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ABSTRACT 

Service-Oriented Software Engineering is a new approach to build software solutions as services and compositions with 
respect to service orientation and service-oriented architecture (SOA). SOA provides the methodology to form applications 
(web services) as functional building blocks to build an accessible infrastructure for consumers, which is autonomous and 
not platform-dependent. Platform independence makes it easier to develop web services, such as operating systems, 
programming languages, etc. Several methods from both academia and industry have been developed for service-
oriented based systems. This work first questions ―to what extent a solution provided by a method would conform to 
service orientation, particularly, how to examine the design decisions based on quality attributes‖, and ―to what extent the 
method would align solutions with problems‖. Next, it shapes methods with a framework. Then, it proposes SOADM, a 
method for developing Service-as-a Software (SaaS) in high level design based on functional requirements and quality 
attributes. 
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INTRODUCTION 

Developing SOA-complaint solutions requires a new engineering approach that encompasses three perspectives: (P1) 
service, (P2) composition, and (P3) management (Papazoglou et al., 2011). The service perspective concerns with basic 
service identification, development, test, and deployment. The composition perspective concerns with mechanisms such 
as orchestration and choreography, used to compose basic services into software solutions. The management perspective 
deals with the inspection and quality of the deployed services and compositions.  

This new service-oriented engineering approach, referred to as Service-Oriented Software Engineering (SOSE), would 
certainly sketch out methods (including processes, models, languages, formalisms, tools, notations, and patterns) that 
embody the three perspectives. As software community has facing challenges in this area. A number of methods, for 
SaaS, from both academia and industry have been compared (Al Rawahi and Baghdadi, 2005; Baghdadi, 2012a; 
Brittenham, 2001; Kohlborn et al., 2009; Gu and Lago, 2010; Gu and Lago, 2011). This results in two main findings:  

F1. Each of the existing method has considered limited perspectives of SOSE (Gu and Lago, 2011)  

F2. Traditional top-down and bottom-up approaches need to be extended to green-field and meet-in-the-middle 
(Baghdadi, 2013; Chen and He, 2011), specifically to deal with legacy applications 

First, this work considers the following set of sound perspectives as a kind of framework that guides the engineering of 
methods for SaaS:  

1. SO design principles and SOA principles and drivers 

2. Business/IT alignment that considers different levels of abstraction and refinement, namely business and technology 
building blocks, we refer to as Business-Oriented Building Blocks (BOBs) and Technology-Oriented Building Blocks 
(TOBs) respectively to systematically move from requirements to solution. 

3. Software engineering challenges, process models, and CASE tools supporting both phases of service development 
and composition (Baghdadi, 2014) 

4. Inspection of solution quality attributes and design decisions. Indeed, quality attributes can drive and determine the 
architecture design (Bass, et al., 2003).  

Next, it questions:  

Q1] to what extent a solution provided by a method would conform to SO and SOA, particularly, how to examine the 
design decisions based on quality attributes? 

Q2] to what extent a method aligns solutions with problems? 

Then, a framework is conceived to: (i) answer these two questions, (ii) define the peculiarities of SOSE methods, and (iii) 
guide a new method; we refer to as Service-Oriented Analysis and Design Method (SOADM). 

The remainder of the paper is organized as follows: Section 2 summarizes the framework for SOA-based solutions. 
Section 3 compares the different types of service development methods within the framework. Section 4 presents 
SOADM, a newer approach to develop services. Section 5 presents a case study to illustrate SOADM method. Some 
related work is described in section 6. Finally, a conclusion section presents further development and open issues. 

FRAMEWORK: GUIDANCE TOWARDS A METHOD FOR SAAS 

The framework aims at sketching out the elements of SOSE in order to guide the engineering of SOSE methods that will 
be used for developing services that comply with SO and SOA. It helps answering the following questions: 

Q1] to what extent an approach considers critical perspectives that are: (i) SO designs principles, (ii) SOA principles 
and drivers, (iv) solution life cycle models and tools, and (v) inspection parameters for quality of the solutions 
provided by the type of the methods, particularly, how to examine the design decisions based on quality attributes? 

