
ISSN 2277-3061

4127 | P a g e A p r i l 0 2 , 2 0 1 4

Roulette Wheel Selection based Heuristic Algorithm for the Orienteering
Problem

Madhushi Verma*, Mukul Gupta, Bijeeta Pal, K. K. Shukla

Department of Computer Science and Engineering, IIT (BHU), Varanasi- 221005, India

madhushi.rs.cse@itbhu.ac.in
Department of Computer Science and Engineering, IIT (BHU), Varanasi- 221005, India

mukul.gupta.cse10@itbhu.ac.in
Department of Computer Science and Engineering, IIT (BHU), Varanasi- 221005, India

bijeeta.pal.cse10@itbhu.ac.in
Department of Computer Science and Engineering, IIT (BHU), Varanasi- 221005, India

kkshukla.cse@itbhu.ac.in

ABSTRACT

Orienteering problem (OP) is an NP-Hard graph problem. The nodes of the graph are associated with scores or rewards
and the edges with time delays. The goal is to obtain a Hamiltonian path connecting the two necessary check points, i.e.
the source and the target along with a set of control points such that the total collected score is maximized within a speci-
fied time limit. OP finds application in several fields like logistics, transportation networks, tourism industry, etc. Most of the
existing algorithms for OP can only be applied on complete graphs that satisfy the triangle inequality. Real-life scenario
does not guarantee that there exists a direct link between all control point pairs or the triangle inequality is satisfied. To
provide a more practical solution, we propose a stochastic greedy algorithm (RWS_OP) that uses the roulette wheel selec-
tion method, does not require that the triangle inequality condition is satisfied and is capable of handling both complete as
well as incomplete graphs. Based on several experiments on standard benchmark data we show that RWS_OP is faster,
more efficient in terms of time budget utilization and achieves a better performance in terms of the total collected score as
compared to a recently reported algorithm for incomplete graphs.

Keywords

Orienteering problem; complete graphs; incomplete graphs; roulette wheel selection method; Heuristic algorithm.

Council for Innovative Research
Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 13, No. 1

editor@cirworld.com

www.cirworld.com, www.ijctonline.com

mailto:mukul.gupta.cse10@itbhu.ac.in
http://member.cirworld.com/
http://www.cirworld.com/
http://www.ijctonline.com/

ISSN 2277-3061

4128 | P a g e A p r i l 0 2 , 2 0 1 4

1 INTRODUCTION

Orienteering problem (OP) is a challenging NP-Hard combinatorial optimization graph problem that originated from a water
sport where players need to visit a set of control points, starting at the source and reach the destination within a fixed time
frame with an objective of collecting maximum possible rewards (associated with each control point). This problem is a
combination of the travelling salesman problem (TSP) and the Knapsack problem (KP). The goal of maximizing the total
collected score in OP is derived from KP and that of minimizing the total travel time from TSP. Unlike TSP, in OP it is not
mandatory to visit each and every node of the network (Vansteenwegen et al., 2011). Many real-life situations can be
modeled as OP like the transportation networks, home delivery system, telecommunication networks, logistics, trip plan-
ning in tourism industry, robot path planning, etc. In disaster management, a robot can be used with a map of its surround-
ing area to supply the necessary items like food, medicines, etc. to the affected locations. However, because the robot is
battery operated, it cannot visit all the locations and the need here is to determine a path connecting the maximum number
of locations (which are highly affected and requires immediate attention) that can be visited within the time bound (battery
life of the robot) (Blum et al., 2003). Another example is that of a travelling salesman who does not have enough time to
visit all the cities, but has some knowledge about the cities where maximum sales can take place. Therefore, the goal here
is to maximize the total sales, but within the time constraint of a day or a week (Tsiligirides, 1984). In each of the stated
applications, the task is to determine a solution, i.e. a path that collects the maximum rewards possible and also satisfies
the time bound (Vansteenwegen et al., 2011; Schilde et al., 2009). Several variants of OP exist, which include team orien-
teering problem, orienteering and team orienteering with time window and the generalized orienteering problem (Vans-
teenwegen et al., 2011).

