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ABSTRACT 

Classical Diffie-Hellman protocol of the key establishment was the basis of the development of several key exchange pro-
tocols. But this protocol is not secure and it is not protected against the “man in the middle” attack. The purpose of this 
article is to offer a secure and practical noncommutative analogue of the Diffie–Hellman protocol that is reliably protected 
not only against “man in the middle” attack but also against the quantum computer attack. 
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1. INTRODUCTION 

Security of the most popular present-day public key cryptosystems is based on the computational complexity of the some 
problems in number theory. Two of these problems are the most common: the factorization problem and the discrete loga-
rithm problem. Nevertheless, the creation of the sufficiently powerful quantum computer will make these cryptosystems 
useless, since at present there are quantum algorithms that solve these problems in polynomial time [1]. Due to the need 
to develop new approaches in cryptography to protect against the potential threat posed by the quantum computer works 
have appeared that use noncommutative algebraic objects (groups and rings) as a platform for building cryptosystems. 
This line of research has been called – noncommutative algebraic cryptography. At present, the most active area of 
research is a combination of combinatorial group theory and linear groups to construct cryptosystems, in fact, proposed a 
general scheme for such cryptosystems [2], [3], [4]. 

Developed a general scheme of noncommutative analogue of Diffie–Hellman key establishment protocol in a non-Abelian 
group [5], but this scheme uses an unrealistic assumption of the existence in the group two element-wise commuting sub-
groups, which are the secrets of two users, so the development of the noncommutative analogue of the Diffie–Hellman 
key establishment protocol, which has perspective of practical use, there is an urgent problem of noncommutative alge-
braic cryptography. In [6]–[13] have been proposed public key cryptosystems, using as a platform for building cryptosys-
tems noncommutative groups and rings. However, in [14], [15] discovered vulnerabilities in some of these cryptosystems, 
the presence of which indicates the need for further research in this area. Therefore there is a need for secure noncom-
mutative public key cryptosystems, which could be used in the construction of noncommutative analogue of the Diffie–
Hellman key establishment protocol for protection against "man in the middle" attack. Just such a cryptosystem is BMMC 
(Basic Matrix Modular Cryptosystem) [16]. 

2. ВММС (Basic Matrix Modular Cryptosystem) 

I) Key generation 

User Alice performs the following actions. 

1.  Selects large positive integer n. 

2. Chooses the random words W (X) and W (U) in the alphabet of characters 
1 1 1, ,A B C , where A, B, C are the free 

generators in a free non-Abelian group of rank 3. 

3. Computes the noncommuting matrices ,n nX U  according to W (X) and W (U), respectively, where the characters 

, ,A B C  are replaced in these words on the matrices 
1 0 1 3 2 3

, ,
3 1 0 1 3 4

A B C   respectively. 

All computations are done modulo n. 

If 
nX , 

nU commute, then return to step 2. 

4.  Chooses random integers k, s, l  that satisfy 

 ( ) 2 , ( ) 2, 2 ( ) 2f n k s f n l f n , 

2( ) ( )nf n GL Z  is the order of the general linear group over the ring  
nZ  of residues modulo n. 

Alice obtains a pair of keys ,
A A

P S ,        

public key 
1 2 3

, , ,
A

P n P P P ,  
1 nP X , 

2

s k s

n n nP U X U , 
3

l

nP U , 

private key ( , , )A nS U s k . 

 Note  

The order of the general linear group 
2( )nGL Z in particular cases can be computed by the formulas [16]:  

if  
an p , where

 
p  be a prime number, a  be a positive integer, then 

2 ( )ap
GL Z  =

4 3 2( 1)( 1)ap p p , 



ISSN 2277-3061 
 

 

3053 | P a g e                                                              D e c  1 0 ,  2 0 1 3  

if  n pq , where ,p q  be the prime numbers, then  

2 2

2( ) ( 1)( 1) ( 1)( 1)pqGL p p p q q qZ . 

II) Encryption 

User Bob performs the following actions. 