Q2] to what extent an approach aligns solutions with problems by considering services as building blocks at both 
business and IT levels. That how an approach expresses the elements of the reality and their mapping into services 

The framework consists of a set of sound perspectives a developer of a method for SaaS needs to consider:  

2.1 Business-Oriented Building Blocks 

To align IT to business (Baker et al., 2010), a method should consider how to move systematically from business 
requirements to IT solution. This is possible only if the building blocks, core elements upon which a solution is built, are 
considered at different levels of abstraction so that various types of stakeholders have their restive, understandable view 
of the solution. This should be made possible by the techniques of refinements of different abstractions.  

The general objective of service mapping is to identify services that are valuable, either from business or IT perspective. 
However, what constitutes a service has different meanings due to the lack of a standard classification framework of 
identified services. Several researchers attempted to provide classification of services (Gu and Lago, 2010; Bell, 2008; 
Cohen, 2007). Four kinds of services are described in the litterature: 

1. Conceptual services (also called business services) service represents the core of software product requirements. 
They express organizational ideas, thoughts, opinions, views, or themes that propose software solutions to 
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organization problems (Bell, 2008). A conceptual service is a specific set of actions that are performed by an 
organization (Marks and Bell, 2007). From the perspective of business value, a conceptual service creates or 
captures value via the provider/consumer interaction (Kohlborn et al., 2009). 

2. Realization services (aka software/IT service) describe part of an application system, which can be consumed 
separately by several entities (Bell, 2008). It realizes some function and can be invoked by other services or 
components. 

3. Infrastructure services are part of the organization supporting distributed computing infrastructure (Cohen, 2007). 
These are communication services and auxiliary services. 

4. Capability services provide an explicit business value, ranging from generic services that are reused in multiple 
service-oriented applications to specialized services that are part of a single service-oriented application. Capability 
services include: 

 Process services are services whose operations are directed by the BP definition. A composition of other 
services that provide specific sets of functions to execute BP logic (Erl, 2008; Cohen, 2007) and workflows 
that realize them. BPEL are example of such kinds of services.  

 Task services (aka application/activity/capability service) encapsulate business logic specific to activities or 
BP that are useful across business units. A task service represents an atomic unit of process logic. 

 Entity services (also called data service) represent one or more related business entities (documents in a 
business model) for instance, customer or invoice. Entity service is considered a highly reusable service 
because it is agnostic to most process services representing BP and workflow (Erl, 2008).  

 Utility services contain logic derived from a solution or technology platform. Utility services expose 
capabilities of multiple applications and resources within the organization including migrated, reengineered 
legacy systems, and some Commercial Of-The-Shelf software (COTS). 

 Hybrid services contain logic derived from both BPs and applications. Hybrid services expose capabilities 
wrapped legacy systems and some COTS that may exists within the organization. One reason hybrid 
services exists is that some legacy systems cannot be easily converted to types of services other than 
hybrid. 

 Partner services are offered to/by external partners based on agreed terms, this type of services is known as 
Application as a Service (AaaS) in Cloud based solutions (Patterson, 2012). Partner services are considered 
as separate type due to security and management concerns. A partner service could present capability 
offered by any of the application services depending on the organizational requirements. 

In general, services can be divided into two broad categories BOBs and TOBs. This work considers breifly these two 
categories. 

2.1.1 BOBs 

BOBs are building blocks used at higher abstraction levels by the stakeholders. Indeed, building blocks identified at a 
higher level of abstraction allow creation of reusable, well documented and independent of technology/platform solutions 
(Frantz, 2008). The purpose is to align IT solution to business.  

2.1.2 TOBs 

Most of existing methods for developing WSs are based on lower abstraction levels; we refer to as technology-oriented 
buildings blocks. These building blocks are used at design time such as Entity Types in E~R model, UML class diagram, 
UML use cases; or at run-time such as any piece of code (e.g. legacy applications, stored procedures, Java beans, or 
EJB). 

2.2 Service Orientation and SOA 

Understanding Service Orientation (SO) and Service Oriented Architecture is critical for SOSE methods.  

2.2.1 SO 

SO is defined in (Erl, 2008) as ―a design paradigm comprised of a set of design principles, whereby a design principle is 
an accepted industry practice‖. In this definition, the service is the most fundamental unit for building service-oriented 
solutions such as service-oriented software (SOS).  

