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ABSTRACT 

In most of the applications, analog signals are produced in 
response to some physical phenomenon or activity. But it is 
quite difficult to process that analog signal; here comes the 

need to convert an analog signal to a digital signal. For this 
purpose specific digital signal processors (DSP’s) are 
developed. TMS 320C6713 is one of such type of processors 
that can be used to process or handle the signals in a variety of 
ways. In the current report, basically the architecture of this 
processor is studied. Along with the processor architecture, 
the hardware portion DSK (Digital Starter Kit) and the 
software portion CCS (Code Composer Studio) is also 

studied. Digital filters are very commonly found in everyday 
life and include a variety of applications. Mainly they are used 
for two major purposes: signal separation and signal 
restoration. Signal separation is needed when a signal has 
been contaminated with interference, noise, or other signals. 
Signal restoration is used when a signal has been distorted in 
some way. So, various programs have been analyzed in this 
work to implement efficiently those FIR filter structures on 

TMS 320C6713 DSK. Characteristics of FIR filters are 
studied in frequency domain.  

Keywords: FIR Filter, DSP, DSK, CCS. 

 

1. INTRODUCTION 
Mostly sensors generate analog signals in response to various 
phenomena. Signal processing can be carried out either in 
analog or digital domain. To do processing of analog signals 

in digital domain, first digital signal is obtained by sampling 
and followed by quantization (digitization). The digitization 
can be obtained by analog to digital converter (ADC). The 
role of digital signal processor (DSP) is the manipulation of 
digital signals so as to extract desired information. In order to 
interface DSP with analog world, digital to analog converters 
(DAC) are used. Figure 1 shows basic components of a DSP 
system [1]. 

 

Fig 1 Basic components of a DSP system 

ADC captures and inputs the signal. The resulting digital 
representation of the input signal is processed by DSP such as 
C6x and then output through DAC. Within in the basic DSP 
system, anti aliasing filter at input to remove erroneous 
signals and output filter to smooth the processed data is also 
used [2]. 

There are various reasons to process the analog signals in the 

digital domain: The same DSP hardware can be used for 
various applications by just changing the code. Digital circuits 

are more stable and tolerant than analog circuits. Many filters 
and adaptive systems are realizable only by the digital 
manipulation of signals. Digital signal processing can be 
carried out on various platforms such as customized very 
large scale integrated (VLSI) circuits and DSP. A comparative 
review of both the platforms is as follows: 

• DSPs are programmable allowing fair amount of application 

flexibility which not the case with hardwired digital circuits. 

• DSPs are cost effective due to mass production and can be 
used for various applications whereas VLSI chip is normally 
built for a signal application. 

• Often quite high sampling rates can be obtained by 
customized chips where in DSP sampling rates are limited due 
to architecture design and peripheral constraints [1]. 

Large market shares of DSPs belong to cost-effective real 

time embedded systems such as cell phones and modems. 
Real time requires keeping processing pace with some 
external event [2] or in other words completing the processing 
within the available time between samples which of course 
depends upon application. Real time processing depends upon 
two aspects a) sampling rate b) system latencies (delays) [1]. 

In the current report DSP processor family TMS320C6X 
architecture, DSK and various programs implementing FIR 

filter using Code Composer Studio is studied and analyzed. 

2. TMS 320C6X (C6X) FAMILY  
Digital signal processors such as the TMS320C6x (C6x) 
family of processors are like fast special-purpose 
microprocessors with a specialized type of architecture and an 

instruction set appropriate for signal processing. The C6x 
notation is used to designate a member of Texas Instruments’ 
(TI) TMS320C6000 family of digital signal processors. Based 
on a very-long-instruction-word (VLIW) architecture, the C6x 
is considered to be TI’s most powerful processor.  

Texas Instruments introduced the first - generation 
TMS32010 DSP in 1982, the TMS320C25 in 1986 [4], and 
the TMS320C50 in 1991. Several versions of each of these 

processors — C1x, C2x, and C5x — are available with 
different features, such as faster execution speed. These 16 - 
bit processors are all fixed - point processors and are code 
compatible [5]. 

The TMS320C30 floating - point processor was introduced in 
the late 1980s. The C31, the C32, and the more recent C33 are 
all members of the C3x family of floating - point processors 
[6, 7]. The C4x floating - point processors, introduced 
subsequently, are code compatible with the C3x processors 

and are based on the modified Harvard architecture [8]. 

The TMS320C6201 (C62x), announced in 1997, is the first 
member of the C6x family of fixed - point digital signal 
processors. Unlike the previous fixed - point processors, C1x, 
C2x, and C5x, the C62x is based on a VLIW architecture, still 
using separate memory spaces for instructions and data, as 
with the Harvard architecture. The VLIW architecture has 
simpler instructions, but more are needed for a task than with 

a conventional DSP architecture. 
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Generally, a fixed - point processor is better for devices that 
use batteries, such as cellular phones, since it uses less power 
than does an equivalent floating - point processor. It is 
necessary to scale the data. And a floating - point processor is 
generally more expensive since it has more “real estate” or is 
a larger chip because of additional circuitry necessary to 
handle integers well as floating - point arithmetic. Several 
factors, such as cost, power consumption, and speed, come 

into play when choosing a specific DSP. The C6x processors 
are particularly useful for applications requiring intensive 
computations [9]. So we choose to analyze TMS320C6713 
Digital Signal Processor which is floating point and good for 
real time applications. 

2.1 TMS 320C6713 
The TMS320C6713 Digital Signal Processor is the floating-
point processor. The main application of this processor is the 
real time processing of digital signals. It is used to implement 
FIR/IIR filters.  