1. Presents plaintext as a sequence of N nonnegative integers  
1l , …, 

Nl , where each , 1,...,i nl i NZ
  

and a 

positive integer N divisible by 4. If necessary, for the latest four of these numbers using the cyclic shift. 

2.  Writes the first four numbers in the matrix form 
1 2

1 2

3 4

( )n

l l
m M

l l
Z  , the remaining quartets writes in ma-

trices in the same way. 

3. For each of the obtained matrix 
( ) , 1,...,

4

i N
m i

 

selects session keys - the random integers ,i ir t   satisfying  

( ) 2 , ( ) 2.i if n r t f n
 

4.  For each matrix  
( )im  receives a block of ciphertext 

( )iC : 

       
( ) ( ) ( )

1 2,i i iC C C
( )

3 1 3 3 2 3
4

, , 1,2,...,i i i i i ir t r r t ri N
P P P m P P P i . 

5. Sends to Alice the ciphertext C as a concatenation of blocks   
( ) , 1,..., :

4

i N
C i  

(1) (2) 4|| || ... ||

N

C C C C
. 

III) Decryption 

After receiving the ciphertext C, Alice, using the private key 
AS , computes [16]: 

( ) ( ) ( )

2 1( )i s i k s i

n nC U C U m , 1,...,
4

N
i .  

As a result, Alice will due and is able to restore the original plaintext. If it refers to one matrix, then the index will be omit-
ted. 

Note that in step 4 of encryption a matrix 
2C can be replaced by 

2 3 2 3 3 2 3

r t r r t rC P P P mP P P , 

the modification of decryption is as follows:  

 1 2 1 .s k s s k s

n n n nU C U C U C U m
 

This encryption option is called a closed version of BMMC [16]. 
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Example 1 

1) Key generation 

Alice performs the following actions. 

1.  Selects   
217 4913n . 

2.  Selects the words   

1 1 2 1 1 1( )W X B AB C ABC ABCA C AC
,  

3 1 1 1 1 3( )W U C BC AC AC BC B
.    

3.  Transforms the words in matrices  

3284 2393

4688 2499
nX , 

349 4640

3115 3870
nU . 

4.  Computes the order of the general linear group 2 ( )nGL Z : 

( ) 546452934898176f n , 

chooses the random integers  

k = –108644735397888, s = 392065451882410, l = 27722. 

5.  Computes matrices 

        

519 932

2341 1222

lU
,   

3129 2737

3315 3231

kX
,  

113 812

4844 852

sU
. 

Alice public key: 

1 2 3

3284 2393 4676 629 519 932
4913, , ,

4688 2499 2771 1684 2341 1222
AP n P P P

. 

Alice private key: 

349 4640
, 108644735397888, 392065451882410

3115 3870
A nS U k s . 

2) Encryption 

Bob performs the following actions. 

1. From plaintext “algebra” by replacing letters in the table ASCII codes is obtained matrix (using cyclic shift the letter 
"a" to the complement of the last four): 

1

97 108

103 101
m , 

2

98 114

97 97
m . 

2. For matrix 1m  selects integers  1 546452685450077r , 1 546452591582313t  and for matrix 
2m  

selects integers 2 546452670794053r , 2 42865650t . 

3. Obtains the ciphertext blocks: 

(1)
4330 4621 3497 2454

,
4587 4775 3826 4657

C  ,
(2)

4761 452 4161 2052
,

102 3333 4024 4806
C . 

4. Ciphertext will be: 

. 
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3) Decryption 

Alice, using her private key, computes 

  1

3497 2454 349 4640 4330 4621 349 4640

3826 4657 3115 3870 4587 4775 3115 3870

s k s

m , 

  2

4161 2052 349 4640 4761 452 349 4640

4024 4806 3115 3870 102 3333 3115 3870

s k s

m  

and obtains the word “algebraa”. The last letter “a” is obtained from a cyclic shift (since the number of letters is not a mul-
tiple of 4 in step 1 of encryption) and removed from the resulting text. 

In this example the small number n is used. In fact, in cryptosystem BMMC are used no less than 64-bit numbers. 

