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ABSTRACT 

Filters are very commonly found in everyday life and include 
examples such as water filters for water purification, mosquito 
nets that filter out bugs, bouncers at bars filtering the 
incoming guests according to age (and other criteria), and air 
filters found in air conditioners that we are sometimes a bit 
too lazy to change/clean periodically. Filters have two uses: 
signal separation and signal restoration. Signal separation is 
needed when a signal has been contaminated with 
interference, noise, or other signals. For example, imagine a 

device for measuring the electrical activity of a baby's heart 
(EKG) while still in the womb. The raw signal will likely be 
corrupted by the breathing and heartbeat of the mother. A 
filter might be used to separate these signals so that they can 
be individually analyzed. Signal restoration is used when a 
signal has been distorted in some way. For example, an audio 
recording made with poor equipment may be filtered to better 
represent the sound as it actually occurred [1, 2]. The main 

goal of this work is to study the exponential  window function 
and analyze a digital low pass FIR filter using the same in 
MATLAB. Properties of window functions is studied and 
frequeny domain responses of  window functions is obtained. 
Then FIR filter is designed using widow design method and 
its characteristics have also been studied in frequency domain. 
The performace comparison between LPFs designed using 
other well known windows like Kaiser, Exponential, Cosh and 

modified kaiser window is done and it has been intuitively 
shown that for a given order and transition width, the filter 
designed using Exponential window provides the worse 
minimum stop band attenuation but better far end attenuation 
than filter designed by well known Kaiser Window. 
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1. INTRODUCTION 
Digital filters are the most important and frequently used 
elements in digital signal processing applications. The input 
signal is sampled and an analog-to-digital converter turns the 
signal into a stream of numbers. A computer program running 
on a CPU or a specialized DSP (or less often running on a 
hardware implementation of the algorithm) calculates an 
output number stream. This number stream is then filtered by 
convolving it with the impulse response of the Filter. The 

resulting number stream output can be converted into an 
analog signal by passing it through a digital-to-analog 
converter. 

A digital filter is having several advantages: It is 
programmable, i.e. its operation is determined by a program 
stored in the processor's memory. This means the digital filter 
can easily be changed without affecting the circuitry 
(hardware). An analog filter can only be changed by 

redesigning the filter circuit. Digital filters are easily 
designed, tested and implemented on a general-purpose 
computer or workstation. The characteristics of analog filter 
circuits are subject to drift and are dependent on temperature. 
Digital filters do not suffer from these problems, and so are 
extremely stable with respect both to time and temperature. 
Unlike their analog counterparts, digital filters can handle low 
frequency signals accurately. As the speed of DSP technology 

continues to increase, digital filters are being applied to high 
frequency signals in the RF (radio frequency) domain, which 
in the past was the exclusive preserve of analog technology. 
Digital filters are very much more versatile in their ability to 
process signals in a variety of ways; this includes the ability 

of some types of digital filter to adapt to changes in the 
characteristics of the signal [3].  

Digital filters are classified as finite impulse response (FIR) 
and infinite impulse response (IIR) filters based on the 
duration of their impulse response. IIR filters have infinite 
duration impulse responses; hence they can be matched to 
analog filters, all of which generally have infinitely long 
impulse responses. They have the feedback (a recursive part 

of a filter) as shown in figure 1 and are known as recursive 
digital filters. [4] 

The IIR filter transfer can be expressed as: 

                                  (1) 

where bi are the coefficients of transfer function numerator 

(non-recursive part) and  are the coefficients of transfer 

function denominator (recursive part) 

 

Fig 1: Basic block of IIR filter 

FIR filters are digital filters with finite impulse response. 
They are also known as non-recursive digital filters as they do 
not have the feedback (a recursive part of a filter is shown in 
figure 2), even though recursive algorithms can be used for 
FIR filter realization. [4] 

FIR filter transfer function can be given as:   

  (2) 

where; N is the order of the FIR filter and the length of the 
filter equal to N+1. 

 

Fig 2: Basic block of FIR filter 
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FIR filters offer several advantages over IIR filters. We can 
easily design the FIR filter to meet the required magnitude 
response in such a way that it achieves a constant group delay. 
The phase response of a filter with a constant group delay is a 
linear function of frequency. It transmits all frequencies with 
the same amount of delay, which means that there will not be 

any phase distortion and the input signal will be delayed by a 
constant when it is transmitted to the output. A filter with a 
constant group delay is highly desirable in the transmission of 
digital signals. The samples of its unit impulse response are 
the same as the coefficients of the transfer function. There is 
no need to calculate h (n) from H (z−1), such as during every 
stage of the iterative optimization procedure or for designing 
the structures (circuits) from H (z−1).The FIR filters are 

always stable and are free from limit cycles that arise as a 
result of finite word length representation of multiplier 
constants and signal values. The effect of finite word length 
on the specified frequency response or the time-domain 
response or the output noise is smaller than that for IIR filters. 
Although the unit impulse response h (n) of an IIR filter is an 
infinitely long sequence, it is reasonable to assume in most 
practical cases that the value of the samples becomes almost 

negligible after a finite number; thus, choosing a sequence of 
finite length for the discrete-time signal allows us to use 
powerful numerical methods for processing signals of finite 
length. [5] 

