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ABSTRACT 

Orienteering problem (OP) is an NP-Hard graph problem. The nodes of the graph are associated with scores or rewards 
and the edges with time delays. The goal is to obtain a Hamiltonian path connecting the two necessary check points, i.e. 
the source and the target along with a set of control points such that the total collected score is maximized within a speci-
fied time limit. OP finds application in several fields like logistics, transportation networks, tourism industry, etc. Most of the 
existing algorithms for OP can only be applied on complete graphs that satisfy the triangle inequality. Real-life scenario 
does not guarantee that there exists a direct link between all control point pairs or the triangle inequality is satisfied. To 
provide a more practical solution, we propose a stochastic greedy algorithm (RWS_OP) that uses the roulette wheel selec-
tion method, does not require that the triangle inequality condition is satisfied and is capable of handling both complete as 
well as incomplete graphs. Based on several experiments on standard benchmark data we show that RWS_OP is faster, 
more efficient in terms of time budget utilization and achieves a better performance in terms of the total collected score as 
compared to a recently reported algorithm for incomplete graphs. 
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1 INTRODUCTION 

Orienteering problem (OP) is a challenging NP-Hard combinatorial optimization graph problem that originated from a water 
sport where players need to visit a set of control points, starting at the source and reach the destination within a fixed time 
frame with an objective of collecting maximum possible rewards (associated with each control point). This problem is a 
combination of the travelling salesman problem (TSP) and the Knapsack problem (KP). The goal of maximizing the total 
collected score in OP is derived from KP and that of minimizing the total travel time from TSP. Unlike TSP, in OP it is not 
mandatory to visit each and every node of the network (Vansteenwegen et al., 2011). Many real-life situations can be 
modeled as OP like the transportation networks, home delivery system, telecommunication networks, logistics, trip plan-
ning in tourism industry, robot path planning, etc. In disaster management, a robot can be used with a map of its surround-
ing area to supply the necessary items like food, medicines, etc. to the affected locations. However, because the robot is 
battery operated, it cannot visit all the locations and the need here is to determine a path connecting the maximum number 
of locations (which are highly affected and requires immediate attention) that can be visited within the time bound (battery 
life of the robot) (Blum et al., 2003). Another example is that of a travelling salesman who does not have enough time to 
visit all the cities, but has some knowledge about the cities where maximum sales can take place. Therefore, the goal here 
is to maximize the total sales, but within the time constraint of a day or a week (Tsiligirides, 1984). In each of the stated 
applications, the task is to determine a solution, i.e. a path that collects the maximum rewards possible and also satisfies 
the time bound (Vansteenwegen et al., 2011; Schilde et al., 2009). Several variants of OP exist, which include team orien-
teering problem, orienteering and team orienteering with time window and the generalized orienteering problem (Vans-
teenwegen et al., 2011). 

As stated earlier, OP is an NP-Hard problem so an exact algorithm is not practically feasible in terms of execution time 
for larger instances. However, a few exact algorithms were suggested by Laporte et al and Hayes et al based on the con-
cepts of linear programming and dynamic programming (Laporte and Martello, 1990; Hayes and Norman, 1984). Other 
methods available in the literature include heuristic and approximation algorithms for OP. In 1984, one of the first heuris-
tics for OP was proposed by Tsiligirides (1984). A four-phase  heuristic and a centre-of-gravity heuristic was suggested by 
Ramesh and Brown and Golden et al respectively (Ramesh and Brown, 1991; Golden et al., 1987). Later, Fischetti et al 
stated a branch and cut heuristic for OP (Fischetti et al., 1998). Several other methods like artificial neural network, tabu 
search, pareto ant colony optimization, pareto variable neighbourhood search, etc. were introduced to deal with OP 
(Schilde et al., 2009; Wang et al., 1995; Gendreau et al., 1998). In 2013, Campos et al presented a Greedy Randomized 
Adaptive Search Procedure and the Path Relinking approach to solve OP (Campos et al., 2013). An approximation for the 
un-rooted version of OP was suggested (Awerbuch et al., 1999; Johnson et al., 2000) and Blum et al proposed an approx-
imation algorithm for the rooted version of OP (Blum et al., 2003). Fomin et al, introduced an approximation algorithm for 
the time-dependent variant of OP (Fomin and Lingas, 2002). Most of the suggested algorithms for OP can be applied on 
complete graphs only but considering the practical applications of OP, it can be observed that many situations cannot be 
modeled only through complete graphs. The first genetic algorithm (GA) for OP was proposed by Tasgetiren (Tasgetiren, 
2001) but Ostrowski et al presented a genetic algorithm for OP that can be solved for both complete as well as incomplete 
graphs (Ostrowski and Koszelew, 2011). 