To comply with SO and to be a piece of composition, a service should exhibit some desirable properties that enforce the 
loose coupling and interoperability in addition to the well-known principles of separation of concerns and information 
hiding. These desirable properties are: Self-containment, Autonomy, Abstraction, Standard Contract, Granularity, 
Stateless, and Dynamic binding. 
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2.2.2 SOA 

OASIS (OASIS, 2006) defines SOA as ―a paradigm for organizing and utilizing distributed capabilities that may be under 
the control of different ownership domains. It provides a uniform means to offer, discover, interact with and use capabilities 
to produce desired effects consistent with measurable preconditions and expectations‖.  

Actually, SOA is originally an architectural approach for business (Cummins, 2009; Cater, 2011). However, it may also be 
considered as computational architecture (Bean, 2010; Davies et al., 2008; Erl, 2008) as it may be seen as an evolution of 
the component-based engineering and distributed computing paradigms and architectures such as RPC, CORBA, DCOM, 
RMI, and EJB. 

Originally, SOA involves three actors and three operations. The actors are: service provider, service consumer, and 
registry, whereas the operations are: publish, find, and bind. SOA enables sharing of capabilities provided as services.  

With respect to SaaS, SOA would fulfill the following: 

1. Consumers, providers and registry are all services, where Interaction and communication mechanisms are based on 
messages to exchange documents  

2. Composition and service organization and management, including inventory and discoverability mechanisms 

However, for SOA to fulfill these requirements, its services need to be shaped with some principles by SO. 

2.3 Quality Attributes of SOA-Based SaaS 

Satisfying the functional requirements and quality attributes is of paramount importance to the design of SOA-based 
solutions (Bianco et al., 2007). Hence, the research field of quality attributes of SOA is recently growing. For example, in 
O’Brien et al. research work (O’Brien et al., 2005), the authors have examined the relationship between SOA and quality 
attributes. However, within SOSE community, current research on design decisions about the quality attributes is seldom 
discussed. 

In order to design SOA in practice, developers should fully grasp the quality attributes that have significant impact on 
design and implementation of SOA, because non-functional requirements remain high priority in design process. 
Availability, modifiability, performance, security, testability, and usability would constitute a set of quality attributes for 
SOA. 

2.3.1 Availability 

Typically, availability is related to system failure and its consequences (Bass et al., 2003). In terms of SOA, availability can 
be analyzed by dividing into two types: in the consumer side, a service failure can lead to an exception of the application 
of consumer, whereas in the provider side, if a service fails to work, it may affect the provider’s finances and reputation 
(O’Brien et al., 2005). Normally, the two sides should pay attention to the service’s availability and they may find the 
common solutions: service replication and load balancing (O’Brien et al., 2007). Moreover, applications built by consumer 
should be designed to handle the exceptions, when the service becomes unavailable.          

2.3.2 Modifiability 

Modifiability concerns with cost of modification (Bass et al., 2003). SOA adopts loose coupling approach to the linkage 
between service consumers and providers. As mentioned previously, services are autonomous and platform-independent. 
Thus, it is easy to achieve the modifiability (O’Brien et al., 2007). However, if the interfaces of services need to be 
modified, the change may lead to big problems, because service interfaces are registered in broker and are used by 
applications (O’Brien et al., 2005). 

2.3.3 Performance 

Performance concerns with response time of system when an event (messages, requests or hardware interrupts etc.) 
occurring (Bass et al., 2003). In SOA, service consumers and service providers are distributed. Thus, the interaction 
among them increases the response time, because of the time-consuming in network and the overhead of messaging 
format. In addition, to find the requested services by accessing broker may increase the total time (O’Brien et al., 2007). 
As a result, to achieve the performance should have great difficulty and should avoid the requirement. 