As stated earlier, OP is an NP-Hard problem so an exact algorithm is not practically feasible in terms of execution time
for larger instances. However, a few exact algorithms were suggested by Laporte et al and Hayes et al based on the con-
cepts of linear programming and dynamic programming (Laporte and Martello, 1990; Hayes and Norman, 1984). Other
methods available in the literature include heuristic and approximation algorithms for OP. In 1984, one of the first heuris-
tics for OP was proposed by Tsiligirides (1984). A four-phase heuristic and a centre-of-gravity heuristic was suggested by
Ramesh and Brown and Golden et al respectively (Ramesh and Brown, 1991; Golden et al., 1987). Later, Fischetti et al
stated a branch and cut heuristic for OP (Fischetti et al., 1998). Several other methods like artificial neural network, tabu
search, pareto ant colony optimization, pareto variable neighbourhood search, etc. were introduced to deal with OP
(Schilde et al., 2009; Wang et al., 1995; Gendreau et al., 1998). In 2013, Campos et al presented a Greedy Randomized
Adaptive Search Procedure and the Path Relinking approach to solve OP (Campos et al., 2013). An approximation for the
un-rooted version of OP was suggested (Awerbuch et al., 1999; Johnson et al., 2000) and Blum et al proposed an approx-
imation algorithm for the rooted version of OP (Blum et al., 2003). Fomin et al, introduced an approximation algorithm for
the time-dependent variant of OP (Fomin and Lingas, 2002). Most of the suggested algorithms for OP can be applied on
complete graphs only but considering the practical applications of OP, it can be observed that many situations cannot be
modeled only through complete graphs. The first genetic algorithm (GA) for OP was proposed by Tasgetiren (Tasgetiren,
2001) but Ostrowski et al presented a genetic algorithm for OP that can be solved for both complete as well as incomplete
graphs (Ostrowski and Koszelew, 2011).

Here, we propose a stochastic greedy heuristic for OP (RWS_OP) that uses the roulette wheel selection method for de-

termining the path that maximizes the total collected score within the specified time frame (). The algorithm is guaran-

teed to reach the destination node () since the starting node () and the final node () are always the end points for

all the generated paths. One necessary condition of OP is to ensure that a node is visited at most once, which in our algo-
rithm is implemented by removing the explored nodes from the set of available nodes. This algorithm can be applied on
both complete as well as incomplete graphs. We also compare our results with those reported by Ostrowski et al for large
instances to show that RWS_OP executes more efficiently. Ostrowski et al proposed two algorithms one for incomplete
graphs (IG) and the other that requires conversion of IG to complete graphs (CG) before OP can be solved. Few draw-
backs of their paper are: (1) The paper does not categorically provide conclusive evidence about which of these algo-
rithms is better. (2) Further, the authors allow each vertex to be visited more than once, but the reward is collected only on
the first visit. This strategy is not only disadvantageous from the time budget point of view, but also produces invalid re-
sults (i.e. Non-Hamiltonian path). (3) In the second version of their algorithm, virtual edges need to be added using
Dijkstra’s algorithm, which results in unnecessary complication. (4) Their strategy requires application-specific complex
crossover and mutation operations that often produce infeasible partial solutions that require additional correction/repair
operations. In this paper, we propose a stochastic greedy algorithm that uses roulette wheel selection to avoid the search
getting trapped in local maxima and removes all the disadvantages of Ostrowski’s method mentioned above. It also out-
performs Ostrowski’s algorithm by improving the score and utilizing the time budget up to almost 99%. The objective func-
tion used in our method is motivated by greedy adaptive search procedure and path relinking (GRASP) technique sug-
gested by Campos et al (Campos et al 2013). We show that roulette wheel selection with our new instance coding tech-
nique outperforms full GA implementation by Ostrowski et al in terms of both quality of solution and search time and

space. In our method of candidate representation, we start with the shortest path between and and using the rou-

lette wheel proportionate selection scheme, keep adding nodes until is reached. At each step, the probability of se-

lecting a node is proportionate to its fitness defined in equation 9. Thus, without using crossover and mutation and without
the need to maintain a population of possible solution, this algorithm is able to outperform GA based technique reported
by Ostrowski et al. In section 2 of this paper, the problem formulation of OP is explained. Section 3 presents the various
steps of the proposed algorithm. The observations based on the experiments performed on standard benchmarks are
explained in section 4 and 5. Finally, the paper is concluded in section 6.

