
Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012

401 | P a g e w w w . i j c t o n l i n e . c o m

Modeling an Object Oriented for Maintenance Purposes

Hamed J. Al-Fawareh
Faculty of Science aand IT

Zarqa University

Zarqa, Jordan

ABSTRACT: Software maintenance is the last phase

of the software life cycle. The aim of the software
maintenance is to maintain the software system in

accordance with advancement in software and

hardware technology. In this paper, we discuss a

maintenance system for object-oriented techniques. The

paper therefore discusses about a problems in object

oriented techniques under the maintenance

environment. These problems include understanding

object oriented system, complex dependencies in object-

oriented system, inheritance, polymorphism and

dynamic binding problem that maintainers and

developers commonly face. Finally, we talk about the

proposed object-oriented maintenance tool.

1.0 INTRODUCTION

Starting from the last ten years, the use of

object-oriented programming in software development

has been increasing. Object oriented software systems

have been applied in many difficult, complex

applications, and in different environments. Each object
oriented software system may contain thousands of

objects within thousand of classes, a fact, which makes

it difficult for maintainers and developers to understand.

Furthermore, the object-oriented technique contains

difficult entity relationships that are classes relation,

inheritance, polymorphism and dynamic binding.

Nowadays, object-oriented technique receives

more attention in order to help maintainers and

developers understand the object-oriented software

system. In this paper, we will highlight some relevant

comments from others maintainers.

To assist the maintainers in the previous
techniques, we need information such as data flow,

control flow, data dependence and control dependence.

[7][9] For program understanding and assistance in

locations of source errors, we use data dependence and

control dependence information to identify all

statements in a program including each error object

boundaries. Both control flow and data flow

information are used to determine the effects of the call

reference parameters and global variables.

[7][19][20][6]

During an object-oriented program process, a
set of objects represent each entity of problem domain

and each object has some attributes and operations that

will be performed on it. In many object oriented

programming languages, objects are grouped into

classes.

The object-oriented programming maintenance

faces a lot of problems. These problems include

software understanding, complex dependencies in

object-oriented system, inheritance, polymorphism and

dynamic binding problems. Detailed discussions of

these problems will be provided later. In an attempt to

solve these problems, we will discuss a proposed Object

Oriented Maintenance System (OOMS). In the OOMS,

we will discuss the proposed solution for helping
maintainers to understand, trace and remove the

redundant information in object oriented software

system.

In addition, we will discuss the object oriented

software maintenance environment. In section two, we

will go through the object oriented program, and will

explain the entities of the object oriented software, that

is class, inherits, message and method. In section three,

we will discuss the problems facing maintainers of

object-oriented software. In section four we will discuss

a proposed object oriented maintenance system. Finally
we will discuss a conclusion.

2.0 BASIC CONCEPTS OF OBJECT

ORIENTED TECHNIQUE

Software engineering and information system

used object oriented in many areas of software

engineering. There are programming languages, design

methodologies, user interface databases and operating

systems that have been described as object oriented. A

system based on objects is one whereby a computation

is represented by a series of entities, which interact to

achieve the desired affect.

 An object: Object oriented language uses objects as

a key to understanding object-oriented technology.

An object is a thing to be implemented in
application domain. For example, a postgraduate

student can represent an object.

 An object has a set of attributes. These attributes

define an object state (everything that the software

objects knows) and object behavior (everything

that the software objects can do). For example a

postgraduate student state is „name‟, „metric No.‟,

„program‟, „faculty‟ and „nationality‟ and his

behavior like „field of study‟, „course No.‟, „add

course‟, „dorp course‟ and so on.

 Classes: The objects are includes of classes. The
class determines everything about an object. When

you create a class, you are already, creating an

object of that type and the system allocates

memory for the variables, which are declared in the

class. The main benefit of using a class and object

are reusability and modularity and information

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012

402 | P a g e w w w . i j c t o n l i n e . c o m

hiding from the objects. Software programmers use

the same class, and thus the same code, over and

over again to create many objects.

 Subclasses, Superclasses, and Inheritance: In

object-oriented programming languages, classes

can be sub or super classes. The subclass is derived
from other class and the superclass is that from

which, classes are derived. The subclass inherits

from the superclass its state and behavior. The

subclass can just use the items inherited from its

superclass or the subclass can modify or override it.

So, the classes become more and more specialized

in the hierarchy classes representation.

 Messages: Object oriented software usually

contains more than one object. A single object

alone is generally not very useful in the large

software system or application. Software objects
interact and communicate with each other by

sending messages to each other.