2.3.4 Security 

Security is a system’s ability that is able to resists attacks when the system is providing services for users (Bass et al., 
2003). Security quality attribute is very important to SOA-based system. In O’Brien et al.’s research (O’Brien et al., 2007); 
they described four principles about security:  

 Confidentiality, only authorized subjects can access services  

 Authenticity, only trusted author or sender is responsible for the information 

 Integrity, the information is not corrupted 

 Availability, service is available in a timely manner 
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2.3.5 Testability 

Testability is an ability that enables developers to simplify the establishment of test and to find faults of program (Bass et 
al., 2003). SOA makes the test become more complex than ever, because SaaS s distributed in network and 
implementation of service may not be opened (O’Brien et al., 2007). Furthermore, because the services are discovered 
and invoked dynamically, bug tracking becomes more difficult. Currently, there are no ideal solutions to all the problems of 
test in SOA, which calls for more research in the area. 

2.3.6 Usability 

Usability is concerned with how easy to use software for completing a task (Bass et al., 2003). In design process of SOA, 
designers should provide user-friendly interfaces for applications. In addition they should take the data granularity, usable 
services and connecting/disconnection process into account (O’Brien et al., 2005). 

SERVICE DEVELOPMENT APPROACHES 

3.1. Software Engineering Process Model  

A software engineering process model is an important criterion to consider when one approaches a SOA-based solution. It 
concerns with: (i) the service lifecycle, and (ii) the composition lifecycle. A SOSE development lifecycle would consider 
planning, analysis and design, construction and testing, provisioning, deployment, execution, and monitoring (Papazoglou 
and van der Heuvel, 2006). 

Current service development approaches have been generally categorized into either a top down or bottom up (including 
reverse engineering). These types of methods have been appreciably extended to green-field and meet-in-the middle 
respectively (Brittenham, 2001) as the traditional software development method cannot be blindly applied to web services 
and SOA (Papazoglou and van der Heuvel, 2006). However, all these approaches have in common three invariant 
elements. 

3.2. The Invariant Elements of the Service Development Approaches 

All the approaches for service development consider the following elements that agnostic to any approaches: 

1. Service contract, i.e. what value does the service provide to its consumers and what are the messages that request 
and carry out this value; it constitutes the interface of the service 

2. Service business logic, i.e. the software agent that implements the service 

3. Tools that generate/develop either the business logic (software agent) given a service, or reversely the service 
contract given business logic 

3.2.1. Service contract 

The service contract is a description of the service interface that exhibits the semantics of their functional (e.g. 
capabilities), non-functional (e.g. quality of service), the message descriptions (or schema) and policy requirements. It 
mainly defines the messages relevant to the service. A software agent that implements its business logic realizes a 
service contract. 

3.2.2. Business logic implemented by a software agent 

Software agent implements the service contract in term of logic. The logic may be an existing piece of software or a new 
one to develop or to generate by using a tool. 

3.2.3. Tool 

A tool is a development or preferably a generation automated tool that either generates service contract given a software 
agent as shown in Figures 1.b, 1.c, and 1.d, or generates (or develops/codes/implements) the software agent of a given 
service contract as shown in Figure 1.a. For instance, Apache SOAP 2.3 and the JAX-RPC (Java API for XML remote 
procedure call) implementation, which includes the Apache Axis engine, WSDL2Java, and Java2WSDL are examples of 
tools. WSDL2Java would create a java class that implements a service. 

3.3. Types of Service Delivery Approaches 

To cope with SO and SOA, SOSE approaches have extended the top-down and bottom-up approaches to two newer 
approaches called Green-Field and Meet-in-the-Middle (Brittenham, 2001; Chen and He, 2011; Baghdadi, 2013). This 
extension depends on: (i) whether the contract already exists (e.g. there exists a specification) or the contract is newly 
designed, and (ii) whether the logic already exists (there exists a piece of code) or to be developed.  

To sum up, this work considers four types of methods to develop service: 

3.3.1. Top-Down Method 

In a top-down method, a service contract is first re-used (e.g. Java interface, C++ abstract class, even a UML interface, or 
any API) likely using standard such as IDL (Interface Description Language), then a development tool (preferably a CASE 
tool) is used to assist in designing and generating the implemented logic (code) as shown in Figure 1.a.  

http://www.w3.org/TR/ws-arch/#isa
http://www.w3.org/TR/ws-arch/#service_interface
http://www.w3.org/TR/ws-arch/#message
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Existing Contract 

(Interface or API) Logic Development & 

Generation Tool

Logic 

(Implemented by a Software Agent)

 

Figure 1.a. Process of developing a new WS from an existing interface 

3.3.2. Bottom-up method 

In the bottom-up method, a new service interface is developed for existing, implemented business logic as shown in 
Figure 1.b. The business logic can be coded as Java, C++, EJB, or could be a back-end legacy application. For instance, 
Java classes or EJBs are developed first and then automated tools are used to expose these classes as Web Services 
(WSs).  