ISSN 2277-3061

4129 | P a g e A p r i l 0 2 , 2 0 1 4

2 PROBLEM FORMULATION

The orienteering problem can be modelled using a (complete or incomplete) weighted undirected graph where

 denotes the set of vertices and denotes the set of edges. Let the time function on edges be

and a score function on nodes be . So if then and if then . The

task is to compute a Hamiltonian path , within the stated time bound that connects the specified source , tar-

get and also includes a subset of such that the total collected score is maximized (Vansteenwegen et al.,

2011). To achieve the stated goal, here we use roulette wheel selection for exploring the various possible paths and return
one that maximizes the total collected score within the specified time limit .

The OP can be presented as an integer programming problem and the formulation for the same is as follows (Vans-
teenwegen et al., 2011):

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

Here, the variable denotes the position of vertex in the path and if a vertex is visited after vertex , then = 1

else = 0. Equation 1 ensures that the objective of OP, which is maximization of the total collected score is fulfilled. The

necessary condition that each path starts in and ends in is ensured by equation 2. The constraint that each path

remains connected and no vertex is visited more than once in a path is taken care by equations 3-4. The total time taken
to traverse a path is within the specified time limit is ensured by equation 5. The requirement of eliminating sub tours is
implemented by equation 6-7.

Fig 1: The process of selecting a path using roulette wheel selection function where the number in () denotes the
probability of node selection.

ISSN 2277-3061

4130 | P a g e A p r i l 0 2 , 2 0 1 4

3 ALGORITHM RWS_OP

Input: A graph with (time taken to traverse) value of each edge connecting vertex and , (Score)

value of each vertex and the (maximum number of paths considered at each level).

Output: A Hamiltonian path with the highest possible collected score such that total travel time is within the specified time

budget.

 is an array of nodes or vertices, which is a sequence connecting the source and the target.

, and , are all queues and each of its element is a is a constant

whose value defines the maximum number of paths to be considered after each iteration.

1. // Array of paths which is initially empty.

2.

3. // Shortest path between source and target .

4.

5. ;

1. // Queues storing paths.

2.

; // will contain children generated from each path in

.

3. // Selecting best children for next generation.

 // The path with the maximum total score.

 ;

4. // Terminate if no new child is generated and return the .

5.

() // is an array of nodes that forms a path.

1.

2.

3. // If a node is already present in the path then ignore it.

 // The time increment due to insertion of at its best position.

ISSN 2277-3061

4131 | P a g e A p r i l 0 2 , 2 0 1 4

 ;

4. // Array of candidate nodes used for roulette wheel selection.

5.

6.

7.

 // is the greediness parameter that decides which node should

participate in roulette wheel selection.

8.

 // If no new nodes are added then insert the parent path .

9. // Generates number of children paths from path P.

10.

1.

2.

 // , where

3.

4.

5.

6.

.

7.

1.

ISSN 2277-3061

4132 | P a g e A p r i l 0 2 , 2 0 1 4

2.

 // Score () is the sum of the rewards associated with each node

of

 .

3.

 The main aim of RWS_OP algorithm is to connect the source and the destination vertex and in between visit as many

nodes as possible to collect the highest possible score within the given time bound. In lines 1-5 of , Dijkstra’s

algorithm is applied to find the shortest path connecting the source and target, and the path obtained is stored in . A

queue of , i.e. is maintained that contains the list of obtained after each iteration and is initialized with

the shortest path .

Lines 1-5 of denotes that in each iteration (i.e. each run of), function inserts a node into the

 obtained by the previous iteration. So, an iteration of function accepts a list of in the form of

 and for each in the , it calls the function. Another queue of , i.e. is

maintained, which is initially empty. It stores the child paths generated using the function for each of

. After each iteration, we consider only number of at a time. So number of

(is the one which has the highest value for total collected score) from the are inserted

into another queue of , i.e. . Then the termination condition is checked to determine whether a new

child is generated by the function or not. If no new child is generated (i.e. all paths in the queue,

is the same as that of), then the function will return the from the else, the

 function is recursively called for .

