&J ISSN 2277-3061

UNDERSTANDING THE DEVELOPER PARTICIPATION IN BUG FIX
PROCESS

'Madhu Kumari, 2Meera Sharma and 3Nikita Yadav’

'Delhi College of Arts & Commerce, University of Delhi,Delhi, India.
madhu_mesra@yahoo.com
*Swami Shraddhanand College, University of Delhi, Delhi, India.
meerakaushik@gmail.com
*Research Scholar, Singhania University, Pacheri Bari, Rajasthan.

aquanikital2@gmail.com
ABSTRACT

Prediction of the bug fix time in open source softwares is a challenging job. A software bug consists of many attributes that
define the characteristics of the bug. Some of the attributes get filled at the time of reporting and some are at the time of
bug fixing. In this paper, 836 bug reports of two products nhamely Thunderbird and Webtools of Mozilla open source project
have been considered. In bug report, we see that there is no linear relationship among the bug attributes namely bug fix
time, developers, cc count and severity. This paper has analyzed the interdependence among these attributes through
graphical representation.

The results conclude that :

Case 1. 73% of bugs reported for Webtools are fixed by 17% developers and 61% of bugs are fixed by 14% developers
for Thundebird.

Case 2. We tried to find a relationship between the time taken by a developer in fixing a bug and the corresponding
developer. We also observed that there is a significant variation in bug fixing process, bugs may take 1 day to 4 years in
fixing.

Case 3. There is no linear relationship between cc count i.e. manpower involved in bug fixing process and bug fix time.
Case 4. Maximum number of developers are involved in fixing bugs for major severity class.

Keywords

Open Source Software; Bug severity; Cc count; Bug fix time

Academic Discipline And Sub-Disciplines

Computer Science

SUBJECT CLASSIFICATION

Software Engineering

TYPE (METHOD/APPROACH)

Theory and Experimental Analysis

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY
Vol 12, No. 10

editor@cirworld.com

www.cirworld.com, www.ijctonline.com

3823 |Page February 27, 2014

mailto:madhu_mesra@yahoo.com
http://member.cirworld.com/
http://www.cirworld.com/
http://www.ijctonline.com/

& ISSN 2277-3061

INTRODUCTION

In open source software development process, software bug repositories provide crucial information to users/developers
for the success of open source projects. An open source bug repository is the collection of bug reports that is available to
the users/developers. The open source software provides source code of the software for further development and
enhancement of the software. The data varies from versions to versions, change log data, web usage data, version
archives, discussion forums on bug reports etc. The failure data is also maintained using different bug reporting and
tracking system. The reported bugs contains many attributes such as severity, priority, components, operating system
used, summary, description of the reports and status updates of the bug reports as time series. This data is very useful in
conducting the research on software reliability, finding developer expertise, quality of software, resource utilization, effort,
cost and time estimation, duplicate detection, dependency analysis, bug prediction, impact analysis, guiding co-change
analysis, change prediction, and many more. To perform these analyses, we require the access to software repositories
and analyze it which is called mining software repositories (MSR) [11].

A software bug has many attributes which are used to measure the quality and performance of the software. In this paper,
we have considered the bug reports of two products of Mozilla open source software project. We have taken 4 quantified
attributes namely bug fix time, cc count, developer id, and severity.

A software bug report is characterized by the following attributes[7].

Table 1 Bug Attributes description

Attribute Short description

Severity This indicates how severe the problem is.

e.g. trivial, critical, etc.

Bug Id The unique numeric id of a bug.

Priority This field describes the importance and order in which a bug should be fixed compared to
other bugs. P1 is considered the highest and P5 is the lowest.

Resolution The resolution field indicates what happened to this bug. e.g. FIXED

Status The Status field indicates the current state of a bug. e.g. NEW, RESOLVED

Comments Bugs have comments added to them by users. Number of comments made to a bug report.

Create Date When the bug was reported.

Dependencies If this bug cannot be fixed unless other bugs are fixed (depends on), or this bug stops other
bugs being fixed (blocks), their numbers are recorded here.

Summary A one-sentence summary of the problem.

Date of Close When the bug was closed.

Keywords The administrator can define keywords which you can use to tag and categorize bugs - e.g.
The Mozilla Project has keywords like crash and regression.

Version The version field defines the version of the software the bug was found in.

Cc Count Ahlist of people involved directly or indirectly in bug fix process. Who get mail when the bug
changes.

Platform and OS | These indicate the computing environment where the bug was found.

Attachments Number of attachments for a bug.

