
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

266 | P a g e w w w . c i r w o r l d . c o m

IMPLEMENTATION AND ANALYSIS OF FIR FILTER USING
TMS 320C6713 DSK

Sandeep Kumar

ECE Deptt.
HCTM Kaithal

Munish Verma

ECE Deptt.
HCTM Kaithal

Vijay K.Lamba
ECE Deptt.

HCTM Kaithal

Susheel Kumar
ECE Deptt.

HCTM Kaithal

Avinash Kumar
ECE Deptt.

HCTM Kaithal

ABSTRACT

In most of the applications, analog signals are produced in
response to some physical phenomenon or activity. But it is
quite difficult to process that analog signal; here comes the

need to convert an analog signal to a digital signal. For this
purpose specific digital signal processors (DSP’s) are
developed. TMS 320C6713 is one of such type of processors
that can be used to process or handle the signals in a variety of
ways. In the current report, basically the architecture of this
processor is studied. Along with the processor architecture,
the hardware portion DSK (Digital Starter Kit) and the
software portion CCS (Code Composer Studio) is also

studied. Digital filters are very commonly found in everyday
life and include a variety of applications. Mainly they are used
for two major purposes: signal separation and signal
restoration. Signal separation is needed when a signal has
been contaminated with interference, noise, or other signals.
Signal restoration is used when a signal has been distorted in
some way. So, various programs have been analyzed in this
work to implement efficiently those FIR filter structures on

TMS 320C6713 DSK. Characteristics of FIR filters are
studied in frequency domain.

Keywords: FIR Filter, DSP, DSK, CCS.

1. INTRODUCTION
Mostly sensors generate analog signals in response to various
phenomena. Signal processing can be carried out either in
analog or digital domain. To do processing of analog signals

in digital domain, first digital signal is obtained by sampling
and followed by quantization (digitization). The digitization
can be obtained by analog to digital converter (ADC). The
role of digital signal processor (DSP) is the manipulation of
digital signals so as to extract desired information. In order to
interface DSP with analog world, digital to analog converters
(DAC) are used. Figure 1 shows basic components of a DSP
system [1].

Fig 1 Basic components of a DSP system

ADC captures and inputs the signal. The resulting digital
representation of the input signal is processed by DSP such as
C6x and then output through DAC. Within in the basic DSP
system, anti aliasing filter at input to remove erroneous
signals and output filter to smooth the processed data is also
used [2].

There are various reasons to process the analog signals in the

digital domain: The same DSP hardware can be used for
various applications by just changing the code. Digital circuits

are more stable and tolerant than analog circuits. Many filters
and adaptive systems are realizable only by the digital
manipulation of signals. Digital signal processing can be
carried out on various platforms such as customized very
large scale integrated (VLSI) circuits and DSP. A comparative
review of both the platforms is as follows:

• DSPs are programmable allowing fair amount of application

flexibility which not the case with hardwired digital circuits.

• DSPs are cost effective due to mass production and can be
used for various applications whereas VLSI chip is normally
built for a signal application.

• Often quite high sampling rates can be obtained by
customized chips where in DSP sampling rates are limited due
to architecture design and peripheral constraints [1].

Large market shares of DSPs belong to cost-effective real

time embedded systems such as cell phones and modems.
Real time requires keeping processing pace with some
external event [2] or in other words completing the processing
within the available time between samples which of course
depends upon application. Real time processing depends upon
two aspects a) sampling rate b) system latencies (delays) [1].

In the current report DSP processor family TMS320C6X
architecture, DSK and various programs implementing FIR

filter using Code Composer Studio is studied and analyzed.

2. TMS 320C6X (C6X) FAMILY
Digital signal processors such as the TMS320C6x (C6x)
family of processors are like fast special-purpose
microprocessors with a specialized type of architecture and an

instruction set appropriate for signal processing. The C6x
notation is used to designate a member of Texas Instruments’
(TI) TMS320C6000 family of digital signal processors. Based
on a very-long-instruction-word (VLIW) architecture, the C6x
is considered to be TI’s most powerful processor.

