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ABSTRACT

In this paper, using the implicit trapezoidal rule in conjunction with Newton's method to solve nonlinear system.We have
used a Maple 17 program to solve the System of two nonlinear Volterra integral equations. Finally, several illustrative
examples are presented to show the effectiveness and accuracy of this method.
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INTRODUCTION

In this paper, we consider the Volterra integral equation of the second kind
x(®) = f(O) + [, k(t,5,x(s)) ds, (1)

Where x, f and k are vector-valued functions with m components. If f and k are continuous and k(t, s, x(s)) satisfies a
Lipcshitz condition with respect to x, then a unique solution x(t) of (1) exists[1,4,7].

Volterra integral equations have been found to be effective to describe some application such as population dynamics,
renewal equations, nuclear reactor dynamics, viscoelasticity, study of epidemics, super fluidity, damped vibrations, heat
conduction and diffusion [1,7].

In this paper, we present the computation of numerical solution of system of two nonlinear Volterra integral equation of
the second kind.

PRELIMINARIES

In this section, we recall the main theorems [7].
Theorem 1.Consider the equation

x() = f(8) + J, p(t, $)k(t, $)x(s) ds @)

Where
1) f(®)is continuousin0<t<T.
2) k(t,s) is a continuous functionin 0 <s <t <T,
3) for each continuous function handall
0 < 7; <1, < tthe integrals

T2

f p(t, s)k(t, s)h(s) ds

T1
t

fp(t, k(t, s)h(s) ds
0
are continuous functions of t ,

4) p(t,s) is absolutely integrable with respectto s forall 0 <t < T,
5) there exist points0 =T, < T; < T, < - < Ty =T such that with t > T;

min(t,Ti+1)

k J. |p(t,s)|lds<a<1,
T;
Were k = maxg<s<i<7l|k(t, s)I,

6) foreveryt > 0 such thatwitht = T;

t+68
(sli—%l+f [p(t +6,s)|ds = 0.

t
Then (2) has a unique continuous solutionin 0 <t < T.

Theorem 2.Consider the equation
x(t) = £(£) + [, p(t, $)k(t, 5, x(s)) ds (©)

Where

1) f(t)is continuousin 0 <t <T.

2) k(t,s,u) is a continuous functionin 0 <s <t <T,
—e U< oo'

3) the Lipschitz condition
|k(t,s,y) - k(t,s,2)|< Lly — 2|
is satisfiesfor0 < s <t <Tandall y and z,

4) p(t,s) satisfies conditions (3)-(4) of Theroem 1 with k replaced by L and k(t, s, h(s)) instead of k(t, s)h(s).
Then (3) has a unique continuous solutionin 0 <t < T.
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THE MATHEMATICSOF THE VOLTERRA PROCEDURE

In this section, we use the technique of the Volterraeqution [2,7] to find an approximates the solution x(t) of (1) at the
equally spaced points t, =ty + nh forn = 1,---, N where t, = 0 and Nis the total number of steps of size h. X,, denotes the
approximation of x(t) at t = t,.

Setting t = t,, in (1), we have

x(ty) = f(tn) + [, k(tn, t, x(D)) dt ()

By the composite trapezoidal rule an approximation of the integral in (4) is

Replacing x(t,,) in (4) and (5) by X,,, we obtain the implicit trapezoidal rule

X = ftn) + R[S Ct, to, Xo) + ZITHe(tn 5, X)) + 3 (st X (6)

Where X, = f(0)since x(0) = £(0).
Defining a,, by

On = f(tn) + [ (tn to, Xo) + 323 e(tn £, X)| @)

We can rewrite (6) as
Xn = 5 hke(tn, tn, Xp) = 0 = 0, ®)
Where 0denotes the zero vector. From (8), we see that X,, is the solution of the vector equation

o) =0, 9)
Where ¢ is the vector-valued function
$W) = u — 2 hk(ty, tp,0) — 0y (10)

We will obtain an approximation to the solution X,of (9) by way of the matrix-valued function Gdefined in (11). If A(w) is
an m by m matrix-valued function that is invertible in a neighborhood of X,,, then X, is a fixed point of

Gw) =u—Aweow). (11)

Assuming the components of G (u) have continuous first and second order partial derivatives and that the first order
partial derivatives and that the first order partial derivatives at

X,are equal to zero, it can be shown that if A(u) is set equal to the Jacobian matrix of the function ¢, the iterates X,(lp)
defined by (13) below will usually converge quadratically to X,, provided the starting value is sufficiently close to X,,. The
Jacobian matrix of ¢ is the m by m matrix J(u) with the element

ad ad
J @iy = 50 i) = B = 5 hs Kt 1) (12)

In row i and column, where §;; is the Kronecker delta. Details of the statements made here follow from the discussion of

Newton's method for nonlinear systems in [2]. Linz gives a brief outline of the trapezoidal rule and Newton's method for
Volterra integral systems of the second kind in Section of [7].