The function is used for generating from . This function generates a which con-

tains one node more than that already present in . This function decides the node to be inserted and its location in

. As shown in line 3 of (), for each vertex that has not yet been inserted in , its best position (one

that leads to smallest increment in time,) is evaluated and then the ratio is computed. The ratio is calculated in

the following way:

In lines 4-7 of (), another list of nodes, named is created which is initially empty. All those nodes

which satisfy the following inequality are inserted in the :

Here is the greediness parameter. Greater value of denotes a more greedy solution and smaller value of denotes a

more random solution. As the value of decreases, more nodes will be selected for the . As stated in lines

8-10 of (), if the is empty, is inserted in the queue , else se-

lection method is used to choose a node from the . The chosen node is removed from the

and inserted at its best position in to generate a which is then en-queued into

. This process of extracting nodes from the is repeated until a constant () num-

ber of are generated or becomes empty.

 Roulette wheel selection is a population-based selection method used in genetic algorithms that stochastically picks out
a node based on their fitness value i.e. a node having greater fitness value has more chances of getting selected, al-
though nodes with lower fitness also have a nonzero probability of selection. This assists the search in escaping local
maxima. It is conceptually equal to giving each individual option, a portion of a circular roulette wheel proportional in area

to the individual’s fitness value (Zhang et al., 2012). As it can be seen, lines 1-7 of the selects a node

from the using approach where an element is randomly chosen, but the

probability of choosing an element with higher fitness is greater than choosing an element with lower fitness value. In our

selection process, the fitness of an element of is computed using the following equation:

, where (9)

Therefore, nodes having a higher value of and lower value of time increment , have a greater probability of getting

selected and also the nodes having low and high values can be selected but with a lesser probability .

ISSN 2277-3061

4133 | P a g e A p r i l 0 2 , 2 0 1 4

The time complexity of algorithm is where is the number of vertices in the Graph. In the

 function, there exists an iterative loop that runs times and because the can

contain nodes, therefore the time complexity of will be

In the selection function, line 2 is an iterative loop running for all the vertices of i.e. times and in each iteration, the

best position of node in the current is found which takes time. Line 6 represents another iterative loop,

which takes time as it also runs for all the vertices of and operation in the is similar to sim-

ple insertion in an array and takes time. operation in will take or

time. operation in takes time as time is required to bring the element to the front of

 queue and to dequeue it. operation in takes time. The iteration of line 9 takes

 time as it runs for times, and each iteration takes time. So the overall time

complexity of function is , which is equivalent to as

.

For the function, time complexity of line 2 which is an iterative loop is as it runs for

all the paths in and there can be at most in this queue. In each iteration, it calls the

function that takes time. The function will take time. Since it is a recursive function,

after each recursion, the contained in will increase by 1. The function will terminate when no new node is

available that can be inserted in the . So, the recurrence relation can be written as:

Here, is the time complexity for the function where, is the number of nodes that can be added to the

 contained in and after one iteration the function calls itself with number of nodes that can be added

to the of . Solving the above recurrence, we get the overall complexity as .

The main function, i.e. RWS uses the Dijkstra’s algorithm (time), function (time) and

 function (time). Therefore, the overall time complexity of is . The memory consump-

tion of RWS_OP is as opposed to Ostrowski_CG and Ostrowski_IG methods that occupies

 memory where .

ISSN 2277-3061

4134 | P a g e A p r i l 0 2 , 2 0 1 4

Fig 2: Progression of RWS_OP algorithm for a graph with 25 nodes with source , destination

and 70.