Texas Instruments introduced the first - generation
TMS32010 DSP in 1982, the TMS320C25 in 1986 [4], and
the TMS320C50 in 1991. Several versions of each of these

processors — C1x, C2x, and C5x — are available with
different features, such as faster execution speed. These 16 -
bit processors are all fixed - point processors and are code
compatible [5].

The TMS320C30 floating - point processor was introduced in
the late 1980s. The C31, the C32, and the more recent C33 are
all members of the C3x family of floating - point processors
[6, 7]. The C4x floating - point processors, introduced
subsequently, are code compatible with the C3x processors

and are based on the modified Harvard architecture [8].

The TMS320C6201 (C62x), announced in 1997, is the first
member of the C6x family of fixed - point digital signal
processors. Unlike the previous fixed - point processors, C1x,
C2x, and C5x, the C62x is based on a VLIW architecture, still
using separate memory spaces for instructions and data, as
with the Harvard architecture. The VLIW architecture has
simpler instructions, but more are needed for a task than with

a conventional DSP architecture.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

267 | P a g e w w w . c i r w o r l d . c o m

Generally, a fixed - point processor is better for devices that
use batteries, such as cellular phones, since it uses less power
than does an equivalent floating - point processor. It is
necessary to scale the data. And a floating - point processor is
generally more expensive since it has more “real estate” or is
a larger chip because of additional circuitry necessary to
handle integers well as floating - point arithmetic. Several
factors, such as cost, power consumption, and speed, come

into play when choosing a specific DSP. The C6x processors
are particularly useful for applications requiring intensive
computations [9]. So we choose to analyze TMS320C6713
Digital Signal Processor which is floating point and good for
real time applications.

2.1 TMS 320C6713
The TMS320C6713 Digital Signal Processor is the floating-
point processor. The main application of this processor is the
real time processing of digital signals. It is used to implement
FIR/IIR filters.

Fig 2 Functional Block Diagram of TMS320C6713

The TMS320C6713 onboard the DSK is a floating - point
processor based on the VLIW architecture [10-12]. Internal

memory includes a two - level cache architecture with 4 kB of
level 1 program cache (L1P), 4 kB of level 1 data cache
(L1D), and 256 kB of level 2 memory shared between
program and data space. It has glue less (direct) interface to
both synchronous memories (SDRAM and SBSRAM) and
asynchronous memories (SRAM and EPROM). Synchronous
memory requires clocking but provides a compromise
between static SRAM and dynamic DRAM, with SRAM

being faster but more expensive than DRAM.

On - chip peripherals include two McBSPs, two timers, a host
port interface (HPI), and a 32 - bit EMIF. It requires 3.3 V for
I/O and 1.26 V for the core (internal). Internal buses include a
32 - bit program address bus, a 256 - bit program data bus to
accommodate eight 32 - Bit instructions, two 32 - bit data
address buses, two 64 - bit data buses and two 64 - bit store
data buses. With a 32 - bit address bus, the total memory
space is 232 = 4 GB, including four external memory spaces:

CE0, CE1, CE2, and CE3.

Independent memory banks on the C6x allow for two memory
accesses within one instruction cycle. Two independent
memory banks can be accessed using two independent buses.
Since internal memory is organized into memory banks, two
loads or two stores of instructions can be performed in
parallel. Separate buses for program, data, and direct memory
access (DMA) allow the C6x to perform concurrent program

fetches, data read and write, and DMA operations. The C6x
has a byte - addressable memory space. Internal memory is

organized as separate program and data memory spaces, with
two 32 - bit internal ports to access internal memory [5].

Now, to implement a real time application with the above
described processor, we require the TMS3206713DSK
(Digital Starter Kit); that includes the TMS320C6713 Digital
Signal Processor. For simulation purpose, this kit can be
connected to PC with the help of software known as Code
Composer Studio.

