applied
to solve many types of nonlinear problems in science and engineering [6, 9, 17, 20].The HAM contains a certain auxiliary
parameter h which provides us with a simple way to adjust and control the convergence region and rate of convergence of
the series solution. Moreover, by means of the so-called h-curve, it is easy to determine the valid regions of h to gain a
convergent series solution. The use of the convergence-control parameter h is indeed a great progress in the frame of the
HAM. It seems that more “artificial” degrees of freedom imply larger possibility to gain better approximations by means of
the homotopy analysis method. How to find a proper convergence-control parameter h so as to gain a convergent series
solution? A straight-forward way to check the convergence of a homotopy-series solution is to substitute it into original
governing equations and boundary/initial conditions and then to check the corresponding squared residual integrated in
the whole region.

The h -curves cannot tell us the best convergence-control parameter h, which corresponds to the fastest convergent
series. In 2007, Yabushita et al. [19] applied the HAM to solve two coupled nonlinear ODEs. They suggested the so-called
“optimization method” to find out the two optimal convergence-control parameters by means of the minimum of the
squared residual error of governing equations. In 2008, Akyildiz and Vajravelu [2] gained optimal convergence-control
parameter by the minimum of squared residual of governing equation, and found that the corresponding homotopy-series
solution converges very quickly, Marinca et al. [16, 17] introduced the so-called “homotopy asymptotic method” which is
similar to the homotopy analysis method, Niu et.al. [18] proposed a method namely one-step optimal homotopy analysis
method, Liao [15] developed in an optimal HAM with only three convergence-control parameters. El-Tawil and Huseen
[3,4] proposed a method namely g-homotopy analysis method (q-HAM) which is more general method of homotopy
analysis method (HAM), The g-HAM contains an auxiliary parameter n as well as h such that the case of n =1 (g-HAM ;
n = 1) the standard homotopy analysis method (HAM) can be reached.

In this paper, an optimal g-homotopy analysis method is proposed. This optimal method contains only one convergence-
control parameter and is computationally rather efficient.

2. BASIC IDEA OF THE OPTIMAL gq-HOMOTOPY ANALYSIS METHOD (Og-HAM)
Consider the following differential equation
N[u(®] =0, 1)
where N is a nonlinear operator, u(t) is an unknown function.
Let us construct the so-called zero-order deformation equation:
(1 —ng)L[B(t q) — ue(D)] = Fm)aN[D(t; g)] 2
Where F(n) is a nonzero auxiliary function,n>1,q € [0, %] denotes the so-called embedded parameter, L is an auxiliary

linear operator.Choosing the function F(n) depends on the given problem. It is obvious that when q = 0 and q = % equation
(2) becomes:

1

B(t0) = uo(®) and 8 () = u(), 3)

n
respectively. Thus as q increases from 0 to % , the solution @(t; q) varies from the initial guess u, (t) to the solution u(t).

Having the freedom to choose u,(t), L, F(n) we can assume that all of them can be properly chosen so that the solution
@(t; q) of equation (2) exists for q € [0, 1]. Expanding @(t; q) in Taylor series, one has:

n

B(t;q) = up(t) + XHZ; um(Hq™ (4)
where
U () = 200, (5)

Assume that F(n), uy(t), L are so properly chosen such that the series (4) converges at q = % and

1

u(®) = 0 (6:2) = u () + T2y w0 () (6)

n

Defining the vector u,(t) = {uy(t), u; (t), u,(t), ..., u.(t)}. Differentiating Equation (2) m times with respect to q and then
setting q = 0 and finally dividing them by m! we have the so-called m™ order deformation equation:

LU () = KU1 (D] = F)Rp (U1 (), )

where
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- 1 ™ 'N[B(tq)]
R (U1 () = MT_qu:o )

and
Km = { ©)

It should be emphasized that uy,(t) for m > 1 is governed by the linear equation (7) with linear boundary conditions that
come from the original problem. Let

Am= [, (N[Un(D])?dQ, (10)

0 m<1
n otherwise

k
where Uy, (t) = uo(t) + X1k, ug(t) (%) denote the square residual error of the mth-order appro-ximation of the equation
(1) integrated in the whole domain Q, In theory if the square residual error A, tends to zero, then

Un(® = S ue® (2)°

is a series solution of the original equation (1). Besides, at the given order of approximation, the minimum of the squared
residual error A, corresponds to the optimal approximation, hence the optimal value of the convergence-control
parameter n that corresponds to the minimum of A,.