3. Diffie–Hellman protocol 

Let us consider the classical Diffie-Hellman protocol [17]. So, let two users Alice and Bob distant from each other and 
communicate in an open channel of communication. It is assumed that at the beginning of communication they have no 
joint secret information, and by the end of the session they should have a shared secret key. It is believed that the attacker 
Mallory obtains the transmitted information between Alice and Bob. 

1. Alice and Bob agree on a prime number p and a generator g of a multiplicative group 
*

pZ of the field 
pZ  of resi-

dues modulo p. 

2. Alice chooses a random integer a such that  2 2,a p
 

computes        

modaM g p  

and sends M to Bob. 

3. Bob chooses a random integer b such that  2 2,b p
  

computes        

modbN g p  

and sends N  to Alice. 

4. Alice computes 

modaK N p . 

5. Bob computes 

modbK M p . 

Thus, Alice and Bob jointly formed a shared secret key K of the symmetric cryptosystem. 

Indeed,
  

mod ( mod ) mod moda b a baN p g p p g p , 

mod ( mod ) mod modb a b abM p g p p g p  

and as for integers  ab ba ,  then  

mod moda bN p M p K . 
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4. “Man in the middle” attack on the Diffie-Hellman protocol 

Unfortunately, the Diffie–Hellman key exchange protocol is not recommended for use in practice because of the following 
well-known “man in the middle” attack on this protocol [17]. 

1. Alice and Bob perform step 1 of the Diffie–Hellman protocol. Available information from this point i.e. prime p and 
generator g  becomes known Mallory , which forging protocol. 

2. Alice performs step 2 of the Diffie–Hellman protocol and sends Bob the number 

modaM g p . 

3. Bob performs step 3 of the Diffie–Hellman protocol and sends Alice the number 

 
 

modbN g p . 

4. Mallory intercepts of M and N, computes 

modcL g p  and moddP g p . 

5. Mallory sends Alice and Bob numbers L and P, respectively. 

6. Alice performs step 4 of the Diffie–Hellman protocol and computes 

 1mod ( mod ) mod moda c a caL p g p p g p K . 

7. Bob performs step 5 of the Diffie–Hellman protocol and computes 

2mod ( mod ) mod modb d b dbP p g p p g p K . 

8. Mallory computes the numbers 

1mod ( mod ) mod modc a c acM p g p p g p K   

and 

2mod ( mod ) mod mod .d b d bdN p g p p g p K  

As a result, Alice and Bob believe that they have worked out according to the protocol the shared  secret key, at the time, 

as there are two different keys 1K and 2K  that are shared Alice and Mallory, Bob and Mallory, respectively. Therefore, 

Mallory can control the secret correspondence of Alice and Bob, without betraying itself. To this end Mallory enough, using 
a shared key with Alice, decrypt her messages to Bob, encrypted using this key, and read them without changing the 
messages, encrypt them on the shared key with Bob and send to Bob. Similarly do with the messages from Bob to Alice. 

It should be noted that Mallory can compromise the Diffie-Hellman key establishment protocol and other means, if it can 

solve the discrete logarithm problem (that is, to find the discrete logarithms a and b of the numbers modaM g p  and 

modbN g p  respectively), then to compute ab  and modabK g p . Or be able to solve the Diffie-Hellman prob-

lem: the known numbers modag p  and modbg p  to find the number mod .abg p
 

5. Noncommutative analogue of the Diffie–Hellman protocol 

We try to apply the cryptosystem BMMC for constructing noncommutative analogue of the Diffie-Hellman protocol to repel 
“man in the middle” attack and the threat of solving the discrete logarithm problem on a quantum computer. The use of 
electronic digital signature (EDS) in the Diffie-Hellman protocol only partially solves this problem because it does not pro-
tect against the potential threat of an attack on a quantum computer in view of the commutativity of the points group of an 
elliptic curve on a finite field used in all national standards EDS now. By the way, this fact makes the problem of develop-
ment in the framework of noncommutative algebraic cryptography reliable and practical  EDS on an appropriately chosen 
noncommutative algebraic structure . 

Alice and Bob must perform the following steps of the protocol. 