4 EXPERIMENTAL ANALYSIS

Most of the standard benchmark instances available for the orienteering problem include Set 1, Set 2 and Set 3 given by
Tsiligirides, Set 64 and Set 66 given by Chao etc. (www.mech.kuleuven.be/en/cib/op/). In each of the available instances,
only scores and coordinates of each vertex are specified leading to the formation of complete graphs satisfying the trian-
gular inequality. However, in the real world, there is no guarantee that two nodes will be connected through a direct path.
To deal with such cases, graphs are usually complemented with fictional edges by running Dijkstra’s algorithm for every
node before applying the classic OP algorithms available for complete graphs, but this results in a considerable increase
in the search space size. Our method, works on complete as well as incomplete graphs without the need to insert fictional
edges.

We have implemented our code in C++ using CodeBlocks on an Intel Core i5 650 at 2.20 GHz. As stated before,
RWS_OP is capable of handling both complete as well as incomplete graphs, and here we present a few observations by
applying RWS_OP on a real road network data based on 160 and 306 cities of Poland (http://piwonska.pl/p/research/). It
consists of two text files -cities.txt and distances.txt. The file cities.txt specifies the names of the cities and the score of
each, which is assigned based on the number of inhabitants in that city, i.e. . The dis-

tances.txt file was created from the real map of Poland representing the roads as edges in the graph stating for a particu-
lar city, its adjacent cities and their corresponding edge lengths.

http://www.mech.kuleuven.be/en/cib/op/

ISSN 2277-3061

4135 | P a g e A p r i l 0 2 , 2 0 1 4

5 DISCUSSION

The following tables and plots show a comparison of our results with those obtained by applying the genetic algorithm
suggested by Ostrowski et al on the same instances (Ostrowski and Koszelew, 2011). As can be seen in Table 1 and Fig.

3, it is observed that RWS_OP performs better for larger values (taking the same first and last node i.e. source =

destination) than the one proposed by Ostrowski et al because the highest total collected score attained for a graph with
306 nodes is greater in our case. Furthermore, the mean score and 95% confidence interval (CI) of mean for 30 runs

 are higher in our case when compared to the values obtained by the

genetic algorithm. Fig. 4 shows that for the same value, there is a significant decrease in the execution time of

RWS_OP as compared to the CG (Complete Graph version) and IG (Incomplete Graph version) of the genetic algorithm

proposed by Ostrowski et al. It is also seen that the execution time increases linearly with the increase in because

increase in leads to the exploration of more number of nodes. Fig. 5 presents the effect on scores by varying the

value of the greediness parameter , which balances the degree of randomness and greediness. Increasing the value of

the greediness parameter makes the algorithm more greedy and the value of score obtained as a result of several

executions of our code is the same most of the times i.e. lesser variation in the score, whereas decreasing the value of

leads to a situation with greater randomness, i.e. more variation in the scores obtained as shown through smaller and

larger boxes respectively. It is also observed that the maximum score achieved increases with the increase in howev-

er, for a large number of executions, a greater maximum score can be obtained even for smaller values of . RWS_OP

is also efficient in terms of the time utilization (as shown in Table 2) as almost 99% of the specified time budget is

utilized, which helps in determining a better path that covers almost 70% of the cities, thus leading to greater total col-
lected score. As the algorithm progresses, one node is added to the final path after each iteration, which results in an in-
crease in the total collected score and decrease in the given time budget as shown in Fig. 6. Most of the experiments are

performed at because at 0.6, both randomness and greediness come into play and as stated before, decreasing

the value of makes the algorithm more random and increasing it makes RWS_OP greedier. RWS_OP uses roulette

wheel selection for choosing a node to be added in the path so different runs of the same algorithm with the same input
parameters may result in selection of different nodes for being added in the final path and the trend in the utilization of time

budget and an increase in the total collected score for three different runs at and for 160 cities in-

stance is shown in Fig. 7. Fig. 8 shows how the time budget is utilized, and the total collected score increases with each

iteration of RWS_OP for different values of at . The proposed heuristic is capable of exploring almost 70%

of the search space as shown in Fig. 9 (a) and 9 (b) is a box plot showing the percentage of nodes explored and unex-

plored at for different values of . As can be observed in 9 (b), the percentage of nodes explored (NE) is

higher than the percentage of nodes unexplored (NU). Furthermore, the percentage of score collected for the explored

nodes is higher than the percentage of score left out (score that could not be collected) for lower values of , as a lower

value of induces more randomness into RWS_OP. RWS_OP is efficient both in terms of time and space complexity

when compared to Ostrowski_CG and Ostrowski_IG methods, therefore, RWS_OP can be implemented for larger values

of which helps in achieving a higher total collected score for the considered instances as shown in Table 3 and Fig.