2. WINDOW DESIGN METHOD 
The desired frequency response of any digital filter is periodic 
in frequency and can be expanded in Fourier series, i.e. 

In this method the desired frequency response specification 
, corresponding unit sample response  is 

determined using the following relation: 

   (3) 

    (4) 

In general, unit sample response   obtained from the 

above relation is infinite in duration, so it must be truncated at 
some point say n= N-1 to yield an FIR filter of length N (i.e. 0 
to N-1). This truncation of  to length N-1 is same as 

multiplying  by the e.g. rectangular window, defined 

as:  W (n) = 1           0 ≤ n ≤ N – 1 

          = 0           otherwise  (5) 

Thus the unit sample response of the FIR filter becomes 

–   

          = 0                 otherwise   (6) 

Now, the multiplication of the window function  with 

 is equivalent to convolution of  with , 

where  is the frequency domain representation of the 

window function 

    (7) 

Thus the convolution of  with W (w) yields the 

frequency response of the truncated FIR filter 

  (8) 

The frequency response can also be obtained using the 
following relation 

   (9) 

But direct truncation of  to N terms to obtain h (n) leads 

to the Gibbs phenomenon effect which manifests itself as a 
fixed percentage overshoot and ripple before and after an 

approximated discontinuity in the frequency response due to 
the non-uniform convergence of the fourier series at a 
discontinuity. Thus the frequency response obtained by using 
eq. (8) contains ripples in the frequency domain. In order to 
reduce the ripples, instead of multiplying  with a 

rectangular window w (n),  is multiplied with a window 

function that contains a taper and decays toward zero 
gradually, instead of abruptly as it occurs in a rectangular 

window. As multiplication of sequences  and w (n) in 
time domain is equivalent to convolution of  and W 

(w) in the frequency domain, it has the effect of 

smoothing . 

The several effects of windowing the Fourier coefficients of 
the filter on the result of the frequency response of the filter 
are as follows: 

(1) The width of the transition bands depends on the width of 
the main lobe of the frequency response of the window 
function, w (n) i.e. W (w). 

(2) Since the filter frequency response is obtained via a 
convolution relation, it is clear that the resulting filters are 

never optimal in any sense. 

(3) As N (the length of the window function) increases, the 
main lobe width of W (w) is reduced which reduces the width 
of the transition band, but this also introduces more ripple in 
the frequency response. 

(4) The window function eliminates the ringing effects at the 
band edge and does result in lower side lobes at the expense 
of an increase in the width of the transition band of the filter 
[8]. 

3. EXPONENTIAL WINDOW 

FUNCTION 
Comparing Hann and Bartlett-Hanning windows, it is obvious 
that both of them have the same transition region, but the 
Bartlett-Hanning window has higher attenuation. There is one 
more thing of concern which says that the minimum stop band 
attenuation depends on the specified window, whereas an 
increase in filter order affects the transition region. All this 
leads us to the conclusion that the window functions are not 
optimal. An optimal window is a function that has maximum 

attenuation according to the given width of the main lobe. The 
optimal window is also known as Kaiser Window. Its 
coefficients are expressed as: 

  –   (10) 

where    and     

Where  the minimum stop band attenuation and  is the 

width of (normalized) transition region. The order of band-
pass and band-stop filters, obtained from the expression 
above, should be multiplied by 2.The value of parameter β can 
be obtained from the table 

Table 1: Values of parameter β 

 β 

less than 21 0 

between 21 and 
50 

0.5842(  - 21)^0.4 + 0.07886(   ) 

more than 50 0.1102(  ) 

I0 is a modified zero order Bessel function of the first kind. It 
can be approximated via expression: 
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     (11) 

In order to design an optimal Kaiser filter it is necessary to 
know normalized width of transition region as well as 
minimum desirable stop band attenuation [4]. Also Bessel and 
exponential function have same shape characteristics. Hence 
at the place of Bessel function we can use exponential 
function in Kaiser Window and we got exponential window. 
Exponential window function can be expressed as: 

              (12) 

            = 0 otherwise 

4. RESULTS & DISCUSSIONS 
As we have analyzed the performace of an FIR filter using 
Exponential Window, so first of all the plots regarding 
window function are being shown.  