Here, we propose a stochastic greedy heuristic for OP (RWS_OP) that uses the roulette wheel selection method for de-

termining the path that maximizes the total collected score within the specified time frame ( ). The algorithm is guaran-

teed to reach the destination node ( ) since the starting node ( ) and the final node ( ) are always the end points for 

all the generated paths. One necessary condition of OP is to ensure that a node is visited at most once, which in our algo-
rithm is implemented by removing the explored nodes from the set of available nodes. This algorithm can be applied on 
both complete as well as incomplete graphs. We also compare our results with those reported by Ostrowski et al for large 
instances to show that RWS_OP executes more efficiently. Ostrowski et al proposed two algorithms one for incomplete 
graphs (IG) and the other that requires conversion of IG to complete graphs (CG) before OP can be solved. Few draw-
backs of their paper are: (1) The paper does not categorically provide conclusive evidence about which of these algo-
rithms is better. (2) Further, the authors allow each vertex to be visited more than once, but the reward is collected only on 
the first visit. This strategy is not only disadvantageous from the time budget point of view, but also produces invalid re-
sults (i.e. Non-Hamiltonian path). (3) In the second version of their algorithm, virtual edges need to be added using 
Dijkstra’s algorithm, which results in unnecessary complication. (4) Their strategy requires application-specific complex 
crossover and mutation operations that often produce infeasible partial solutions that require additional correction/repair 
operations. In this paper, we propose a stochastic greedy algorithm that uses roulette wheel selection to avoid the search 
getting trapped in local maxima and removes all the disadvantages of Ostrowski’s method mentioned above. It also out-
performs Ostrowski’s algorithm by improving the score and utilizing the time budget up to almost 99%. The objective func-
tion used in our method is motivated by greedy adaptive search procedure and path relinking (GRASP) technique sug-
gested by Campos et al (Campos et al 2013). We show that roulette wheel selection with our new instance coding tech-
nique outperforms full GA implementation by Ostrowski et al in terms of both quality of solution and search time and 

space. In our method of candidate representation, we start with the shortest path between  and  and using the rou-

lette wheel proportionate selection scheme, keep adding nodes until  is reached. At each step, the probability of se-

lecting a node is proportionate to its fitness defined in equation 9. Thus, without using crossover and mutation and without 
the need to maintain a population of possible solution, this algorithm is able to outperform GA based technique reported 
by Ostrowski et al. In section 2 of this paper, the problem formulation of OP is explained. Section 3 presents the various 
steps of the proposed algorithm. The observations based on the experiments performed on standard benchmarks are 
explained in section 4 and 5. Finally, the paper is concluded in section 6. 
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2 PROBLEM FORMULATION 

The orienteering problem can be modelled using a (complete or incomplete) weighted undirected graph  where 

 denotes the set of vertices and  denotes the set of edges. Let the time function on edges be  

and a score function on nodes be . So if  then  and if  then . The 

task is to compute a Hamiltonian path , within the stated time bound  that connects the specified source , tar-

get  and also includes a subset  of  such that the total collected score is maximized (Vansteenwegen et al., 

2011). To achieve the stated goal, here we use roulette wheel selection for exploring the various possible paths and return 
one that maximizes the total collected score within the specified time limit . 