2.2 TMS 320C6713 DSK

Fig 3 Block Diagram of TMS320C6713 DSK

The DSK comes with a full complement of on-board devices
that suit a wide variety of application environments. Key
features include: Texas Instruments TMS320C6713 DSP

operating at 225 MHz, An AIC23 stereo codec, 16 Mbytes of
synchronous DRAM, 512 Kbytes of non-volatile Flash
memory, 4 user accessible LEDs and DIP switches, Software
board configuration through registers implemented in CPLD,
Configurable boot options, Standard expansion connectors for
daughter card use, JTAG emulation through on-board JTAG
emulator with USB host, Single voltage power supply (+5V)
[4].

Fig4 Board diagram of TMS320C6713 DSK

The TMS320C6713DSK is connected to PC with the help of
USB cable and the Code Composer Studio software interface
the PC with the C6713DSK.

2.3 CODE COMPOSER STUDIO

Fig 5 Code Composer Studio IDE Development Flow

The CCS provides an integrated development environment
(IDE) as in fig 5 to incorporate the software tools. CCS
includes tools for code generation, such as a C compiler, an
assembler, and a linker. Once the generated machine code is

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

268 | P a g e w w w . c i r w o r l d . c o m

loaded and run on the target, the IDE also offers some
analysis tools with graphical capabilities to visualize
processes running on the DSPs. CCS extends the basic code
generation tools with a set of debugging and real time-
analysis capabilities.

CCS works with a project paradigm. Essentially, within CCS
it is necessary to create a project for each executable program
that is to be created. A project stores all the basic information

to build the executable file (“project”. out).

CCS provides an IDE to incorporate the software tools. CCS
includes tools for code generation, such as a C compiler, an
assembler, and a linker. It has graphical capabilities and
supports real-time debugging. It provides an easy-to-use
software tool to build and debug programs. The C compiler
compiles a C source program with extension .c to produce an
assembly source file with extension .asm. The assembler

assembles an .asm source file to produce a machine language
object file with extension .obj. The linker combines object
files and object libraries as input to produce an executable file
with extension .out. This executable file represents a linked
common object file format (COFF), popular in Unix-based
systems and adopted by several makers of digital signal
processors. This executable file can be loaded and run directly
on the C6713 processor. A linear optimizer optimizes this

source file to create an assembly file with extension .asm.

Real-time analysis can be performed using real-time data
exchange (RTDX). RTDX allows for data exchange between
the host PC and the target DSK, as well as analysis in real
time without stopping the target. Key statistics and
performance can be monitored in real time. Through the joint
team action group (JTAG), communication with on-chip
emulation support occurs to control and monitor program

execution.

3. RESULTS AND DISCUSSIONS

3.1 MOVING AVERAGE FILTER
The moving average filter is widely used in DSP, mainly
because it is the easiest digital filter to understand and use. In
spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a
sharp step response. This makes it the premier filter for time

domain encoded signals. As the name implies, the moving
average filter operates by averaging a number of points from
the input signal to produce each point in the output signal. In
equation form, this is written:

 (1)

Where x [n] is the input signal, y [n] is the output signal, and

M is the number of points in the average. For example, in a 5
point moving average filter, point 80 in the output signal is
given by:

y [80] = (2)

As an alternative, the group of points from the input signal
can be chosen symmetrically around the output point:

y [80] = (3)

This corresponds to changing the summation in Eq. 2 from:
j= 0 to M-1, to: j= - (M-1) /2 to (M-1) /2. For instance, in an
11 point moving average filter, the index, j, can run from 0 to
11 (one side averaging) or -5 to 5 (symmetrical averaging).

Symmetrical averaging requires that M be an odd number.
Programming is slightly easier with the points on only one
side; however, this produces a relative shift between the input

and output signals. We can easily recognize that the moving
average filter is a convolution using a very simple filter
kernel. For example, a 5 point filter has the filter kernel: ….0,
0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 0…. . That is, the moving average
filter is a convolution of the input signal with a rectangular
pulse having an area of one.