4.1 COMPARISON OF EXPONENTIAL 

& BESSEL FUNCTION 
From the figure 3, it is clear that zero order Bessel function of 
first kind (Io(x)) have the same characteristics (used in the 

Kaiser Window for impulse response calculations) as that of 
exponential function. So we can use exponential function at 
place of zero order Bessel function of first kind, which 
provides exponential window. Exponential window function 
can be expressed as:  

  (13) 

   

Fig 3: Similar shape characteristics of exponential 

function {exp(x)} and Bessel function {Io(x)} 

Bessel function can be calculated as: 

I0 (x)  1 +    (14) 

From the eq. (14), we can observe that Bessel function is 
calculated up to twenty terms. In the figure 3, blue line 
represents shape characteristics of Bessel function and black 

line represents shape characteristics of Exponential function. 
From the figure it is clear that both the functions have 
characteristics curves, hence we can use exponential function 
at the place of Bessel function (used in Kaiser Window). But 
exponential function provides better results because it 
converges fast.  

4.2 ANALYSIS OF SPECTRAL 

PROPERTIES OF EXPONENTIAL 

WINDOW  

 

Fig 4: Exponential window spectrum for alpha=0, 2, 4 and 

N=51 

The normalized spectrum of exponential window (in dB) can 
be obtained by: 

 ( ) =                               (15) 

where  is amplitude spectrum 

Figure 4 shows the frequency spectrum of exponential 
window for a fixed value of filter length N=51. On the x axis 

normalized frequency (radian per second) is taken and y axis 
shows gain (db). The parameter alpha =0 corresponds to the 
rectangular window. From figure, it can be easily seen that, 
when alpha increases then the main lobe width increases and 
ripple ratio decreases. Also with the increase in the alpha 
parameter far end attenuation (value of the attenuation in the 
last ripple) also increases. 

Table 2: Data for the exponential window spectrum N = 51 

N  MSA FSA 

51 0 -13.26 -31.26 

51 2 -21.74 -54.79 

51 4 -31.9 -74.45 

 

In the table 2 we listed the various values of attenuation 

obtained from the spectrum of the exponential window. MSA 
is the attenuation of the first ripple of the window and FSA is 
the far end attenuation. 

4.3 SPECTRAL ANALYSIS OF IDEAL 

LOW PASS FILTER 
Figure 5 shows the spectral characteristics for the ideal low 
pass filter. In this case we fix the value on N = 127. For the 
graph it can be easily observed that ideal filter provides 
constant gain in the pass band and then has a sharp transition 
from pass band to stop band at cut off frequency. For the 
nonrecursive filter design, we multiply this ideal filter with 

the corresponding window function in the frequency domain 
and obtain the desire filter with the given specifications. 
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Fig 5: Spectrum for ideal low pass filter 

4.4 AMPLITUDE SPECTRUMS OF THE 

FILTERS DESIGNED BY THE 

EXPONENTIAL WINDOW 
Now we analyzed a low pass filter by using exponential 
window function and studied its spectral properties. For a low 
pass filter, we perform convolution between the ideal low pass 
filter function and the exponential window function. Figure 6 
shows the spectrum of the filter designed by using the 
exponential window. In this case we fix the length of the filter 
as N= 127, by taking the fix value of length we vary the value 

of the alpha parameter (0, 2, 4) and obtained the different 
spectral curves. We can observe from the figure that as the 
value of alpha increase minimum stop band attenuation 
provides better results (means stop band attenuation 
increases). But transition width of the filter increases.  

 

Fig 6: Amplitude spectrum of the filter designed by 

Exponential window 

For a filter we need maximum value of the minimum stop 
band attenuation and minimum value of the transition width.  
So to design a best filter we should choose an optimum value 
for the two trades – off parameters. 

Table 3: Spectral parameters of filer designed by 

exponential window 

DATA N alpha  As 

DATA 1 127 0 .0609 -20.77 

DATA 2 127 2 .1040 -32.98 

DATA 3 127 4 .1509 -46.39 

 

Table 3 shows the values of transition width ( ) and 

minimum stop band attenuation (As). Transition width is 
calculated with the help of eq. (16) and (17). Here D is the 
normalized transitions width and Ws is the sampling 
frequency. 

     (16) 

           (17) 

4.5 FILTER DESIGN EQUATIONS 
To find the suitable window which satisfies the given 
prescribed filter specification, we obtain the relation between 
the window parameters and filter parameters. Figure 7 shows 
the relation between Exponential window parameter,  and 

the minimum stop band attenuation,  for N=127. From 

figure, it is clear that as the window parameter increases, the 

minimum stop band attenuation  also increases.  