Bug Fix Time Last_Resolved time-Opened time. Time to fix a bug.

The rest of the paper is organized as follows. Section 2 of the paper describes the description of datasets. Results have
been presented in section 3. Section 4 presents the related work and finally the paper is concluded in section 5.

DESCRIPTION OF DATASETS

We have taken bug reports of two products: Thunderbird (Client Software) for the period of april 2000 to march 2013 and
Webtools (Server Software) for period of october 1998 to august 2013 of Mozilla open source software project. We
Considered 221 bug reports of Thunderbird and 615 bug reports of Webtools . We collected bug reports for resolution
“fixed” and status “verified”, “resolved” and “closed”. Some of the bug attributes are quantitative and some of them are
qualitative in nature. So the qualitative bug attributes such as bug severity needs to quantify. We take from 1 to 7 for

blocker to enhancement severity levels.

3824 |Page February 27, 2014

ISSN 2277-3061

In this paper, we have taken 4 quantified bug attributes: bug severity, bug fix time, developer id, and cc count.

Bug severity. Bug severity is the degree of impact of the bug on the functionality of the software or product. In Mozilla
open source software project seven different severity levels are defined.

Developer Id. A developer plays a major role in the software development process. If any bug is reported, it must be fixed
by some developer to improve the development and performance of the software. Here, we assigned a number (1 to n) to
each developer to do the analysis.

Cc Count. Manpower involved in monitoring the progress of bug fixing process.

Bug fix time. The time taken by a bug to get fixed, (Last resolved time — Opened Time).

RESULTS AND ANALYSIS

We considered three main cases to analyze the relationships between attributes of a bug.

In case 1 we show the distribution of bug count for developers who participated in fixing the bug , to analyse which
developer have highest participation to fix the bug.

In case 2 we have taken first 25 developers and show the distribution of bug fix time for each developer.
In case 3 we show the distribution of Cc Count for each Bug fix time .

In case 4 . Maximum number of developers are involved in fixing bugs for major severity class.

Case 1:

In this case we have taken 615 bug reports from Webtools product and we saw that 83 developers are involved in fixing of
these bugs. But when we take those developer id’s who fix more than 10 bugs , then the count of bug reports reduced
615 to 453 and the corresponding number of developers involved in fixing these bugs reduced from 83 to 14. This shows
that 73 % of bugs are fixed by only 17% developers as shown in the figure 1.

Similar analysis we have done for Thunderbird product, we have taken 221 bug reports and saw that 49 developers are
involved in fixing these bugs. But we take those developer id’s who fix more than 10 bugs , then the count of bug reports
reduced 221 to 134 and the corresponding number of developers involved in fixing these bugs reduced 49 to 7. This
shows that 61% of bugs are fixed by only 14% developers as shown in the figure 2.

Webtools
H * *
3
S *
2
L 2

a r 3

vy Y L 3 *

* S v *

1357 91113151719212325272931333537394143454749515355575961
Developer Id

Figure 1. Distribution of bug counts by developer id for Webtools product.

Thunderbird

35
o 30 L2

P
30 +
T + *
310 L J
@5

0

345 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Developer Id

Figure 2. Distribution of bug counts by developer id for Thunderbird product.

Case 2:

3825 | Page February 27, 2014

ISSN 2277-3061

We have analyzed the distribution of bug fix time for each developer and seen that it is very difficult to predict that how
much time a bug will take to fix at the time of reporting. There is a significant variation in bug fixing process, bugs may take
1 day to 4 years in fixing.

Webtools

3000
2700
2400
2100
1800
1500
1200
900
600
300
0

Fix time

Bug fix time

012345678 910111213141516171819202122232425
Developer Id

Figure 3. Distribution of bug fix time for each developer for Webtools product

Thunderbird

3300
3000 >
2700
2400
2100
1800 9—“

1500
1200 -
900
600 *
300
)

‘»

*» ¢

* ¢

¢

* Fix Time

Bug fix time

01234567 8910111213141516171819202122232425
Developer Id

Figure 4. Distribution of bug fix time for each developer for Thunderbird product

Case 3:

We have analyzed the relationship between bug fix time and cc count for Webtools as shown in figure 3 and for
Thunderbird as shown in figure 4.There is a large variation in bug fix time.