1. Alice and Bob agree on a positive integer n, which is not secret, the symmetric cryptosystem (AES) and the hash 

function (SHA-1). 

2. Using BMMC, Alice and Bob generate their key pairs: 
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,A AP S  and ( ,B BP S ), where AP  and BP  are the public keys of Alice and Bob respectively, AS  and BS  are the pri-

vate keys of Alice and Bob respectively. 

Alice chooses a random matrix  2 ( )A nm M Z  and Bob chooses a random matrix 2 ( )B nm M Z . 

3. Alice, using Bob's public key BP  encrypts the matrix Am  by closed variant of BMMC and sends the ciphertext to 

Bob. Bob does symmetrically. 

4. Alice and Bob are using their private keys AS  and BS  restoring 
'

Bm and 
'

Am  respectively (here designations are 

used in the sense that at this step Mallory could replace the matrices  Bm  and Am ). 

5. Shared secret key of the symmetric  cryptosystem will be declared the SHA-1 reduced hash value of the bit string 

obtained from matrix A Bm m m   by means of the binary representation of  concatenation of matrix elements  

11 12 21 22|| || ||m m m m  with removed the least significant four bytes of hash value, if performed the identities of concate-

nations of matrix elements for the matrices Am and 
'

Am  also for the matrices Bm  and 
'

Bm . 

6. Alice with a previously agreed with Bob symmetric cryptosystem AES encrypts the matrix
'

Bm
 
 (i.e. concatenation of 

matrix elements), received from Bob, using her copy of the shared key, received from the matrix 
'

A Bm m . Bob, using 

the same symmetric cryptosystem encrypts the matrix 
'

Am , received from Alice, using his copy of the shared key, re-

ceived from the matrix 
'

B Am m . If the bit length of the plaintext (or the last plaintext block) is less than 128 bits, protocol 

participants complement it with space characters up to 16 bytes.  

Next, Alice and Bob exchange ciphertexts. 

7. Each participant of the protocol decrypts the received ciphertext by his copy of a shared secret key and removes the 

space characters, if they are. Alice checks for identity of the concatenations of the matrices elements 
'

Am  and Am . Bob 

checks for identity of the concatenations of the matrices elements Bm  and 
'

Bm . 

8. If both identities are satisfied, then Alice and Bob possess a shared secret key. Otherwise, the fact that the re-
placement is considered established and shared secret in this session of protocol is not formed. 

Note that the closed variant of BMMC need to prevent Mallory from distorting the ciphertexts. Steps 7, 8 confirm that the 
protocol is performed correctly, Alice and Bob are received the same secret key and replacement of keys did not happen. 
In fact, these steps are replaced with a digital signature to the Diffie-Hellman protocol. 

Example 2 

1. Alice and Bob agree on a positive integer n = 4913, symmetric cipher AES and hash function SHA-1. 

2. Alice and Bob choose BMMC key pairs, e.g., the same as in example 1. 

3. Alice chooses a random matrix  
97 110

102 106
Am  , Bob chooses a random matrix   

100 102

114 103
Bm . 

4. Alice using Bob's public key encrypts matrix Am  and sends to Bob ciphertext – the pair of matrices   

847 3737 1625 4407
,

1643 39 2287 4034
. 

Bob using Alice’s public key encrypts matrix Bm  and sends to Alice ciphertext  –  the pair of  matrices 

 
3323 4497 219 4352

,
1267 3338 743 4574

 

 

. 
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5. Alice and Bob using their private keys restore   

'
100 102

114 103
Bm , 

'
97 110

102 106
Am . 

 Alice applies a hash function SHA-1 to the concatenation of the elements of matrix 
'

A Bm m , 

computes the hash value h(197212216209) and receives 20 bytes of the hash value in the hexadecimal code:   

“01 d8 9e e1 0f bf 06 b9 fd 1f 90 44 4b 9b 59 61 43 cd 50 dc”.  

The resulting her copy of AES 128-bit shared secret key is a reduced hash value by means of removing 4 least significant 
bytes:    

 “01 d8 9e e1 0f bf 06 b9 fd 1f 90 44 4b 9b 59 61”. 