 

Fig 7: Relation between alpha and minimum stop band 

attenuation 

By using the quadratic polynomial curve fitting method, the 
first design equation is obtained as 

–           (18) 

The second filter design equation is the relation between 
minimum stop band attenuation  and normalized width, 

D,which is required to find the minimum length of the filter. 
The normalized width parameter can be calculated by the 
following equation 

             (19) 

Where  is transition bandwidth 

The relation between D and is shown in figure 8, which 

shows that the filters designed by Kaiser Window have better 

minimum stop band attenuation characteristic than the filters 

designed by exponential window. 
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Fig 8: Comparison of the EXP and KAISER window in 

terms of  

By using quadratic curve fitting method, an approximate 
expression for D can be found as 

–           (20) 

By using (19) and (20), the minimum odd integer filter length 
required for satisfying a given and  can be determined 

from 

                             (21) 

As a result, using the filter design equations given in (18), 
(19), (20) and (21) an exponential window can be designed to 
satisfy the prescribed filter characteristic given in terms of  

and . 

4.6 COMPARISON OF FAR END 

ATTENUATION FOR FILTER DESIGN 

BY VARIOUS WINDOWS 
For designing of low pass non recursive filter we need to 
define following specifications:  

1. pass band edge:  (radian/sample) or  (hertz))  

2. Stop band edge:  (radian/sample) or  (hertz) 

3. Pass band ripple:  

4. Stop band ripple:  

5. Sampling frequency:  (radian/sample) or  

Here an example is being analyzed, which shows that the FIR 
Filter designed by Exponential window provides the better far 

end stop band attenuation (maximum stop band attenuation) 
than the filter designed by the well known Kaiser window 
which is the figure of merit. 

For a low pass FIR filter designed by exponential window; 
following were the specifications: Sampling Frequency Fs = 5 
KHz, Pass band Edge Frequency =100 Hz, Stop band Edge 
Frequency = 150 Hz, Pass band attenuation = 10 dB, Stop 
band attenuation = 60 dB.  

And the results of FIR filter designed by exponential window 
with the FIR filter designed by Kaiser and cosine hyperbolic 
windows were compared. 

For the above example, we find the various spectral 
parameters as listed in the TABLE 4. Most of the parameters 
are already described; here  is the cut off frequency which 

is kept fix for all the three methods. Then we find the value of 
the normalized transition width, alpha and filter length for 
each case. 

Table 4: Comparison of FIR filter designed by KAISER, 

EXP and Coshwindow 

S/N 

 

Parameters 

 

Exp Kaiser Cosh 

1  
 

0.1517 0.1571 0.1571 

2 D 

 

2.9165 2.5669 2.9329 

3 alpha 
 

3.7254 3.9524 3.7111 

4 N 
 

293 259 295 

5 FSA(dB) 

 

94.91 76.25 84.79 

6 MSA(dB) 
 

45.42 45.08 46.56 

 

From TABLE 4, it is clear that filter designed by Exponential 
window provides better far end stop band attenuation than 
filter designed by Kaiser Window which is basically used for 

the application of sub-band coding and speech processing and 
this is the greater advantage of filter designed by Exponential 
window than filter designed by Kaiser Window. In TABLE 4, 
FSA and MSA are far end stop band attenuation and 
minimum stop band attenuation respectively. The frequency 
response of filters designed by Exponential, Kaiser and  

Window are shown in figure 9, 10 and 11 respectively. 

 

Fig 9: Frequency response of FIR Filter designed by 

Exponential Window 

Fig 10: Frequency response of FIR Filter designed by 

Cosh Window 
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Fig 33: Frequency response of FIR Filter designed by 

Kaiser Window 

 

5. CONCLUSIONS 
The present work is based on FSA measurement of the filter 
analyzed by the exponential window. Spectral properties of 
exponential window function have been observed. Spectral 
properties of the ideal low pass filter have been studied. 
Variation in the normalized transition width with the 
parameter alpha has been analyzed. Also variation in the 
normalized transition width with the minimum stop band 

attenuation has been analyzed.  It is observed that FIR filter 
designed by proposed window provides the worse minimum 
stop band attenuation but better far end attenuation than filter 
designed by well known Kaiser Window. The better far end 
stop band attenuation in case of Exponential window shows 
the figure of merit and it is used for some applications such as 
sub band coding and speech processing. The comparison 
example compares this proposed window with Kaiser and 

previously proposed  window  on the basis of 
Normalized Transition width D, Filter Length N Design 

Parameter , far end stop band attenuation and minimum 

stop band attenuation and shows that the far end stop band 
attenuation is maximum in FIR filters designed by 
Exponential window than Kaiser and  windows. 
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