 Polymorphism is the ability to take more than one

form. An attribute may have more than one set of

values and an operation may be implemented by

more than one method. For example, a graduate

student may work as research assistant, in this case

the student is under two superclasses, that is, the

graduate student and employee classes.

 Dynamic Binding is a method that implements an

operation that is unknown until runtime. It is an

effective mechanism to implement polymorphism.
In another word, an operation may have more than

one implementation, the choice of which

implementation to use when an operation is

invoked is determined at runtime according to the

types, the number of arguments and/or the function

pointed to by a function pointer. [5]

3.0 OBJECT ORIENTED SOFTWARE

MAINTENANCE ENVIRONMENT

The rapid increase in the use of object-oriented

techniques in software product and the power of the

new technique feature a new set of object oriented

software maintenance tools. [5] Program maintenance is
an expensive process whereby an existing program is

modified for variety of reasons, including corrective

maintenance, adaptive maintenance, enhancement and

improvement efficiency. [1][4]

An object-oriented technique is easier to reuse

than the other programming technique, because object-

oriented programming is represented by a set of objects.

An object may derive into sub-objects and then will

express relations between them. [2][17][8]

The new technique and the object oriented

programming constructions make the software
maintenance face a lot of difficulties. Some of these

difficulties that maintainers should take into account are

the following;

1. Software understanding problems.

2. Complex dependencies in object-oriented system,
classes problems.

3. Inheritance, polymorphism and dynamic binding
problems.

3.1 SOFTWARE UNDERSTANDING

PROBLEM

It is easy to understand the relation between

functions in a program, definitions and uses of

variables, even finding the definition of a function

given its name or a call site. But it becomes more

complex with huge and complex systems. By ordering

the programming understanding problem, object-

oriented techniques may not make programs easier to
understand, because of complications from inheritance,

dynamic binding and a large number of small methods

dispersed in the programs. In order to understand object

oriented programs, maintainers have to trace the calling

relationships in the programs. Such tracing is time

consuming and error prone. [14][10]

Several existing tools can generate the module

calling hierarchy or structure chart. Calling hierarchies

are useful tools for approaches in which the main

packaging unit is the processing module (e.g. function

or procedural). [12] In the call graph the nodes

represent individual procedures and the edge represents
the call sites. Since procedure may call another at many

points, a call graph may be a multi graph with more

than one edges connecting any two nodes. A program‟s

call graph can be constructed efficiently [17] and used

for many different applications. Since a call graph

represents the entities of an object-oriented program

and illustrates the calling relationships among entities, it

is useful for program understanding during

maintenance. It is also useful for data flow analysis. A

call graph is more complex and very hard to represent

in the object oriented program, the reasons being
dynamic binding, and object-oriented programming

constructions such as a class, methods, message and

inherits.

3.2 COMPLEX DEPENDENCIES IN

OBJECT-RIENTED SYSTEM PROBLEM

In the structured programming there are a lot

of dependencies represented as XY, such that a
programmer's modifying X must have possible effect on

Y. The main types of dependencies are data items (or

variables), processing modules and data types. [8]

Dependencies are classified as follows:

 Data dependencies between two variables.

 Calling dependencies between a module and the

variables it computes.

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012

403 | P a g e w w w . i j c t o n l i n e . c o m

 Definitional dependencies between a variable and

its type.

In object oriented languages we need to add the

following types of entities:

 Object class.

 Methods(which are specific code segments)

 Messages (which may be thought of as "name" of

methods)

There are a lot of relations between these

entities, which include relations between two classes, as

shown in figure 3. The relations between any of two

entities (class, message, method and variable) are

illustrated in figure 4.

 Super

 Uses Classes

Inherits

 Sub

Figure 3: Class Relations

 Classes

 Understand

Define Use

 Message

 Variable

 Inherits Input

Local Parameter

 Name Send

 Method

 Figure 4: Object Oriented

Entities Relation.

The complex relationships that exist in object-

oriented system are the main cause of the dependency

problem. These relationships as explained above are

inheritance, dynamic binding, classes, and nested class.

Also, these relationships may include indirect relations,

for example when one class imposes indirect
dependence on other classes. The traditional

maintenance techniques for the structure programming

are inadequate for the new object oriented

programming, since they do not take into account the

complexity of object oriented programming. When we

modify one class, we soon found out that we have to

understand and trace many other classes in order to

make modification, enhancement, or correction.