Bob applies a hash function SHA-1 to the concatenation of the elements of matrix 
'

B Am m   

and receives as a result his copy of AES 128-bit shared secret key: 

“01 d8 9e e1 0f bf 06 b9 fd 1f 90 44 4b 9b 59 61”. 

6. Alice using her copy of shared secret key encrypts matrix 
'

Bm  as plaintext complementing space characters up to 

16 bytes (i.e. plaintext is "100102114103", complemented plaintext in ASCII code is  

“31 30 30 31 30 32 31 31 34 31 30 33 20 20 20 20”,  

ciphertext in hex code is  

“ab f9 c7 cf 9d 00 94 8e 8e ca 76 04 98 24 f2 11 “).  

Bob using his copy of shared secret key encrypts matrix 
'

Am  in the same manner (i.e., plaintext is " 97110102106 " , 

complemented plaintext in ASCII code is 

 “39 37 31 31 30 31 30 32 31 30 36 20 20 20 20 20”,  

ciphertext in hex code is  

“cc bf ed 7f 23 80 06 d0 cb d8 2d a2 a3 63 99 3e”).  

Next, Alice and Bob are exchanged ciphertexts. 

7. Each participant decrypts received ciphertext with his copy of shared secret key. Alice gets  in ASCII code  

“39 37 31 31 30 31 30 32 31 30 36 20 20 20 20 20”,  

removes the space characters and receives the plaintext “97110102106” – the concatenation of elements of matrix 
'

Am  – and compares it with the concatenation of elements of matrix Am - “97110102106”. Bob gets in ASCII code  

“31 30 30 31 30 32 31 31 34 31 30 33 20 20 20 20”,  

removes the space characters and receives the plaintext “100102114103” – the concatenation of elements of matrix  
'

Bm  – and compares it with the concatenation of elements of matrix Bm  – “100102114103”. 

8. Both concatenations of the matrices elements are identical for each of the protocol participants. Therefore, shared 
secret key is formed. 

6. Attack of the “man in the middle” on the noncommutative analogue of the  
Diffie–Hellman protocol 

Consider the attack, similar to the one that was implemented for the Diffie–Hellman key establishment protocol in  
section 4. Recall that as a result of this attack, Mallory gained control of the secret correspondence between Alice and 
Bob, and they had no means to determine the presence or absence of such control. We show that the noncommutative 
analogue, in contrast to the classical Diffie–Hellman protocol, provides such facilities. 

1. Alice and Bob perform the first four steps of noncommutative analogue of the Diffie–Hellman protocol. 

2. Mallory chooses the matrices ,A

Mm B

Mm
 
and encrypts them using the public keys of Alice and Bob, respectively, 

and then intercepted them ciphertexts sent between Alice and Bob, replace their ciphertexts. 
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3. Alice and Bob perform the step 5 of the protocol and receive 
' A

B Mm m  and 
' B

A Mm m   respectively.  

4. Alice and Bob perform the steps 6, 7 and 8 of the protocol. 

Alice's copy of shared key - it's a reduced hash value of the bit string of matrix 
A

A Mm m , and Bob's copy of shared key - 

it's a reduced hash value of the bit string of matrix .B

B Mm m  Mallory knows only the second terms of Alice and Bob's 

shared key (in contrast to the Diffie–Hellman protocol, which he knew the numbers themselves) and therefore can only try 
to guess the copies, it is clear that the probability of guessing is negligible. Thus, Mallory does not have shared keys to 
Alice and Bob, and therefore can not control their secret correspondence. On the other hand, in the case of substitution 
Mallory at least one of the matrices, the probability of coincidence of copies Alice and Bob's shared keys is also negligible. 
Then if Alice and Bob have different keys symmetric cryptosystem AES, they can not properly decrypt ciphertexts en-

crypted by another key. In this case at least one of the identities of both concatenations of the matrices elements Am  and 

'

Am  also Bm  and 
'

Bm  is not performed. Thus, an attempt Mallory to attack the protocol immediately detected. At the 

same time, if there is no attack, both identities hold, and the shared secret key is obtained. 
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