In the one-step optimal HAM, Niu and Wang [18] construct the zeroth-order deformation equation
(1= QLB ) — uo (D] = BkZ1 ckq®) N[D(t; 9)],

where Lis an auxiliary linear operator ,q €[0,1] denotes the so-called embedded parameter wuy(t) an initial
approximation of u(t) and the series Y32, c,q* converges at g = 1.

The mt" order deformation equation is:

L[um (t) — XmUm-1 (t)] = ;cnzl Ck Rm—k(t)

0 m<1
1 otherwise

1 9°N[o(t,q)]

Where R, (t) = N

and x,, = {
At the 1st-order of approximation A, is only dependent upon c¢;, so, the optimal value of ¢, is obtain by solving the
nonlinear algebric equation

dA;

de;

At the 2nd-order, since c; is known, the square residual error A,is only dependent upon c,, thus we can gain the optimal

value of ¢, by solving the nonlinear algebraic equation
dE2m
dc,

and so on.

3. APPLICATIONS

Example 3.1: Consider the nonlinear integro-differential Equation [8]
u(@t)=-1+ fotuz(s)ds, t €0,1]

11)

With the boundary condition u(0) =0

This problem solved by one-step optimal homotopy analysis method [8], so we will solve it by Og-HAM and compare the
results. We choose auxiliary linear operator

LIo(t; q)] = a@;tt;q) , With the property L[b] = 0, where b is constant.

We define the nonlinear operators

NIB(t; )] = 2252 4 1 — [ 0%(s; q)ds

=T
We choose the initial approximations u,(t) = —t

According to the zeroth-order deformation equation (2) and the mth-order deformation equation (7) with
’ km t —
Rin1(6) =y + (1= 22) = 505 (Dt 4(5) ds

The solution of the mth-order deformation equation (7) for m > 1 becomes:
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U () = k1) + F(0) [ Ry (©) dt + b,
where the constant b determined by the initial condition u,,(0) = 0.

Let F(n) =1-—n,n> 1. We now successively obtain:

t* nt*
U, =— E + E
=n(— —4 + ntt l(1 -n)(-1+n)@t*+ i)
12 36 7
uy(t,n), (m = 3,4, ...) can be calculated similarly.Then the series solution expression by Og- HAM can be written in the
form:
u(t,n) 2 Uy(t,n) = Tpgu;(t,n) (3 ) (12)

Equation (12) is a family of approximation solutions to the problem (11) in terms of the convergence-control parametern .
It is found that

- 47051 + 1 » 34951 + 171312527 7978183
17829730304 ' 31912704n* ' 829730304n3 ' 9680186880n2 4148651520n
- 199674191 + 297235061 26307697 + 741363805547
27 1469713454193600 ' 8398362595392000n%  3094133587776000n '~ 15596959105728000n°
18861903527 + 86367892405031 466356964075843 hi 3402153525697
1679672519078400n5 = 4367148549603840n* 109178713740096000n3  9925337612736000n>
96143866153
8398362595392000n

An(n) ,(m = 3,4,..) can be calculated similarly. The residual errors of one-step optimal HAM and Og-HAM are shown in
Table 1. It is obvious that, in this example, the Og-HAM has more accuracy than the one-step optimal HAM.

Table (1): Comparison between residuals of one-step optimal HAM and optimal g-homotopy analysis method(Oq-
HAM) for problem (11).