The OP can be presented as an integer programming problem and the formulation for the same is as follows (Vans-
teenwegen et al., 2011): 

 

                                                                                              (1) 

                                                                               (2) 

                                                                     (3) 

                                                                     (4) 

                                                                                      (5) 

                                                                               (6) 

                                        (7) 

                                                                                  (8) 

  

Here, the variable  denotes the position of vertex  in the path and if a vertex  is visited after vertex  , then  = 1 

else  = 0.  Equation 1 ensures that the objective of OP, which is maximization of the total collected score is fulfilled. The 

necessary condition that each path starts in  and ends in  is ensured by equation 2. The constraint that each path 

remains connected and no vertex is visited more than once in a path is taken care by equations 3-4. The total time taken 
to traverse a path is within the specified time limit is ensured by equation 5. The requirement of eliminating sub tours is 
implemented by equation 6-7. 

 

 

Fig 1: The process of selecting a path using roulette wheel selection function where the number in () denotes the 
probability of node selection. 



ISSN 2277-3061 

4130 | P a g e                                                          A p r i l  0 2 ,  2 0 1 4  

 

3 ALGORITHM RWS_OP 

Input: A graph  with (time taken to traverse) value of each edge connecting vertex  and ,  (Score) 

value of each vertex  and the (maximum number of paths considered at each level). 

Output: A Hamiltonian path with the highest possible collected score such that total travel time is within the specified time 

budget. 

 

 is an array of nodes or vertices, which is a sequence connecting the source and the target.  

, and , are all queues and each of its element is a   is a constant 

whose value defines the maximum number of paths to be considered after each iteration. 

 

 

1.                                                   // Array of paths which is initially empty. 

2.  

3.                                  // Shortest path between source  and target . 

4.  

5. ; 

 

 

1.              // Queues storing paths. 

  

  

2.  

;      // will contain children generated from each path in 

. 

3.                                 // Selecting best  children for next generation. 

    // The path with the maximum total score. 

  

 ;  

  

   

4.                           // Terminate if no new child is generated and return the .                       

        

 

5.  

 

( )                                 //  is an array of nodes that forms a path. 

1.     

2.  

3.                                                          // If a node is already present in the path then ignore it. 

 

                                             // The time increment due to insertion of  at its best position.     
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 ; 

  

      

4.                                   // Array of candidate nodes used for roulette wheel selection.  

5.                                                    

6.  

7.  

  

               //  is the greediness parameter that decides which node should 

participate in roulette wheel selection. 

               

8.  

                                                // If no new nodes are added then insert the parent path .                                  

                                                                                                              

     

9.                                  // Generates  number of  children paths from path P.        

                                                                                                   

10.  

  

 

 

                

                         

 

 

1.  

2.  

                                          // , where  

3.  

4.  

5.  

6.  

                  

. 

7.  

 

  

1.  
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2.  

     // Score ( ) is the sum of the rewards associated with each node 

of  

                                                                              .                         

  

3.  

 

     The main aim of RWS_OP algorithm is to connect the source and the destination vertex and in between visit as many 

nodes as possible to collect the highest possible score within the given time bound. In lines 1-5 of , Dijkstra’s 

algorithm is applied to find the shortest path connecting the source and target, and the path obtained is stored in . A 

queue of , i.e.  is maintained that contains the list of  obtained after each iteration and is initialized with 

the shortest path  .  

Lines 1-5 of  denotes that in each iteration (i.e. each run of),  function inserts a node into the 

 obtained by the previous iteration. So, an iteration of  function accepts a list of  in the form of 

 and for each  in the , it calls the  function. Another queue of , i.e.  is 

maintained, which is initially empty. It stores the child paths generated using the  function for each  of 

. After each iteration, we consider only number of  at a time. So number of 

(  is the one which has the highest value for total collected score) from the are inserted 

into another queue of , i.e. . Then the termination condition is checked to determine whether a new 

child is generated by the function or not. If no new child is generated (i.e. all paths in the queue,  

is the same as that of ), then the function will return the  from the  else, the 

 function is recursively called for . 