3.3 INHERITANCE, POLYMORPHISM

AND DYNAMIC BINDING PROBLEMS

Object oriented software defines an object as
terms of classes. However, object-oriented

programming takes this a step further and allows classes

to be defined in terms of other classes. Each subclass

inherits state from the superclass. Also, each subclass

inherits methods from the superclass. However,

subclasses are not limited to the state and behaviors

provided to them by their superclass. Subclasses can

add variables and methods to the ones they inherit from

the superclass. Subclasses can also override inherited

methods and provide specialized implementations for

those methods. Subclasses provide specialized

behaviors from the basis of common elements provided
by the superclass. Through the use of inheritance,

programmers can reuse the code in the superclass many

times.

In object oriented language variables are used

not only in the class‟s scope but may also execute in

other classes. The variable may refer to another objects

of any class using polymorphism. Furthermore, a given

class can use a method which is declare in another

class, when a given message is sent to execute this

method. [22][14]

Object Oriented programming allows different
methods for different purposes. Furthermore an object

class may have more than one superclass, for example a

double major lecture under the department of computer

science and mathematics. In this case the lecture has

two-superclasses computer science mathematics

department. This ability is called polymorphism and/or

dynamic binding.

4.0 PROPOSED OBJECT ORIENTED

MAINTENANCE SYSTEM (OOMS)

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012

404 | P a g e w w w . i j c t o n l i n e . c o m

Software systems have been applied in many

difficult and complex applications, from different

environments. Each software system may contain

thousands of source code lines, a fact, which makes it

difficult to manually know all the overlapping between

the classes, methods, variables and parameters of this
software without aid tools. These problems become

even more complicated when the maintainer uses a

large software system. Maintenance environment helps

maintainers and developers by giving them a full

information about the software system. This

information includes, class relationships, inheritance,

polymorphism, call graph, data structures, cross-

reference compiler list, and control flow diagram.

The maintainer spends a lot of time and

resources in order to understand the object-oriented

software system process by reading a class

relationships, inherence, polymorphism, tracing and
manually comparing thousands of source code lines in

the object-oriented software system. OOMS will assist

maintainers to understand software systems with

different abstraction levels, and maintenance work.

OOMS will also assists maintainers and developers to

understand the behaviors, external and internal design

structures, class relationships, polymorphism,

inheritance and the implementations of an object-

oriented software system, as well as the process of

software system. [6]

The proposed OOMS proceeds by reading a
Java source code, extracting the information from the

object program and transferring it to the special

repository. This information include entities

relationships, cross-reference, type abstractions and

object oriented dependencies. OOMS uses different

repositories for different purposes, also this propose

system include lexical analyzer, syntax analyzer for

checking the language grammar and removing a syntax

errors. Furthermore it contains an interface and user

query.

In object oriented program the calling

hierarchy would be a hierarchy of methods, and this
faces a lot of problems. These problems include the

dynamic binding problem, which may make the

hierarchy difficult to compute. There may be no real

"main" method in the system. This is one of the facts

about object oriented design that beginner tends to find

disconcerting. Hierarchy of methods loses sight of the

grouping of methods in objects, which is presumably

the most important aspect of the design. The proposed

OOMS represents the object oriented call hierarchy as

Display Object Relationships. The Display Object

Relationships helps maintainers by giving them the
relationships between the object oriented technique

entities, for example the relations between the classes as

a sub, super, and inherits.

This proposed system should help a maintainer

in understanding the complex relationships and the

complex dependencies among the various object-

oriented programming components. The complex

dependencies between the classes in an object-oriented

programming imply the impact change through the

software system. Understanding the complex

relationships and dependencies between the object-

oriented technique components helps maintainers and
developers to understand the object oriented software

system.

A new proposed object oriented software

maintenance system helps maintainers and developers

to remove the redundant information in object oriented

software system and save space. Furthermore, software

maintenance system gives maintainers and developers

tracing facility, detailed information about the

overlapping existing between the classes in their

program and takes into account the polymorphism,

hiding information and dynamic binding problems.

5.0 CONCLUSION

Understanding object-oriented program,

complex dependencies, Inheritance, dynamic binding

and polymorphism is the most problems facing

maintainers and developers when they use an object-

oriented technique. In this paper, we highlight an object

oriented maintenance problem under software
maintenance system. Furthermore, we discuss an

OOMS as a new proposed solution for the Java

programming language. Finally we discuss some

relevant work.

REFERENCES

[1] Chow Paul K. O., and Yeung Daiel S. (1996)

"Behavioral modeling in Object-Oriented
Methodology" Information and Software

Technology 38 (1996) 657-666.