Orderm e Apone — step n,, A, (OqHAM)
1 -0.945678 0.447006e-5 18.4087 0.447006e-5
2 0.571303e-3 0.718753e-8 30.8848 0.128765e-8
3 0.260778e-4 0.219308e-10 37.3405 0.175543e-12
4 0.147754e-5 0.87287e-13 39.2368 0.419769e-16

Example 3.2: Consider the nonlinear boundary value problem (Troesch’s problem) [5]

u"(x) = B sinh( B u(x)) 0<x<1
(13)

With the boundary conditions u(0) = 0,u(1) = 1. In order to prevent suffering from the strongly nonlinear term sinh( g u),
we can use Taylor series expansion of sinh( 8 u)

sinh(Bu) =

Then (13) become

u"—pg (ﬁu+ﬁ36u3) =0
(14)

a2 (D(x q)

We choose auxiliary linear operator L[@(x; q)] = with the property L[c, + ¢;x] =0,

where ¢y, ¢; are integral constants. We define a nonlinear operator as
_ @ o [B o)1

We choose the initial approximations u,(x) = ax. Accordlng to the zeroth-order deformation equation (2) and the mth-
order deformation equation (7) with:

R (s () = 22 = BB Uy + D5 s Do e i)
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The solution of the mth-order deformation equation (7) for m > 1 becomes

Uy (X) = Kt () + F (L™ Ry (s ()]
with the boundary conditions u,,(0) = 0,u;,(0) = 0.
Let Fn)=n—n? , n>1,8=1; a=0.8453227. We now successively obtain:
—0.00503369 (1 —n) n x3 (27.9888 + x2)

—0.00503369 (1 —n) n? x3 (27.9888 + x2) + (1 —n) n? x3 (—0.140887 + 0.00201067 x2 + 0.00131835 x*
+0.0000249786 x5 + n (0.140887 — 0.00201067 x2 — 0.00131835 x* — 0.0000249786 x°))

U

Uz

un,,(m = 3,4,..) can be calculated similarly.Then the series solution expression by Og- HAM can be written in the form:

u(x,n) = Upy(x,n) = X4 oui(x,n) (%)l (15)

Equation (15) is a family of approximation solutions to the problem (13) in terms of the convergence-control parameter n .
Itis found that

A= 0.969484 — 0.912233n + 0.217667 n? — 0.00117102 n® — 0.0000684614 n* + 4.55424 x 1077 n® + 1.38398 x 10~8n®

A,= 3.44617 — 6.50826 n + 4.64661 n? — 1.49531 n3 + 0.179301 n* + 0.00940797 n5 —0.005118 n® 4+ 0.000925837 n”
—0.0000451742 n® —9.32413 x 107 n® + 2.32543 x 107¢ n'0 — 2.48497 x 107 n'* + 1.00811
x 1078 n12

An(n) ,(m = 3,4,..) can be calculated similarly.
The 3" order one-step optimal HAM approximation solution is

Us(one—step) = 0.845323 x — 3.41525 x3 (—0.140887 — 0.00503369 x%) + x3 (0.0282989 — 0.010797 x? — 0.00196242 x*
+0.000208631 x° + 0.0000146934 x® + 1.85689 x 1077 x1° — 0.00209817 (—0.140887
—0.00503369 x2)) + 2 x3 (—0.182589 + 0.00260581 x? + 0.00170857 x* + 0.0000323722 x°
+0.00943151 (—0.140887 — 0.00503369 x2))

The residual errors of one-step optimal HAM and Og-HAM are shown in Table 2. Table 3 shows the comparison between
U; of one-step optimal HAM and U; of Og-HAM, with the exact solution which indicates that the speed of convergence for
Og-HAM is faster than the one-step optimal HAM.

Table(2):Comparison between residuals of one-step optimal HAM and optimal g-homotopy analysis method(Oqg-
HAM) for problem (18) at B =1, = 0.8453227 .