The function is used for generating  from . This function generates a  which con-

tains one node more than that already present in . This function decides the node to be inserted and its location in 

. As shown in line 3 of (), for each vertex that has not yet been inserted in , its best position (one 

that leads to smallest increment in time, ) is evaluated and then the ratio  is computed. The ratio  is calculated in 

the following way: 

 

In lines 4-7 of (), another list of nodes, named is created which is initially empty. All those nodes 

which satisfy the following inequality are inserted in the : 

 

Here is the greediness parameter. Greater value of  denotes a more greedy solution and smaller value of denotes a 

more random solution. As the value of  decreases, more nodes will be selected for the . As stated in lines 

8-10 of (), if the  is empty,  is inserted in the queue , else  se-

lection method is used to choose a node from the . The chosen node is removed from the 

and inserted at its best position in  to generate a  which is then en-queued into 

. This process of extracting nodes from the is repeated until a constant ( ) num-

ber of   are generated or   becomes empty. 

    Roulette wheel selection is a population-based selection method used in genetic algorithms that stochastically picks out 
a node based on their fitness value i.e. a node having greater fitness value has more chances of getting selected, al-
though nodes with lower fitness also have a nonzero probability of selection. This assists the search in escaping local 
maxima. It is conceptually equal to giving each individual option, a portion of a circular roulette wheel proportional in area 

to the individual’s fitness value (Zhang et al., 2012). As it can be seen, lines 1-7 of the selects a node 

from the  using  approach where an element is randomly chosen, but the 

probability of choosing an element with higher fitness is greater than choosing an element with lower fitness value.  In our 

selection process, the fitness of an element of  is computed using the following equation: 

, where                               (9) 

Therefore, nodes having  a higher value of  and lower value of time increment , have a greater probability of getting 

selected and also the nodes having low  and high  values can be selected but with a lesser probability .  
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The time complexity of   algorithm is  where  is the number of vertices in the Graph. In the 

 function, there exists an iterative loop that runs  times and because the  can 

contain  nodes, therefore the time complexity of  will be  

In the selection function, line 2 is an iterative loop running for all the vertices of  i.e. times and in each iteration, the 

best position of node  in the current  is found which takes  time. Line 6 represents another iterative loop, 

which takes  time as it also runs for all the vertices of  and  operation in the is similar to sim-

ple insertion in an array and takes time.  operation in  will take  or  

time.  operation in  takes  time as  time is required to bring the element to the front of  

 queue and   to dequeue it. operation in   takes  time. The iteration of line 9 takes 

 time as it runs for  times, and each iteration takes   time. So the overall time 

complexity of  function is , which is equivalent to  as 

. 

For the  function, time complexity of line 2 which is an iterative loop is  as it runs for 

all the paths in  and there can be at most  in this queue. In each iteration, it calls the  

function that takes   time. The  function will take  time. Since it is a recursive function, 

after each recursion, the  contained in  will increase by 1. The function will terminate when no new node is 

available that can be inserted in the . So, the recurrence relation can be written as: 

 

Here,  is the time complexity for the function where,  is the number of nodes that can be added to the 

 contained in  and after one iteration the function calls itself with  number of nodes that can be added 

to the   of . Solving the above recurrence, we get the overall complexity as . 

The main function, i.e. RWS  uses the Dijkstra’s algorithm (  time),  function (  time) and 

 function (  time). Therefore, the overall time complexity of  is . The memory consump-

tion of RWS_OP is  as opposed to Ostrowski_CG and Ostrowski_IG methods that occupies 

 memory where . 
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Fig 2: Progression of RWS_OP algorithm for a graph with 25 nodes with source , destination  

and  70. 

4 EXPERIMENTAL ANALYSIS 

Most of the standard benchmark instances available for the orienteering problem include Set 1, Set 2 and Set 3 given by 
Tsiligirides, Set 64 and Set 66 given by Chao etc. (www.mech.kuleuven.be/en/cib/op/). In each of the available instances, 
only scores and coordinates of each vertex are specified leading to the formation of complete graphs satisfying the trian-
gular inequality. However, in the real world, there is no guarantee that two nodes will be connected through a direct path. 
To deal with such cases, graphs are usually complemented with fictional edges by running Dijkstra’s algorithm for every 
node before applying the classic OP algorithms available for complete graphs, but this results in a considerable increase 
in the search space size. Our method, works on complete as well as incomplete graphs without the need to insert fictional 
edges. 