As far as implementation is concerned, at the nth sampling
instant we could either:

1. Multiply N past input samples individually by 1 /N and sum
the N products,

2. Sum N past input samples and multiply the sum by 1 /N, or

3. Maintain a moving average by adding a new input sample
(multiplied by 1/ N) to and subtracting the (n − N + 1)th input
sample (multiplied by 1/ N) from a running total.

In this report, we used first option, even though it is not the
most computationally efficient. The value of N defined near

the start of the source file determines the number of previous
input samples to be averaged. Source file average.c is stored
in folder average, which also contains project file average.pjt.
Then we build the project as average and run the program.

Several different methods exist by which the characteristics of
the five point moving average filter may be demonstrated. A
test file mefsin.wav, stored in folder average, was containing a
recording of speech corrupted by the addition of a sinusoidal

tone. We can listen to this file using Gold-Wave, Windows
Media Player, or similar. Then, we connected the PC
soundcard output to the LINE IN socket on the DSK and
listen to the filtered test signal (LINE OUT or
HEADPHONE). We found that the sinusoidal tone has been
blocked and that the voice sounds muffled.

To analyze the frequency response of the filter, we use a
signal generator and an oscilloscope to measure its gain at

different individual frequencies. We identified the distinct
notches in the magnitude frequency response at 1600 Hz and
at 3200 Hz. The magnitude frequency response of the filter is
illustrated in Figure 6.

3.2 MOVING AVERAGE FILTER WITH

INTERNALLY GENERATED

PSEUDORANDOM NOISE AS INPUT
In another example, we tried to assess the magnitude

frequency response of a filter by using wideband noise as an
input signal. The rest of the procedure remains the same for
this example also. A pseudorandom binary sequence (PRBS)
is generated within the program and used as an input to the
filter in lieu of samples read from the ADC. The filtered noise
is analyzed on a spectrum analyzer and whereas the frequency
content of the PRBS input is uniform across all frequencies,
the frequency content of the filtered noise will reflect the

frequency response of the filter. Goldwave player can also be
used as another option for a dedicated spectrum analyzer.
Figure 7 shows the output captured using the oscilloscope and
figure 8 using Goldwave. One can easily compare the three
figures 6, 7 & 8.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

269 | P a g e w w w . c i r w o r l d . c o m

Fig. 6 Magnitude frequency response of five point moving

average filter

Fig 7 Magnitude frequency response of five point moving

average filter on oscilloscope

Fig 8 Magnitude frequency response of five point moving

average filter using Goldwave

3.3 IDENTIFICATION OF MOVING

AVERAGE FILTER FREQUENCY

RESPONSE USING A SECOND DSK
In this program, we tried to analyze the characteristics of the
moving average filter. For this, we used two DSKs connected
as shown in Figure 9. On these two DSKs, we run two

different programs. The program identifies the characteristics
of the system connected between points A and B in figure 9,
including the codec DAC between point A and the LINE OUT
socket and the codec ADC between the LINE IN socket and
point B. In broad terms, it identifies the system connected
between LINE OUT and LINE IN sockets.

Fig. 9 Connection diagram to identify characteristics of

the moving average filter

Figure 10 shows the graph exported from Code Composer as a
text file and imported to MATLAB; plotted on the same axes
as the magnitude frequency response of the five point moving
average filter. The discrepancy between figure 6 & 10 at
frequencies greater than 3.5 kHz is due to the characteristics
of the anti aliasing and reconstruction filters in the AIC23
codec.