New Service Contract
Generation Tool

Existing Logic 

(Implemented by a Software 

Agent)

 

Figure 1.b. Process of generating a service contract from an existing logic 

3.3.3. Extended method: Green-field 

In the green-field method, a new logic to be provided as service is first designed, implemented, and tested. Then, a 
generation tool generates a new service contract that will be published as shown in Figure 1.c. Green-field extends the 
top-down method if there is a need to create a new contract for a new service to be developed from scratch (e.g. new 
functional requirements, where the solution would be a service).  

New Service Contract
Generation Tool

New Logic 

(Designed & Implemented 

by a Software Agent)

 

Figure 1.c. Process of developing a new service from scratch 

3.3.4. Extended method: Meet-in-the-middle 

Meet-in-the-middle is an alternative for bottom-up method, where a service interface already exists and the application that 
will be used for the service logic already exists. The meet-in-the-middle main task is to map the existing application 
interfaces to those defined in the service interface definition. This can be done by creating a wrapper for the application 
that uses the service interface definition, and contains an implementation that maps the service interface into the existing 
application interface as shown in Figure 1.d. It is a kind of service customization (Chen and He, 2011).  

New Service Contract

(Wrapper)
Generation Tool

(e.g. Wrapping 

Tool)

Existing Logic 

(Implemented by a Software 

Agent)  with an Existing 

Interface

 

Figure 1.d. Process of wrapping existing logic and interface into WS 

3.4. Remarks 

A careful method and design decisions is important to ensure that a SOA solution can attain the benefits advertized by its 
proponents of. The existing types of methods lack some critical perspectives (Baghdadi, 2013). Indeed,  

 Business goals and requirements should always drive downstream design, development, and testing. The 
requirements should be from users rather than design and coding (Baghdadi, 2012b; Chen and He, 
2011). 

 Though the activities such as build, deploy, and run do exist, a process model that is prone to SOA 
development is lacking. The existing process models, including Rational Unified Process are no longer 
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valid for WSs and SOA development. Indeed, SOA is mostly about composition of loosely coupled, 
interoperable, existing logic, and rarely about creation of new logic. 

 None of the types of approaches provides a framework for inspecting a solution; neither have they 
considered the quality attributes of a solution. 

SOADM 

This section proposes a new method to achieving quality attributes for designing architecture of services based on design 
decisions. 

4.1. Design Decisions of Architecture  

The connection between quality attributes of SOA and architecture of services is not often taken into account (Bianco et 
al., 2007). Achieving the quality attributes largely depends on the design decisions of architecture. In terms of Bass et al.’s 
description (Bass et al., 2003), they called the design decisions as a set of tactics. Each tactic is applied to achieve some 
quality attributes. The tactics may be developed from designers’ knowledge, skills, experiences or known architectural 
tactics (Wojcik et al., 2006).  

We mainly present the connection between architectural tactics (design decisions) and the requirement for the system 
quality attributes. We focus on the following issues:  

 How do the developers analyze the design decisions based on the quality attributes in a SOA-compliant solution? 

 How can these decisions affect the design of service architecture in a SOA-compliant solution? 

For instance, we analyze the availability. There are some operations that help to achieve the availability: fault detection, 
fault recovery and fault prevention (Bass et al., 2003). In order to describe the connection between tactics and quality, we 
select ping/echo tactic of fault detection as an example. In ping/echo working model, one entity sends a ping to another 
one and expects to receive the echo. If the echo comes back in time, it can prove that the remote entity and the 
communication path are both available. Hence based on the ping/echo tactic, we can design two entities in architecture for 
realizing the fault detection (availability): one is responsible for ping; another is responsible for echo.  