Orderm cH Anone — step n, A, (OqHAM)
1 -1.13842 0.124056€e-2 2.13842 0.124056e-2
2 0.943151e-2 0.310805e-4 2.04981 0.170894e-5
3 -0.209817e-2 0.18712e-5 2.04865 0.978006e-8

Table (3): Comparison between U3 of one-step optimal HAM , U; of Oq-HAM and the exact solution of problem
(18) at B =1,a = 0.8453227.

x U3(One-step) U3(0g-HAM) Exact Solution
0.1 0.0846743 0.0846733 0.0817969966
0.2 0.170204 0.170196 0.1645308709
0.3 0.257457 0.257431 0.2491673608
0.4 0.347333 0.347273 0.3367322092
0.5 0.440774 0.440662 0.428347161
0.6 0.538789 0.538608 0.5252740296
0.7 0.642473 0.64221 0.6289711434
0.8 0.753042 0.752687 0.7411683782
0.9 0.871863 0.871418 0.8639700206
1.0 1.00051 0.999987 1.00000000020

2863 |Page Nov 20, 2013



& ISSN 2277-3061

Example 3.3. Consider the following system of Volterra integro-differential equations [8]
up =1+ t+t2—w(t) — [ (i () +up(s))ds,  ws(0) =1,
(16)
uy=—-1—t+u(t)— fot(ul(s) —uy())ds, uy(0) =-—
With exact solutions u, (t) = t + exp(t) and u,(t) =t — exp(t).
This problem solved by one-step optimal homotopy analysis [8], so we will solve it by Og-HAM and compare the results.

We choose auxiliary linear operator L[@;(t; )] = il (t 20,(t:q)

nonlinear operators

with the property L[b;] = 0, where b; are constants. We define the

90, (t; q)

D — (L + 4+ 62) + By(65.0) + [ (01(5: @) + B2(s; @) ds

N[0, (@] =

N[0, (6 )] = 225D 4 (14 0) — 0,(6.9) + f (91(5:0) — 02(s: @) ds

We choose the initial approximations u, o(t) = exp(t) and u, ,(t) = —exp(t). According to the zeroth-order deformation
equation (2) and the mth-order deformation equation (7) with

K ¢
Rim—1(t) =uipmq — (1 - T) A+t+tD) +uymq + fo (Um—1 + Uz m-1)ds

Rym—1(t) = Upmq — ( - kTm) A+t — Uy + fot(u1,m—1 — Upm—1)ds
The solution of the mth-order deformation equation (7) for m = 1 becomes
Ui (&) = kpUi 1 (&) + F() [ Ry @) dt + b; ,i=12,
where the constants b; determined by the initial conditions u; ,(0) =0, u3,,(0) = 0.

Let F(n) = We now successively obtain:

%/_
2 3 2
15(-t-£-5) 15(-t+5)
u — ] u — . 2
1,1 ni/3 12,1 ni/3
2 3 75(12t+12t2+6t3+£) 2 75(12t—12t? 2t3+£)
— 1 s _ LN T T T ISR T kil T
Uy,2 15n ( t 2 3) an2/3 v Uz 15n ( t+ 2) 4n2/3

uim(t,n) (@ =1,2),(m = 3,4,...) can be calculated similarly.Then the series solution expression by Og- HAM can be
written in the form

k
A _ M 1

ui(t,n) 2 Uppy(6,1) = Th o ui (6, (3) (17
Equation (17) is a family of approximation solutions to the problem (16) in terms of the convergence parameters n . Itis
found that
A, .= 37 ) 1680295 3287 _ 1, 117175 23

L1790 ' 1008n8/3 21n%/3 ' ©217 3 7 1008n8/3  6n*/3
A a2 + 8652856525 - 221776615 " 2389025 _ 6574 e l o 20294675 > 742645 104845 - 23

127 10 7 16016n16/3 1848n* 252n8/3  21n/3 ' T227 3T 176n16/3 s6n* = 252n8/3  3n4/3

Ajm) , (i =1,2),(m = 3,4,...) can be calculated similarly.