10.

Table 1. Comparison of maximum, mean and confidence Interval (CI) for mean of scores obtained by RWS_OP

(keeping i.e.) with those obtained by executing the Ostrowski’salgorithm (Please refer

Ostrowski and Koszelew, 2011, their Table 5 for Ostrowski_CG and Table 7 for Ostrowski_IG) on Real Road
Network database with 306 cities of Poland.

RWS_OP(α=0.6)
Ostrowski_CG

(highest fitness/travelTime)

Ostrowski_IG

(fitness-
Gain

2
/travelTimeIncrease)

 Mean
CI for
Mean

Maximum Mean
CI for
Mean

Maximum Mean
CI for
Mean

Maximum

500 56.56 ±3.5 73 61.9 ±3.5 92 47.5 ±3.3 66

1000 107.9 ±2.64 117 109.5 ±5.4 144 88.3 ±6.0 132

1500 153.3 ±9.29 233 146.7 ±8.8 204 157.4 ±13.5 225

2000 206.5 ±13.1 283 190.6 ±9.7 248 216.6 ±12.8 283

2500 256.9 ±13.07 330 219.1 ±10.7 281 227.2 ±13.9 292

3000 302.7 ±13.4 386 256.9 ±11.4 320 257.3 ±15.2 331

ISSN 2277-3061

4136 | P a g e A p r i l 0 2 , 2 0 1 4

(a)

(b)

Fig 3: Comparison of (a) maximum score and (b) mean score of each method with respect to time budget

based on 30 runs at for Real Road Network database with 306 cities of Poland.

ISSN 2277-3061

4137 | P a g e A p r i l 0 2 , 2 0 1 4

Fig 4: Comparison of execution time of each method with respect to time budget based on 30 runs at

 for Real Road Network database with 306 cities of Poland.

.

(a)

Alpha Value (α)

ISSN 2277-3061

4138 | P a g e A p r i l 0 2 , 2 0 1 4

.

(b)

Fig 5: Comparison of score with respect to for (a) and (b) for a Real Road Network

database with 306 cities of Poland.

Table 2. The Highest Score Collected, Mean of Score Collected, Mean Time to Traverse the Path and % of Time

Budget Utilized values obtained by RWS_OP at (keeping i.e. for 306 cities

and for 160 cities) when implemented on a Real Road Network database with 306 cities and

160 cities of Poland.

306 cities (α=0.6) 160 cities (α=0.6)

Highest
Score

Collected

Mean of
Score

Collected

Mean
Time to

Traverse
the Path

% of Time
Budget
Utilized

Highest
Score

Collected

Mean of
Score

Collected

Mean
Time to

Traverse
the Path

% of
Time

Budget
Utilized

500 122 120.1 495.1 99.02 49 48.83 496.67 99.34

750 154 150.3 743.4 99.12 67 65.1 747.07 99.6

1000 177 174.3 995.1 99.51 88 76.8 990.8 99.08

1250 210 195.1 1246.53 99.72 104 102.3 1230.3 98.42

1500 243 220.4 1495.33 99.69 117 115 1488.37 99.25

1750 261 243.6 1742.72 99.58 129 127.9 1739.1 99.38

2000 286 270 1993.4 99.67 145 142.6 1993.63 99.68

2250 310 291 2244.8 99.77 162 156.1 2242.4 99.66

2500 324 312.4 2493.76 99.75 185 176.4 2485.8 99.43

2750 345 332.5 2744.8 99.81 202 193.2 2736.4 99.5

Alpha Value (α)

ISSN 2277-3061

4139 | P a g e A p r i l 0 2 , 2 0 1 4

3000 371 349.6 2993.1 99.77 214 205.1 2980.3 99.34

3500 411 392.1 3495.47 99.87 250 243.6 3488.9 99.68

4000 451 436.9 3995 99.88 271 265.1 3982.7 99.57

4500 502 487.1 4494.3 99.87 306 290.23 4479.4 99.54

5000 537 524.5 4995.2 99.90 314 307.53 4960.9 99.22

5500 574 561 5491.7 99.85 322 316.9 5319.9 96.73

6000 620 593.3 5990.7 99.85 322 314.7 5336 88.93

.