In this way, we examine other quality attributes and related tactics. Then, we can know how the tactics influence the 
design of architecture based on the achievement of quality attributes. In light of the influence, a design method for 
designing architecture is devised and is named Attribute-Driven Design (ADD) (Wojcik et al., 2006; Bass et al., 2003).  

4.2. Classification of Services  

A SOA-based system is designed to satisfy functional requirements and non-functional requirement. The service provider 
is typically responsible for satisfying the functional requirements by offering functional services to user’s application. In 
contrast with service provider, the broker is not directly designed to provide functional services to users, but it is employed 
to meet the non-functional requirements by offering directory and registry services to users and providers. From this point 
of view, even though broker only offers non-functional services (directory/registry), it works as a role of a service provider.  

Thus, the services in SOA-based system can be classified by functionality as business service and system service.  

 Business service is related to those services that are provided by service providers and business service directly 
takes part in the construction of users’ application.  

 System service does not directly offer services for users’ applications, but it provides the services to entire SOA-
based system.  

In this way, service broker can be classified as a system service, because it helps to schedule services for applications. In 
the following content, we present another system services which are designed to satisfy the quality attributes. 

4.3. Description of SOADM 

SOA-based system consists mainly of all kinds of service (business service and system service). In the system, 
applications are constructed by managing and composing services which not only include business services but also 
system services in order to satisfy the both functionalities and quality attributes. According to this objective, we develop a 
SOA Design Method (SOADM) for this high-level design.  

SOADM can be described as a recursive process and is based on attribute-Driven Design ADD method (Bass et al., 
2003). The functional requirements and quality attributes constitute the SOADM input; whereas its output is architecture 
view about services shown in Figure 2. The view shows how many services and what kind of services are needed. In 
addition, the relationships among the services are defined in the view.  
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SOADM

Functional 

requirements

Quality attributes

Service 1

Service 2

Service 3

 

Figure 2. Service-oriented architecture design method 

The process steps of SOADM are described below:  

Step 1: Collect the requirements including functional requirements and quality attributes that system should satisfy (the 
collection is made by a specification of the whole system) 

Step 2: Choose a requirement from the collection; and delete it from the requirement collection 

Step 3: If the chosen requirement belongs to functional requirement then go to step 4, else skip to step 5  

Step 4: Add a business service in the architecture view for satisfying the functional requirement; then jump to step 6  

Step 5: Find a design decision for the quality requirement, and add proper system services to the view.  

Step 6: Verify the architecture view and check if the services in the view need to make composition or decomposition. And 
then, if it has new requirements, add the requirements to the requirement collection.  

Step 7: If the requirement collection is not empty, then go to step 2, else complete the process  

SOADM provides architects with a new approach to analyzing and designing a SOA-based system for satisfying both the 
functionalities and quality attributes in high level design before diving into the implementation of services. In particular, our 
design method is based on the quality attributes. Thus, it enables the entire SOA system to achieve high quality.  

CASE STUDY BASED ON SOADM  

In this section, we present a case study that consists of a simple online bookstore application for demonstrating our design 
method: SOADM. This method handles all the kinds services. 

At first, after analyzing the requirements of this application, we assume that we get the requirement collection described as 
below:  

 Client can browser the information of books 

 The availability of information of books 

 Client can order a book by offering personal information  

 The security of payment 

We choose the first requirement and input it to SOADM. Then we get a service named as Browse-Catalog shown in Figure 
3. Then the requirement collection is updated after the first turn:  

 The availability of information of books  

 Client can order a book by offering personal information  

 The security of payment.  

Browse-
Catalog

 

Figure 3. The view of service in first turn 

Choose the first requirement and input it to SOADM. Because it belongs to quality attribute, we apply ping/echo tactic 
(Bass et al., 2003) to satisfy the availability by making sure that the Browse-Catalog service is available. According to the 
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step 6, the echo service merges with Browse-Catalog service. The view of this turn is shown in Figure 4. Then the 
requirement collection is updated after the second turn:  

  Client can order a book by offering personal information  

 The security of payment  

Browse-
Catalog

Ping

Echo

 

Figure 4. The view of service in second turn 

Like the previous turns, we get a new service named Order-Service shown in Figure 5. Then the requirement collection is 
updated after the third turn:  

 The security of payment  

Ping

Order-
Service

Browse-
Catalog

Echo

 

Figure 5. The view of service in third turn 

To deal with the last requirement, we input it to SOADM. In this turn, we add a security service to meet the quality 
attribute. The entire view of services is shown in Figure 6. Then we finished the design process.  