Fig 10 Magnitude frequency response of five point moving

average filter using two DSK

3.4 FIR FILTER WITH MOVING

AVERAGE, BANDSTOP, AND

BANDPASS CHARACTERISTICS
Next we analyzed different filter structures using the different
procedures. Coefficient file ave5f.cof is generated. Using that
file, program implements the same five point moving average

filter implemented by figure 6. The number of filter
coefficients is specified by the value of the constant N and the
coefficients are specified as the initial values in an N element
array, h, of type float. We build the project as fir, run the
program and verify that it implements a five point moving
average filter.

To implement a Bandstop filter which is centered around
2700 Hz we changed the coefficient file again. Build and run

this project as fir. Input a sinusoidal signal and vary the input
frequency slightly below and above 2700 Hz and verified that
the output is a minimum at 2700 Hz. The values of the
coefficients for this filter were calculated using MATLAB’s
filter design and analysis tool, FDA tool.

Same way to design a Band Pass filter centered at 1750 hz, we
again changed the coefficient file which is again generated
using MATLAB. Again, the output is verified.

Generating Filter Coefficient (.cof) Files Using MATLAB

If the number of filter coefficients is small, a coefficient (.cof)
file can be edited by hand. For larger numbers of coefficients
the MATLAB function dsk_fir67 () can be used. This function

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3 No. 2, OCT, 2012

270 | P a g e w w w . c i r w o r l d . c o m

expects to be passed a MATLAB vector of coefficient values
and prompts the user for an output filename.

4. CONCLUSIONS
This present report provides a unique and dynamic
environment for sound engineers to experiment in without

having to physically construct any filters. A PC based GUI
provides intricate customization, circumventing the need to
trawl through oceans of manuals when programming an
effects system manually. The presence of a built-in codec on
the C6713 kit allows much more flexibility. This work
incorporated a vast range of software, hardware, digital signal
processing and embedded systems and this is what made this
work an exciting and challenging venture.
We have analyzed codes for real time implementation of
FIR/Moving Average Filter. We have analyzed the
characteristics of designed filter: Effect of internally generated
Pseudorandom Noise; FIR Filter with Moving Average, Band
stop and Band pass characteristics; Effects on voice or music
using three FIR Low pass Filters; Implementation of four
different FIR filters: Low pass, High pass, Band pass, and
Band stop.

5. REFERENCES
[1] Steven W. Smith 1999. The Scientist and Engineer’s

Guide to Digital Signal processing.

[2] Gene Frantz 2000. Digital Signal Processor Trends.
IEEE.

[3] Berkeley Design Technology 2006. The Evolution of
DSP Processors.

[4] R. Chassaing and D. W. Horning 1990. Digital Signal
Processing with the TMS320C25.

[5] R. Chassaing 2008.Digital Signal Processing and
Applications with the C6713 and C6416 DSK.

[6] R. Chassaing 1999. Digital Signal Processing Laboratory
Experiments Using C and the TMS320C31 DSK.

[7] R. Chassaing 1992. Digital Signal Processing with C and
the TMS320C30.

[8] R. Chassaing and P. Martin 1995. Parallel processing
with the TMS320C40. ASEE.

[9] R. Chassaing and R. Ayers 1996. Digital signal
processing with the SHARC. ASEE.

[10] SPRU189F 2000. TMS320C6000 CPU and Instruction
Set. Texas Instruments.

[11] SPRU190D 2001. TMS320C6000 Peripherals. Texas
Instruments.

[12] SPRU198G 2002. TMS320C6000 Programmer’s Guide.
Texas Instruments.

[13] Dallas. TX 1999. TMS320C62X/C67X, Programmers’
Guide. Texas Instruments.

[14] SPRU301C 2000. TMS320C6000 Code Composer
Studio Tutorials. Texas Instruments.

[15] Dallas. TX 2005. Code Composer Studio IDE Getting
Started Guide. Texas Instruments.

[16] T. W. Parks and J. H. McClellan 1972. Chebychev
approximation for nonrecursive digital filter with linear
phase. IEEE.

[17] J. H. McClellan and T. W. Parks 1973. A unified
approach to the design of optimum linear phase digital
filters. IEEE.