(a)

.

(b)

ISSN 2277-3061

4140 | P a g e A p r i l 0 2 , 2 0 1 4

.

(c)

Fig 6: Plots showing (a) utilization of the time budget and (b) increase in the total collected score at and

 for a Real Road Network database with 160 cities of Poland. As the RWS_OP algorithm progresses,

with each iteration, a node is added to the final path which results in an increase in the total collected score and
decrease in the time budget as shown in (c).

.

(a)

ISSN 2277-3061

4141 | P a g e A p r i l 0 2 , 2 0 1 4

.

(b)

Fig 7: Plots showing the observation of three different runs of RWS_OP with and for a Real

Road Network database with 160 cities of Poland. As the algorithm progresses, it results in (a) decrease in the
time budget and (b) increase in the total collected score as shown above.

.

(a)

ISSN 2277-3061

4142 | P a g e A p r i l 0 2 , 2 0 1 4

.

(b)

Fig 8: Plots showing (a) utilization of the time budget and (b) increase in the total collected score for three

different values at for a Real Road Network database with 160 cities of Poland.

.

(a)

ISSN 2277-3061

4143 | P a g e A p r i l 0 2 , 2 0 1 4

.

(b)

Fig 9: Plots showing (a) the percentage of nodes explored with the increase in values at and (b) per-

centage of nodes explored and unexplored for different values of at for a Real Road Network data-

base with 160 cities of Poland for 30 runs.

Table 3. The Highest Score Collected, Mean of Score Collected and confidence interval (CI) for Mean of Score
Collected obtained by RWS_OP when implemented on a Real Road Network database with 306 cities of Poland for

different values at (keeping i.e.).

RWS_OP(α=0.6)

Mean of
Score

Collected

CI for
Mean of
Score

Collected

Highest
Score Col-

lected

500 56.56 ±3.5 73

1000 107.9 ±2.64 117

s1500 153.3 ±9.29 233

2000 206.5 ±13.1 283

2500 256.9 ±13.07 330

3000 302.7 ±13.4 386

3500 353.16 ±14.9 430

4000 427.8 ±12.54 460

4500 466.7 ±13.5 508

5000 506.1 ±12.2 548

5500 553.2 ±11.12 593

6000 595.2 ±6.4 645

7000 653.1 ±6.64 686

8000 718.2 ±4.23 743

9000 767.8 ±4.75 784

10000 769 ±8.04 792

11000 769 ±7.33 793

ISSN 2277-3061

4144 | P a g e A p r i l 0 2 , 2 0 1 4

Fig 10: Plot showing that RWS_OP can achieve higher total collected score for larger values as compared to

Ostrowski_CG and Ostrowski_IG methods when implemented on a Real Road Network database with 306 cities of

Poland at .

6 CONCLUSION

In this paper, we considered the orienteering problem which is a NP-Hard combinatorial optimization problem and sug-
gested a heuristic that uses the roulette wheel selection process for obtaining a Hamiltonian path that satisfies the time
bound and helps in maximizing the total collected score. RWS_OP differs from the other techniques available in the litera-
ture as it can be applied on both complete as well as incomplete graphs whereas most of the existing algorithms can only
be applied on complete graphs. Through experimental analysis, we showed that RWS_OP is more efficient than the pre-
viously suggested method by Ostrowski et al for incomplete graphs in terms of execution time. For a particular time bound,
the proposed heuristic (RWS_OP) achieves a higher total collected score than the genetic algorithm of Ostrowski et al,
utilizes almost 99% of the given time budget and is capable of exploring 70% of the considered search space. It is ex-
pected that when our algorithm is augmented with path relinking meta-heuristic (Glover and Laguna, 2000) its effective-
ness will be further enhanced. In the future, we plan to integrate elite sub-paths found at earlier stages of the algorithm to
produce new near optimal solutions. It will also be interesting to study the effect of incorporating adaptive or incremental
beam search with the heuristic used in this paper.