We obtain X, from X,,_,by setting X,(lo) = X,,_;and then generating the iterates X,(f’) from
X1(lp) -G (Xr(Lp—l)> - X1(lp—1) gy (Xr(lp—l)) b (Xr(lp—l)) (13)
For p = 1,2,3,---. (This is Newton's method for nonlinear systems.) Let y denote the solution of the matrix equation
J (X )y = (x27V). (14)
Then the iteration formula (13) becomes

xP =xP —y (15)
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We compute the solution y = J~1 (X,(f’_l)) ¢ (X,(lp_l)) using the command Linear Solve. The iteratesX,(Lp) are computed

until the infinity norm of the vector y is less than a prescribed tolerance Tol. Then X,is assigned the value of the last
iterate [2,7].

NUMERICAL EXAMPLES

In this section, we solve some examples, and we can compare the numerical results with the exact solution.

Examplel. Consider the system of Volterra integral equations

t? ‘
X)) =1 —?+ f(Xl(s)+seSX2(s))ds
0

t2 ]
Xp(0) =14+ f (=se=5 X, (5) =X, (s))ds
0

With the exact solution X, (t) = etand X,(t) = e~*.
Table.1 Numerical results and exact solution of systems of
Two Nonlinear Volterra integral equations for example 1.

Exactl Exact2
=0

: X1(0) X2(0) — et .

0.0 1.00000 1.00000 1.00000 1.00000

0.1 1.10526 0.90476 1.10517 0.90484

0.2 1.22160 0.81859 1.22140 0.81873

0.3 1.35019 0.74063 1.34986 0.74082

0.4 1.49230 0.67008 1.49182 0.67032

0.5 1.64937 0.60625 1.64872 0.60653

0.6 1.82295 0.54849 1.82212 0.54881

0.7 2.01480 0.49622 2.01375 0.49659

0.8 2.22682 0.44892 2.22554 0.44933

0.9 2.46113 0.40612 2.45960 0.40657

1.0 2.72007 0.36738 2.71828 0.36738

il 3.00623 0.33233 3.00417 0.33287

1.2 3.32245 0.30060 3.32012 0.30119

1.3 3.67190 0.27189 3.66930 0.27253

14 4.05804 0.24590 4.05520 0.24660

15 4.48474 0.22239 4.48169 0.22313
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Fig. 1 The exact and approximate solutions result of systems
of two Nonlinear Volterra integral equations for example 1..
Example2. Consider the system of Volterra integral equations

t
3 4
X, () =1+t%- % - % + f((t —5)3 X, () +(t — 5)%X,(s))ds
0

4 tS t7

X,(t)=1—¢t—1t3 —%—Z—m+ f((t — $)* X, (s)+(t — 5)3X,(s))ds
0

With the exact solution X;(t) = 1 +t? and X,(t) = 1 + ¢ — 5.

Table.2 Numerical results and exact solution of systems
of two Nonlinear Volterra integral equations for example 2.

Exadd Exact2
t =14+t 3
-t

0.0 1.00000 1.00000 1.00000 1.00000

0.1 1.01018 0.89903 1.01000 1.09900

0.2 1.04020 0.79210 1.04000 1.19200

0.3 1.08945 0.67309 1.09000 1.27300

0.4 1.15693 0.53564 1.16000 1.33600

0.5 1.24125 0.37302 1.25000 1.37500

0.6 1.34060 0.17802 1.36000 1.38400

0.7 1.45276 -0.05716 1.49000 1.35700

0.8 1.57509 -0.34107 1.64000 1.28800

0.9 1.70450 -0.68310 1.81000 1.17100

1.0 1.83743 -1.09365 2.00000 1.00000

11 1.96978 -1.58430 2.21000 0.76900

1.2 2.09686 -2.16793 2.44000 0.47200

13 2.21327 -2.85900 2.69000 0.10300

14 2.31281 -3.67372 2.96000 -0.34400

15 2.38830 -4.63041 3.25000 -0.87500
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Fig. 2 The exact and approximate solutions result of systems
of two Nonlinear Volterra integral equations for example 2.

Example3. Consider the system of Volterra integral equations
t
X;(t) = cost —tsint + f(sin(t — 5) X1 (s)+ cos(t — s) X, (s))ds
0

t
X,(t) =sint —tsint + f(cos(t — 5)X;1(s)—sin(t — 5) X,(s))ds
0

With the exact solution X; (t) = cost and X, (t) = sin t.