Browse- Catalog  

Ping

Order-
Service

Security

Browse-
Catalog

Echo

 

Figure 6. The view of service in last turn 

RELATED WORK 

In early stage of SO, many authors focused on a developing process of Web services following by extending traditional 
approaches (Arsanjani et al., 2008; Papzoglou and van der Heuvel, 2006; Erl, 2008; Wirsing et al., 2008). 

Few comprehensive surveys on WS development approaches have been realized. Recently, Gu and Lago in (Gu and 
Lago, 2011)  presented  a framework for comparing the existing SOA methods in order to specifically highlight aspects 
that are specific to SOA They aimed to differentiate the methods that are truly service-oriented from those that deal little 
with service aspects. As such, they suggest using the criteria defined in the framework as a checklist for selecting a SOSE 
methodology. The same authors in (Gu and Lago, 2010) proposed a literature review on service identification. The 
classification and comparison of 30 identification methods showed significant heterogeneity in the input/process/output of 
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the studied methods. They reported in their conclusion the necessity of future research directions to improve the existing 
methods. Kohlborn et al. in (Kohlborn et al., 2009) have reviewed 30 service analysis approaches to conclude that a 
comprehensive approach to the identification and analysis of both business and supporting software service is missing. 
They proposed a consolidated approach to business and software services and identification that combine the strengths of 
the examined approaches. 

In (Al-Rawahi and Baghdadi, 2005), the authors have distinguished business-oriented approaches from technology-
oriented approaches.   

In (Papazoglou and van der Heuvel, 2006), the authors provide an overview of the methods and techniques used in 
service-oriented design and development in order to provide a methodology from the point of view of both service 
consumer and service provider. 

In (Brittehham, 2001), the author describes an approach for developing services from the point of view of the service 
providers and service requestors. The development approach explains the components, interactions, application 
development patterns and tools necessary to implement WSs in general. In this work, the approaches have been 
categorized into green-field, top-down, bottom-up and meet-in-the-middle depending on the existence or not of the service 
interface and the service implementation. Later Baghdadi (2013) compared these four approaches. 

The proposed framework aims at providing a set of sound SOSE perspectives that any methods need to consider. It is 
meant to reuse and extend the main strengths of the different approaches and tools to guide a method geared towards 
producing SaaS.  

The framework sketches out the elements of a SOSE method, and finally proposes SOADM, a method for developing 
services that comply with SO and SOA. 

CONCLUSION 

This work has first compared four types of service development methods within a framework that consists of a set of 
critical elements that any SOA-based system development method should consider in order to provide a solution that 
conforms to SO. The framework has showed that the existing types of methods lack some critical perspectives. A process 
model that is probe to SOA development is lacking. Moreover, none of the types of methods consider different views of a 
solution, neither have they provided a framework for inspecting a solution by assessing the quality attributes of a solution. 

This work has discussed the issues of quality attributes and design decision in SOA-based system. We mainly concentrate 
on the problems: how to analyze the design decisions based on quality attributes and how design decisions impact on the 
service in SOA-based system. In order to resolve the problems we developed a method to design of SOA-based system 
for achieving both functionalities and quality attributes in high level design. The design approach can provide architects 
with high level view about desired services that will be designed and implemented in detailed design. At last, the paper 
presents a case study about a simple online bookstore by using our design approach. After adopting the recursive 
process, we get a clear service view for fulfilling the functional and quality requirements.  

In our future work, we are going to improve our design approach and apply it to a complicated SOA-based system for 
evaluating our research. 

In addition, this work would be further developed in exploring and extending the aforementioned open issues towards a 
service science that considers the service as a reusable value in order to provide a comprehensive methodology for 
developing business or technology solutions as service systems with respect to SO and SOA. 
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