Webtools
40
35 *
30
E 35
82 * o .
W 15
o * Foo .
10
2 * » b - . [
. ‘k "B > 5
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300
Bug Fix Time

Figure 4. Analysis of Cc count and Bug fix time for Webtools product

3826 |Page February 27, 2014

ISSN 2277-3061

Thunderbird
1 *
: 3
£
g :‘ *
S S -
‘o ."‘ z’, * o
* S
g s P et oo o4 o .
o] 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900
Bug Fix Time

Figure 5. Analysis of cc list and Bug fix time for Thunderbird product.
Case 4:

Here we computed how many developers are involved to fix in each bug severity and how many bugs are their in each
severity .It has been shown in figure 4 and 5 the maximun developer involves to fix the most severe bug i.e major(4) and
maximum number of bugs also lie in it.

Webtools
500
450
400
350
300
250
200
150
100
50 —
0 — — J i —
1 2 3 4 5 6 7
M Severity 1 2 3 4 5 6 7
® No. of Developer 9 17 20 71 16 4 24
Bug Count 13 29 49 434 26 7 57

Figure 6. Analysis of Bug severity corresponding to number of developers involve

and bug count for Webtool product.

Thunderbird

160
140
120
100
80
60
40

o _I_i_-I m

— — I
1 2 3 4 5 6 7
M Severity 1 2 3 4 5 6 7
H No of Developers involve 4 6 12 33 11 6 11
Bug Count 9 11 26 134 14 6 21

Figure 7. Analysis of Bug severity corresponding to number of developers involve

and bug count for Thunderbird product.

RELATED WORK

Bhattacharya and Neamtiu [9] proposed an idea of reducing tossing path lengths of a bug to 1.5-2 tosses for most bugs,
which represents a reduction of up to 86.31% compared to original tossing paths. This reduction in tossing path length
improved triaging accuracy and got 83.62% prediction accuracy in bug triaging.. They validated the approach on 856,259
bug reports of two software projects, Mozilla and Eclipse and 21 cumulative years of development . They have shown
how intra-fold updates are beneficial for achieving higher prediction accuracy in bug triaging when using classifiers in
isolation.

Bhattacharya and Neamtiu [3] used multivariate and univariate regression testing to test the prediction capability of
existing models on 512,474 bug reports from five open source projects: Eclipse, Chrome and three products from the
Mozilla project -Firefox, Seamonkey and Thunderbird. They have shown that the predictive power of existing models is
between 30% and 49% so a room for more independent attributes is available. They demonstrate that, the bug-fix time in
open source projects is not influenced by the bug-opener’s reputation. They proposed that various bug report attributes
which have been previously used to build bug-fix time prediction models do not always correlate with bug-fix time.

3827 |Page February 27, 2014

& ISSN 2277-3061

Sharma and Singh [7] used multiple linear regression analysis, support vector regression and fuzzy linear regression to
show the contribution of bug attributes in predicting the cc list (the man power involved in monitoring the progress of bug
fix)for a reported bug .They conducted the experiments on for 21,424 bug reports of Firefox, Thunderbird, Seamonkey,
Boot2Gecko, Add-on SDK, Bugzilla, Webtools and addons.mozilla.org products of the Mozilla open source project.

Currently, Tian et al. [10] proposed a new approach to predict severity of a bug automatically in particular BM25-based
document similarity function. They focused on predicting fine-grained severity labels, namely the different severity labels of
Bugzilla . They proposed a new approach ,automatically analyzes bug reports reported in the past along with their
assigned severity labels, and recommends severity labels to newly reported bug reports .

Kim and Whitehead [8] demonstrates the distribution of bug counts for each bug fix time .They computed and analyzed the
bug fix time of files in ArgoUML and PostgreSQL by identifying when bugs are introduced and when the bugs are fixed.

CONCLUSION

Advancement in internet and communication technologies has eased the work process in distributed environment.The
development of open source has got an edge due to the advancement in these technologies. The quality of software
depends upon how much it satisfies the users requirements and at the same time without any failure. The present study ,
which focuses on reported bugs and their attributes of two software components will help in understanding the
development of open source software. This study will help in improving the the software quality by understanding the
relation among different bug attributes.The main findings are as follows:

Case 1. 73% of bugs reported for Webtools product are fixed by 17% developers and 61% of bugs are fixed by 14%
developers for Thundebird product.

Case 2. We tried to find a relationship between the time taken by a developer in fixing a bug and the corresponding
developer. We also observed that there is a significant variation in bug fixing process, bugs may take 1 day to 4 years in
fixing.

Case 3. There is no linear relationship between cc count i.e. manpower involved in bug fixing process and bug fix time.

Case 4. Maximum number of developers are involved in fixing bugs for major severity class.