Table.3 Numerical results and exact solution of systems

of two Nonlinear Volterra integral equations for example 3.
I I vl
0.0 1.00000 0.00000 1.00000 0.00000
0.1 0.99949 0.18957 0.99500 0.09983
0.2 0.99687 0.35534 0.98007 0.19867
0.3 0.98990 0.49396 0.95534 0.29552
0.4 0.97620 0.60260 0.92106 0.38942
0.5 0.95336 0.67899 0.87758 0.47943
0.6 0.91893 0.72143 0.82534 0.56464
0.7 0.87051 0.72884 0.76484 0.64422
0.8 0.80577 0.70076 0.69671 0.71736
0.9 0.72254 0.63737 0.62161 0.78333
1.0 0.61883 0.53949 0.54030 0.84147
11 0.49289 0.40857 0.45360 0.89121
1.2 0.34324 0.24665 0.36236 0.93204
1.3 0.16875 0.05636 0.26750 0.96356
1.4 -0.03138 -0.15913 0.16997 0.98545
15 -0.25752 -0.39615 0.07074 0.99749
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Fig. 3 The exact and approximate solutions result ot systems
of two Nonlinear Volterra integral equations for example 3.

Example4. Consider the system of Volterra integral equations
t
X, () =et =2t + f(e‘s X, (s)+esX,(s))ds
0

t
X,(t) = e~t +sinh(2t) + f(eS X, (s)+e~5X,(s))ds
0

With the exact solution X, (t) = etand X,(t) = e".
Table.4 Numerical results and exact solution of systems
of two Nonlinear Volterra integral equations for example 4.

Exactl Exact2
—t

, X1(0) X0 | L 8.

0.00 1.00000 | 1.00000 | 1.00000 1.00000

0.01 1.01025 | 1.03025 | 1.01005 0.99005

0.02 1.02103 | 1.06102 | 1.02020 0.98020

0.03 1.03233 | 1.09232 | 1.03045 0.97045

0.04 1.04419 | 1.12417 | 1.04081 0.96079

0.05 1.05662 | 1.15658 | 1.05127 0.95123

0.06 1.06965 | 1.18957 | 1.06184 0.94176

0.07 1.08328 | 1.22316 | 1.07251 0.93239

0.08 1.09754 | 1.25737 | 1.08329 0.92312

0.09 1.11246 | 1.29221 | 1.09417 0.91393

0.10 1.12805 | 1.32771 | 1.10517 0.90484

0.11 1.14434 | 1.36389 | 1.11628 0.89583

0.12 1.16134 | 1.40076 | 1.12750 0.88692

0.13 1.17909 | 1.43835 | 1.13883 0.87810

0.14 1.19760 | 1.47669 | 1.15027 0.86936

0.15 1.21690 | 1.51578 | 1.16183 0.86071
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Fig. 4 The exact and approximate solutions result of systems
of two Nonlinear Volterra integral equations for example 4.
Exampleb5. Consider the system sofVolterra integral equations

¢
X,(t) =sec’t —2tant +t + f(Xl(s)+X2(s))ds
0

t
X,(t) = tan? ¢ — ¢ + f (X, (5)=X,(s))ds
0

With the exact solution X; (t) = sec? tand X, (t) = tan?t.

Table.5 Numerical results and exact solution of systems
of two Nonlinear Volterra integral equations for example 5.

Exactl Exact2
X, (t X, (t
. 1® 2() =sec’t =tan?t

0.00 1.00000 0.00000 1.00000 0.00000

0.01 1.00010 0.00010 1.00010 0.00010

0.02 1.00040 0.00040 1.00040 0.00040

0.03 1.00090 0.00090 1.00090 0.00090

0.04 1.00160 0.00160 1.00160 0.00160

0.05 1.00251 0.00250 1.00250 0.00250

0.06 1.00361 0.00361 1.00361 0.00361

0.07 1.00492 0.00492 1.00492 0.00492

0.08 1.00643 0.00643 1.00643 0.00643

0.09 1.00815 0.00814 1.00814 0.00814

0.10 1.01007 0.01007 1.01007 0.01007

0.11 1.01220 0.01220 1.01220 0.01220

0.12 1.01454 0.01454 1.01454 0.01454

0.13 1.01710 0.01709 1.01709 0.01709

0.14 1.01986 0.01986 1.01986 0.01986

0.15 1.02285 0.02284 1.02284 0.02284
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Fig. 5 The exact and approximate solutions result of systems
of two Nonlinear Volterra integral equations for example 5.

Conclusion

In this paper, we compute the numerical solution of some examples and compare it with their exact solution. The
computed values and graphics, illustrated by the results, agree well with the exact solution.
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