[2] Lieberherr Karl J. and Xiao Cun (1993)

"Object-Oriented Software Evolution" IEEE

Transaction on Software Engineering, Vol.

19, No. 4, April 1993.

[3] Goyal, A. , Sharma, P. Goyal, S.B. and

Singhal, N. (2012) "Analyzing Object

Models with Theory of Innovative Solution"

Second International Conference on

Advanced Computing & Communication
Technologies (ACCT), 2012 pp 46 - 50

[4] Liang Bao, Chao Yin; Weigang He; Jun Ge

and Ping Chen (2010) "Extracting reusable

services from legacy object-oriented systems"

IEEE International Conference on Software

Maintenance (ICSM), 2010 pp.1 - 5

[5] King, Jerry Gao, Pei Hsia, Yasufumi

Toyoshima, Chris Chen, Young-Si Kim, and

Young-Kee Song (1995) “Developing an

Object-Oriented Software Testing and

maintenance Environment” Communications

of ACM October 1995/Vol. 38, No. 10.

Council for Innovative Research International Journal of Computers & Technology

www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012

405 | P a g e w w w . i j c t o n l i n e . c o m

[6] O‟Hare A. B. And Troan (1994) “RE-

Analyzer: From Source Code to Structured

Analysis” IBM Systems Journal Vol. 33, No.

1, 1994

[7] Harrold Mary Jean and Mally Brian (1993)

“A Unified Interprocedural Program
Representation for a Maintenance

Environment” IEEE Transactions on Software

Engineering, Vol. 19, No. 6 June 1993.

[8] Fry, Z.P.; Shepherd, D.; Hill, E.; Pollock, L.;

and Vijay-Shanker, K., (2008) "Analysing

source code: looking for useful verb-direct

object pairs in all the right places" Software,

IET , Volume: 2, Issue: 1, pp.27 - 36

[9] Mayrhauser A. Van, and Vans A. M. (1996)

"Identification of Dynamic Comprehension

Processes During Large Scale Maintenance"

IEEE Transaction on Software Engineering,
Vol.22, No. 6, June 1996.

[10] Bennett Keith (1996) " Software Evolution:

Past, Present and Future" Information and

Software Technology 38(1996) 673-680.

[11] Hart Johnson M. (1995) "Experience with

Logical Code Analysis in Software

Maintenance" Software-Practice and

Experience, Vol. 25(11), 1243-1262

(November 1995)

[12] Lee Byoung Y. and Lee Jee K. (1997) "A

Knowledge-Based Maintenance of Legacy
Systems: METASOFT" Expert Systems With

Applications, Vol. 12, No. 4. Pp. 483-496,

1997.

[13] Babiker Elmamoun (1997) “A Model for

Reengineering Legacy Expert Systems to

Object-Oriented Architecture” Expert systems

With Applications, Vol 12, No. 3 pp. 363-

371, 1997.

[14] Wilde Norman and Huitt Ross "Maintenance

Support for Object-Oriented Programs" IEEE

Transaction on Software Engineering, Vol.

18, No. 12, December 1992.

[15] Jambor-Sadeghi Kamyar, Ketabchi A.

Mohammad, Chue Junjie and Ghiassi M.

(1994) "A Systematic Approach to Corrective

Maintenance", The Computer Journal, Vol.

37, No. 9, 1994.

[16] Bellin Davis (1991) “Software Maintenance
The small Systems management Guide”

Prentice Hall, Englewod Cliffs, New Jersey.

[17] Landsaum Jerome B. And Glass Robert L.

(1992) “Measuring & Motivating

Maintenance Programmers” Prentice Hall

Englewood.

[18] Huan Li; Beibei Huang; Jinhu Lu, (2008)

"Dynamical evolution analysis of the object-

oriented software systems ", (IEEE World

Congress on Computational Intelligence).

IEEE Congress on

Digital Object Identifier, pp. 3030 - 3035

[19] Zuylen H. J. Van, (1993), “The REDO

Compendium, Reverse Engineering for

Software Maintenance”, West Sussex po17

IUD, England.

[20] Al-Fawareh Hamed, Abdul Azim Abd Gani,

(1997), 20, May, “ Software maintenance:

State of the art “, Intec‟97, Information

Technology Colloquium, University Putra

Malaysia.

[21] Al-Fawareh Hamed, Abdul Azim Abd Gani,

(1997), “Reverse Engineering: Tools
Comparison” REDECS‟97, International

Conference, University Sains Malaysia.

[22] Daconta Michael C. (1996) “Java for C/C++

Programmers” John Wiley & Sons, Inc. New

York.