REFERENCES

[1] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,"Facilitating Software Evolution with Kenyon," Proc. of the
2005 European Software Engineering Conference and 2005 Foundations of Software Engineering (ESEC/FSE 2005),
Lisbon, Portugal, pp. 177-186, 2005.

[2] D.Cubranic and G. C. Murphy , "Hipikat: Recommending pertinent software development artifacts," Proc. of 25th
International Conference on SoftwareEngineering (ICSE), Portland, Oregon, pp. 408-418, 2003.

[3] Bhattacharya, P. and Neamtiu, |. 2010. Bug-fix Time Prediction Models: Can We Do Better? In Proceedings of the
8th Working Conference on Mining Software Repositories (New York, NY, USA,2012). ACM, 207-210. DOI=
http://dl.acm.org/10.1145/1985441.1985472.

[4] M. Fischer, M. Pinzger, and H. Gall , "Populating a Release History Database from Version Control and Bug Tracking
Systems," Proc. of 2003 Int'| Conference on Software Maintenance (ICSM'03), pp. 23-32, 2003. (Indore, India,2012).
IEEE, 378-387. DOI= http://ieeexplore.ieee.org/ 10.1109/CONSEG.2012.6349519.

[5] A. Mockus and L. G. Votta, "Identifying Reasons for Software Changes Using Historic Databases, "Proc. of
International Conference on Software Maintenance (ICSM 2000), San Jose, California, USA, pp. 120-130, 2000.

[6] J. Sliwerski, T. Zimmermann, and A. Zeller, "When DoChanges Induce Fixes?" Proc. of Intl Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, Missouri, USA, pp. 24- 28, 2005.

[7] Sharma Meera, Kumari Madhu, and Singh VB, “Understanding the Meaning of Bug Attributes and Prediction Models”
I-CARE '13 Proceedings of the 5th IBM Collaborative Academia Research Exchange Workshop Article No.
15 ,ACM New York, NY, USA ©2013

S. Kim and E. J. Whitehead, Jr. How long did it take to fix bugs? In MSR, 2006.

[9] Bhattacharya, P. and Neamtiu, I. 2010. Fine-grained incremental learning and multi-feature tossing graphs to
improve bug triaging. In Proceedings of the International Conference on Software Management(Washington, DC,
USA, 2010).ACM, 1-10. DOI= http://dl.acm.org/10.1109/ICSM.2010.5609736.

[10] Tian, Y., David L., and Sun, C. 2012. Information Retrieval Based Nearest Neighbor Classification for Fine-Grained
Bug Severity Prediction. In Proceedings of the 19th Working Conference on Reverse
Engineering (WCRE),(15-18 Oct. 2012). 215-224.

[11] Chaturvedi, KK, Singh VB and Singh Prashasht, Tools in Mining Software Reposotories,2013 13th International
Conference on Computational Science and Its Applications, IEEE Explore, pp.89-98

3828 |Page February 27, 2014

http://api.viglink.com/api/click?format=go&key=a187ca0f52aa99eb8b5c172d5d93c05b&loc=http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Flogin.jsp%3Ftp%3D%26arnumber%3D6349519%26url%3Dhttp%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6349519&v=1&libId=6e044518-41ad-4044-9c3c-e502be28757b&out=http%3A%2F%2Fdx.doi.org%2F10.1109%2FCONSEG.2012.6349519&ref=http%3A%2F%2Fwww.google.co.in%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26frm%3D1%26source%3Dweb%26cd%3D1%26ved%3D0CC8QFjAA%26url%3Dhttp%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6349519%26ei%3D6RgSUuXFE8SPrQfsgIHgBQ%26usg%3DAFQjCNGScsE0K3AQbwQre0qtSkN1Wyvbgw%26sig2%3Dw74gVbm0_r5grN1E0X0eXw%26bvm%3Dbv.50768961%2Cd.bmk&title=IEEE%20Xplore%20-%20Determining%20Bug%20severity%20using%20machine%20learning%20techniques&txt=10.1109%2FCONSEG.2012.6349519&jsonp=vglnk_jsonp_13769179019896
http://www.acm.org/publications
http://dl.acm.org/10.1109/ICSM.2010.5609736

	ABSTRACT
	Keywords
	Academic Discipline And Sub-Disciplines
	SUBJECT CLASSIFICATION
	TYPE (METHOD/APPROACH)
	Council for Innovative Research
	Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY
	INTRODUCTION
	Description of datasets
	RESULTS AND ANALYSIS
	Related work
	CONCLUSION
	REFERENCES