At the 4th-order of approximation, in order to determine the optimal value ofn, each of the equations in (18) is solved
separately. So, the obtained values and corresponding square residual errors are n = 8.5685, A, 4= 0.522938 x 1074,
Ay4= 0.624163x 1073 for the first equation and n = 7.8094, Ay,= 0.406663 x 1073, A,,= 0.782 x 107° for the
second one. So, the minimum of the A; 4, and A, , is correspond to the optimal value of n. Thus, n = 7.80942 is chosen.
This procedure leads to the best approximate solution of the system.

The 4" order one-step optimal HAM approximation solutions are

Ui a(one-step) = et + 0.907434¢t + 0.082059t2 + 0.0958009¢% — 0.0104494t* — 0.0103389¢t5 + 0.0006966315t°
+ 0.000394245¢t” — 0.00000271121¢°

Uz 4(0ne—step) = —et +0.907434t — 0.082059t2 + 0.04109446t3 + 0.0104494t* — 0.00615912t5 — 0.0006966315t° +
0.000195207t7 — 0.00000271121¢°.

The residual errors of one-step optimal HAM and Og-HAM are shown in Table 4. The comparison of U, , , U, 4 given by
one-step optimal HAM and Og-HAM with the exact solutions u;and u, is shown in Table 5. The absolute errors of the 4"
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order solutions Og-HAM approximate compared with 4™ order solutions one-step optimal HAM are calculated by the
formula

Absolute Eror = [uerace — Uapprax| (18)

Figures (1) and (2) show that the series solutions obtained by Oq-HAM converge faster than one-step optimal HAM.

Table(4). comparison between residuals of one-step optimal HAM and optimal g-homotopy analysis method(Oq-
HAM) for problem (16).

m Cn Aqm One-step Az m One-step Ny Ay m(OqHAM) Ay m (OqQHAM)
1 -0.7042 0.2569e-1 0.4096 9.9147 0.256897e-1 0.40959
2 0.10920 0.1663e-1 0.5987e-1 8.1248 0.119505 0.226699e-3
3 0.3667e-1 0.5691e-2 0.2925e-1 8.0229 0.104745e-3 0.516831e-2
4 0.2266e-1 0.3091e-2 0.1343e-1 7.8094 0.406663e-3 0.782 e-6

Table(5): Comparison of Uy 4 ,U, 4 given by one-step optimal HAM and Og-HAM with the exact solutions u,, u, for
problem (16).

t U, 4O0ne-step U, 4One-step U, 4 Og-HAM U, 4 Og-HAM u,; exact u, exact
0 1 -1 1 -1 1 -1
0.2 1.40692 -1.04285 1.4214 -1.02139 1.4214 -1.0214
0.4 1.87369 -1.13915 1.89168 -1.09173 1.89182 -1.09182
0.6 2.4147 -1.29747 2.42104 -1.22188 2.42212 -1.22212
0.8 3.04565 -1.52895 3.0213 -1.42549 3.02554 -1.42554
1 3.78388 -1.84803 3.70627 -1.71962 3.718281 -1.718281
Alsolute  Error

004 ¢

003 |

002 | -- AEW; 400 HAM L

001 | g AEW; 40 step L

00 02 04 06 08 10

Figure (1): The absolute error of Uy, of one-step optimal HAM and U, 4 Og-HAM for problem (16) .
Absolute  Error

012 |
010 |
008 |
006 |
004 |
002 ¢

B N

00 02 04 06 08 10

=- AEW, 4,00 HAM.

A.ELUZAO@ step L

Figure (2): The absolute error of U,, of one-step optimal HAM and U, 4 Og-HAM for problem (16) .
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4. CONCLUSION

In this article, the optimal g-homotopy analysis method (Og-HAM) is compared with the one-step optimal homotopy

analysis

method. In order to illustrate the differences between these methods, we solved different types of problems. The

results compared show that the Oq-HAM gives better approximations than the one-step optimal HAM.
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