We have implemented our code in C++ using CodeBlocks on an Intel Core i5 650 at 2.20 GHz. As stated before, 
RWS_OP is capable of handling both complete as well as incomplete graphs, and here we present a few observations by 
applying RWS_OP on a real road network data based on 160 and 306 cities of Poland (http://piwonska.pl/p/research/). It 
consists of two text files -cities.txt and distances.txt. The file cities.txt specifies the names of the cities and the score of 
each, which is assigned based on the number of inhabitants in that city, i.e.  . The dis-

tances.txt file was created from the real map of Poland representing the roads as edges in the graph stating for a particu-
lar city, its adjacent cities and their corresponding edge lengths. 

http://www.mech.kuleuven.be/en/cib/op/
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5 DISCUSSION 

The following tables and plots show a comparison of our results with those obtained by applying the genetic algorithm 
suggested by Ostrowski et al on the same instances (Ostrowski and Koszelew, 2011). As can be seen in Table 1 and Fig. 

3, it is observed that RWS_OP performs better for larger  values ( taking the same first and last node i.e. source = 

destination) than the one proposed by Ostrowski et al because the highest total collected score attained for a graph with 
306 nodes is greater in our case. Furthermore, the mean score and 95% confidence interval (CI) of mean for 30 runs 

 are higher in our case when compared to the values obtained by the 

genetic algorithm. Fig. 4 shows that for the same  value, there is a significant decrease in the execution time of 

RWS_OP as compared to the CG (Complete Graph version) and IG (Incomplete Graph version) of the genetic algorithm 

proposed by Ostrowski et al. It is also seen that the execution time increases linearly with the increase in  because 

increase in  leads to the exploration of more number of nodes. Fig. 5 presents the effect on scores by varying the 

value of the greediness parameter , which balances the degree of randomness and greediness. Increasing the value of 

the greediness parameter  makes the algorithm more greedy and the value of score obtained as a result of several 

executions of our code is the same most of the times i.e. lesser variation in the score, whereas decreasing the value of  

leads to a situation with greater randomness, i.e. more variation in the scores obtained as shown through smaller and 

larger boxes respectively. It is also observed that the maximum score achieved increases with the increase in  howev-

er, for a large number of executions, a greater maximum score can be obtained even for smaller values of . RWS_OP 

is also efficient in terms of the time utilization (as shown in Table 2) as almost 99% of the specified time budget  is 

utilized, which helps in determining a better path that covers almost 70% of the cities, thus leading to greater total col-
lected score. As the algorithm progresses, one node is added to the final path after each iteration, which results in an in-
crease in the total collected score and decrease in the given time budget as shown in Fig. 6. Most of the experiments are 

performed at   because at 0.6, both randomness and greediness come into play and as stated before, decreasing 

the value of  makes the algorithm more random and increasing it makes RWS_OP greedier. RWS_OP uses roulette 

wheel selection for choosing a node to be added in the path so different runs of the same algorithm with the same input 
parameters may result in selection of different nodes for being added in the final path and the trend in the utilization of time 

budget and an increase in the total collected score for three different runs at  and  for 160 cities in-

stance is shown in Fig. 7. Fig. 8 shows how the time budget is utilized, and the total collected score increases with each 

iteration of RWS_OP for different values of  at . The proposed heuristic is capable of exploring almost 70% 

of the search space as shown in Fig. 9 (a) and 9 (b) is a box plot showing the percentage of nodes explored and unex-

plored at  for different values of . As can be observed in 9 (b), the percentage of nodes explored (NE) is 

higher than the percentage of nodes unexplored (NU). Furthermore, the percentage of score collected for the explored 

nodes is higher than the percentage of score left out (score that could not be collected) for lower values of , as a lower 

value of  induces more randomness into RWS_OP. RWS_OP is efficient both in terms of time and space complexity 

when compared to Ostrowski_CG and Ostrowski_IG methods, therefore, RWS_OP can be implemented for larger values 

of   which helps in achieving a higher total collected score for the considered instances as shown in Table 3 and Fig. 