REFERENCES

[1] Awerbuch, B., Azar, Y., Blum, A. and Vempala, S. 1999. Improved approximation guarantees for minimum-weight
k-trees and prize-collecting salesmen, Siam J. Computing, Vol. 28, pp. 254–262.

[2] Blum, A., Chawla, S., Karger, D. R., Lane, T., Meyerson, A. and Minkoff, M. 2003. Approximation Algorithms for
Orienteering and Discounted-Reward TSP, Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’03), pp. 1-10.

[3] Campos, V., Marti, R., Sanchez-Oro, J. and Duarte, A. 2013. GRASP with Path Relinking for the Orienteering
Problem. http://www.uv.es/rmarti/paper/docs/routing7.pdf.

[4] Fischetti, M., Salazar, J. and Toth, P. 1998. Solving the orienteering problem through branch-and-cut, INFORMS
Journal on Computing, Vol. 10, pp. 133–148.

[5] Fomin, F. V. and Lingas, A. 2002. Approximation algorithms for time-dependent orienteering, Information
Processing Letters, Vol. 83, pp. 57–62.

[6] Gendreau, M., Laporte, G. and Semet, F. 1998. A tabu search heuristic for the undirected selective travelling sa-
lesman problem, European Journal of Operational Research, Vol. 106, pp. 539–545.

[7] Glover, F. and Laguna, M. 2000. Fundamentals of scatter search and path relinking, Control Cybern, Vol. 29 No. 3,
pp. 653–684.

http://www.uv.es/rmarti/paper/docs/routing7.pdf

ISSN 2277-3061

4145 | P a g e A p r i l 0 2 , 2 0 1 4

[8] Golden, B., Levy, L. and Vohra, R. 1987. The orienteering problem, Naval Research Logistics, Vol. 34, pp. 307–
318.

[9] Hayes, M. and Norman, J.M. 1984. Dynamic Programming in Orienteering: Route Choice and the Siting of Con-
trols, Journal of the Operational Research Society, Vol. 35 No. 9, pp. 791-796.

[10] Johnson, D., Minkoff, M. and Phillips. S. 2000. The prize collecting steiner tree problem: Theory and practice,
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 760–769.

[11] Laporte, G. and Martello, S. 1990. The Selective Traveling Salesman Problem, Discrete Applied Mathematics,

Vol. 26, pp. 193-207.

[12] Ostrowski, K. and Koszelew, J. 2011. The Comparison of Genetic Algorithms which Solve Orienteering Problem
using Complete and Incomplete Graph, Informatyka, Vol. 8, pp. 61-77.

[13] Ramesh, R. and Brown, K. 1991. An efficient four-phase heuristic for the generalized orienteering problem, Com-
puters and Operations Research, Vol. 18, pp. 151–165.

[14] Schilde, M., Doerner, K. F., Hartl, R. F. and Kiechle, G. 2009. Metaheuristics for the bi-objective orienteering
problem, Swarm Intelligence, Vol. 3, pp. 179-201.

[15] Tasgetiren, M. 2001. A genetic algorithm with an adaptive penalty function for the orienteering problem, Journal
of Economic and Social Research, Vol. 4 No. 2, pp. 1–26.

[16] Tsiligirides, T. 1984. Heuristic methods applied to orienteering, Journal of the Operational Research Society, Vol.
35, pp. 797–809.

[17] Vansteenwegen, P., Souffriau, W. and Oudheusden, D. V. 2011. The orienteering problem: A survey, European
Journal of Operational Research, Vol. 209, pp. 1–10.

[18] Wang, Q., X. Sun, B. Golden, and J. Jia. 1995. Using artificial neural networks to solve the orienteering problem.
Annals of Operations Research 61:111–120.

[19] Zhang, L., H. Chang, and R. Xu. 2012. Equal-width Partitioning Roulette Wheel Selection in Genetic Algorithm.
In: Proceedings of the Conference on Technologies and Applications of Artificial Intelligence, pp. 62-67.