10. 

 

Table 1. Comparison of maximum, mean and confidence Interval (CI) for mean of scores obtained by RWS_OP 

(keeping  i.e. ) with those obtained by executing the Ostrowski’salgorithm (Please refer 

Ostrowski and Koszelew, 2011, their Table 5 for Ostrowski_CG and Table 7 for Ostrowski_IG) on Real Road 
Network database with 306 cities of Poland. 

 

RWS_OP(α=0.6) 
Ostrowski_CG  

(highest fitness/travelTime) 

Ostrowski_IG  

(fitness-
Gain

2
/travelTimeIncrease) 

  Mean 
CI for 
Mean 

Maximum Mean 
CI for 
Mean 

Maximum Mean 
CI for 
Mean 

Maximum 

500 56.56 ±3.5 73 61.9 ±3.5 92 47.5 ±3.3 66 

1000 107.9 ±2.64 117 109.5 ±5.4 144 88.3 ±6.0 132 

1500 153.3 ±9.29 233 146.7 ±8.8 204 157.4 ±13.5 225 

2000 206.5 ±13.1 283 190.6 ±9.7 248 216.6 ±12.8 283 

2500 256.9 ±13.07 330 219.1 ±10.7 281 227.2 ±13.9 292 

3000 302.7 ±13.4 386 256.9 ±11.4 320 257.3 ±15.2 331 
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(a) 

 

 

 

(b) 

Fig 3: Comparison of (a) maximum score and (b) mean score of each method with respect to time budget 

based on 30 runs at   for Real Road Network database with 306 cities of Poland. 
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Fig 4: Comparison of execution time of each method with respect to time budget   based on 30 runs at 

  for Real Road Network database with 306 cities of Poland. 

 

. 

 

(a) 

 

 

  

Alpha Value (α) 
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. 

 

(b) 

Fig 5: Comparison of score with respect to  for (a) and (b)  for a Real Road Network 

database with 306 cities of Poland. 

 

Table 2. The Highest Score Collected, Mean of Score Collected, Mean Time to Traverse the Path and % of Time 

Budget Utilized values obtained by RWS_OP at  (keeping  i.e.  for 306 cities 

and  for 160 cities) when implemented on a Real Road Network database with 306 cities and 

160 cities of Poland. 

 

306 cities (α=0.6) 160 cities (α=0.6) 

  
Highest 
Score 

Collected 

Mean of 
Score 

Collected 

Mean 
Time to 

Traverse 
the Path  

% of Time 
Budget 
Utilized 

Highest 
Score 

Collected 

Mean of 
Score 

Collected 

Mean 
Time to 

Traverse 
the Path 

% of 
Time 

Budget 
Utilized 

500 122 120.1 495.1 99.02 49 48.83 496.67 99.34 

750 154 150.3 743.4 99.12 67 65.1 747.07 99.6 

1000 177 174.3 995.1 99.51 88 76.8 990.8 99.08 

1250 210 195.1 1246.53 99.72 104 102.3 1230.3 98.42 

1500 243 220.4 1495.33 99.69 117 115 1488.37 99.25 

1750 261 243.6 1742.72 99.58 129 127.9 1739.1 99.38 

2000 286 270 1993.4 99.67 145 142.6 1993.63 99.68 

2250 310 291 2244.8 99.77 162 156.1 2242.4 99.66 

2500 324 312.4 2493.76 99.75 185 176.4 2485.8 99.43 

2750 345 332.5 2744.8 99.81 202 193.2 2736.4 99.5 

Alpha Value (α) 
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3000 371 349.6 2993.1 99.77 214 205.1 2980.3 99.34 

3500 411 392.1 3495.47 99.87 250 243.6 3488.9 99.68 

4000 451 436.9 3995 99.88 271 265.1 3982.7 99.57 

4500 502 487.1 4494.3 99.87 306 290.23 4479.4 99.54 

5000 537 524.5 4995.2 99.90 314 307.53 4960.9 99.22 

5500 574 561 5491.7 99.85 322 316.9 5319.9 96.73 

6000 620 593.3 5990.7 99.85 322 314.7 5336 88.93 

 

 

 

. 

(a) 

 

. 

(b) 
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. 

(c) 

Fig 6: Plots showing (a) utilization of the time budget and (b) increase in the total collected score at  and 

 for a Real Road Network database with 160 cities of Poland. As the RWS_OP algorithm progresses, 

with each iteration, a node is added to the final path which results in an increase in the total collected score and 
decrease in the time budget as shown in (c). 

 

. 

(a) 
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. 

(b) 

Fig 7: Plots showing the observation of three different runs of RWS_OP with  and  for a Real 

Road Network database with 160 cities of Poland. As the algorithm progresses, it results in (a) decrease in the 
time budget and (b) increase in the total collected score as shown above. 

 

. 
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. 

(b) 

Fig 8: Plots showing (a) utilization of the time budget and (b) increase in the total collected score for three 

different  values at  for a Real Road Network database with 160 cities of Poland. 

 

 

. 

(a) 
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. 

(b) 

Fig 9: Plots showing (a) the percentage of nodes explored with the increase in  values at  and (b) per-

centage of nodes explored and unexplored for different values of  at  for a Real Road Network data-

base with 160 cities of Poland for 30 runs. 

 

Table 3. The Highest Score Collected, Mean of Score Collected and confidence interval ( CI ) for Mean of Score 
Collected obtained by RWS_OP when implemented on a Real Road Network database with 306 cities of Poland for 

different  values at  (keeping  i.e. ). 

 

RWS_OP(α=0.6) 

  
Mean of 
Score 

Collected  

CI for 
Mean of 
Score 

Collected 

Highest 
Score Col-

lected 

500 56.56 ±3.5 73 

1000 107.9 ±2.64 117 

s1500 153.3 ±9.29 233 

2000 206.5 ±13.1 283 

2500 256.9 ±13.07 330 

3000 302.7 ±13.4 386 

3500 353.16 ±14.9 430 

4000 427.8 ±12.54 460 

4500 466.7 ±13.5 508 

5000 506.1 ±12.2 548 

5500 553.2 ±11.12 593 

6000 595.2 ±6.4 645 

7000 653.1 ±6.64 686 

8000 718.2 ±4.23 743 

9000 767.8 ±4.75 784 

10000 769 ±8.04 792 

11000 769 ±7.33 793 
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Fig 10: Plot showing that RWS_OP can achieve higher total collected score for larger   values as compared to 

Ostrowski_CG and Ostrowski_IG methods when implemented on a Real Road Network database with 306 cities of 

Poland at . 

 

6 CONCLUSION 

In this paper, we considered the orienteering problem which is a NP-Hard combinatorial optimization problem and sug-
gested a heuristic that uses the roulette wheel selection process for obtaining a Hamiltonian path that satisfies the time 
bound and helps in maximizing the total collected score. RWS_OP differs from the other techniques available in the litera-
ture as it can be applied on both complete as well as incomplete graphs whereas most of the existing algorithms can only 
be applied on complete graphs. Through experimental analysis, we showed that RWS_OP is more efficient than the pre-
viously suggested method by Ostrowski et al for incomplete graphs in terms of execution time. For a particular time bound, 
the proposed heuristic (RWS_OP) achieves a higher total collected score than the genetic algorithm of Ostrowski et al, 
utilizes almost 99% of the given time budget and is capable of exploring 70% of the considered search space. It is ex-
pected that when our algorithm is augmented with path relinking meta-heuristic (Glover and Laguna, 2000) its effective-
ness will be further enhanced. In the future, we plan to integrate elite sub-paths found at earlier stages of the algorithm to 
produce new near optimal solutions. It will also be interesting to study the effect of incorporating adaptive or incremental 
beam search with the heuristic used in this paper. 
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