 

Fig 2 Functional Block Diagram of TMS320C6713 

 

The TMS320C6713 onboard the DSK is a floating - point 
processor based on the VLIW architecture [10-12]. Internal 

memory includes a two - level cache architecture with 4 kB of 
level 1 program cache (L1P), 4 kB of level 1 data cache 
(L1D), and 256 kB of level 2 memory shared between 
program and data space. It has glue less (direct) interface to 
both synchronous memories (SDRAM and SBSRAM) and 
asynchronous memories (SRAM and EPROM). Synchronous 
memory requires clocking but provides a compromise 
between static SRAM and dynamic DRAM, with SRAM 

being faster but more expensive than DRAM. 

On - chip peripherals include two McBSPs, two timers, a host 
port interface (HPI), and a 32 - bit EMIF. It requires 3.3 V for 
I/O and 1.26 V for the core (internal). Internal buses include a 
32 - bit program address bus, a 256 - bit program data bus to 
accommodate eight 32 - Bit instructions, two 32 - bit data 
address buses, two 64 - bit data buses and two 64 - bit store 
data buses. With a 32 - bit address bus, the total memory 
space is 232 = 4 GB, including four external memory spaces: 

CE0, CE1, CE2, and CE3.  

Independent memory banks on the C6x allow for two memory 
accesses within one instruction cycle. Two independent 
memory banks can be accessed using two independent buses. 
Since internal memory is organized into memory banks, two 
loads or two stores of instructions can be performed in 
parallel. Separate buses for program, data, and direct memory 
access (DMA) allow the C6x to perform concurrent program 

fetches, data read and write, and DMA operations. The C6x 
has a byte - addressable memory space. Internal memory is 

organized as separate program and data memory spaces, with 
two 32 - bit internal ports to access internal memory [5]. 

Now, to implement a real time application with the above 
described processor, we require the TMS3206713DSK 
(Digital Starter Kit); that includes the TMS320C6713 Digital 
Signal Processor. For simulation purpose, this kit can be 
connected to PC with the help of software known as Code 
Composer Studio. 

2.2  TMS 320C6713 DSK 

 

Fig 3 Block Diagram of TMS320C6713 DSK 

The DSK comes with a full complement of on-board devices 
that suit a wide variety of application environments. Key 
features include: Texas Instruments TMS320C6713 DSP 

operating at 225 MHz, An AIC23 stereo codec, 16 Mbytes of 
synchronous DRAM, 512 Kbytes of non-volatile Flash 
memory, 4 user accessible LEDs and DIP switches, Software 
board configuration through registers implemented in CPLD, 
Configurable boot options, Standard expansion connectors for 
daughter card use, JTAG emulation through on-board JTAG 
emulator with USB host, Single voltage power supply (+5V) 
[4]. 

 

Fig4 Board diagram of TMS320C6713 DSK 

 

The TMS320C6713DSK is connected to PC with the help of 
USB cable and the Code Composer Studio software interface 
the PC with the C6713DSK.  

2.3 CODE COMPOSER STUDIO 
 

 

Fig 5 Code Composer Studio IDE Development Flow 

The CCS provides an integrated development environment 
(IDE) as in fig 5 to incorporate the software tools. CCS 
includes tools for code generation, such as a C compiler, an 
assembler, and a linker. Once the generated machine code is 
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loaded and run on the target, the IDE also offers some 
analysis tools with graphical capabilities to visualize 
processes running on the DSPs.  CCS extends the basic code 
generation tools with a set of debugging and real time-
analysis capabilities.  

CCS works with a project paradigm. Essentially, within CCS 
it is necessary to create a project for each executable program 
that is to be created. A project stores all the basic information 

to build the executable file (“project”. out).  

CCS provides an IDE to incorporate the software tools. CCS 
includes tools for code generation, such as a C compiler, an 
assembler, and a linker. It has graphical capabilities and 
supports real-time debugging. It provides an easy-to-use 
software tool to build and debug programs. The C compiler 
compiles a C source program with extension .c to produce an 
assembly source file with extension .asm. The assembler 

assembles an .asm source file to produce a machine language 
object file with extension .obj. The linker combines object 
files and object libraries as input to produce an executable file 
with extension .out. This executable file represents a linked 
common object file format (COFF), popular in Unix-based 
systems and adopted by several makers of digital signal 
processors. This executable file can be loaded and run directly 
on the C6713 processor. A linear optimizer optimizes this 

source file to create an assembly file with extension .asm. 

Real-time analysis can be performed using real-time data 
exchange (RTDX). RTDX allows for data exchange between 
the host PC and the target DSK, as well as analysis in real 
time without stopping the target. Key statistics and 
performance can be monitored in real time. Through the joint 
team action group (JTAG), communication with on-chip 
emulation support occurs to control and monitor program 

execution.  

3. RESULTS AND DISCUSSIONS 

3.1 MOVING AVERAGE FILTER 
The moving average filter is widely used in DSP, mainly 
because it is the easiest digital filter to understand and use. In 
spite of its simplicity, the moving average filter is optimal for 
a common task: reducing random noise while retaining a 
sharp step response. This makes it the premier filter for time 

domain encoded signals. As the name implies, the moving 
average filter operates by averaging a number of points from 
the input signal to produce each point in the output signal. In 
equation form, this is written:  

     (1)            

Where x [n ] is the input signal, y [ n] is the output signal, and 

M is the number of points in the average. For example, in a 5 
point moving average filter, point 80 in the output signal is 
given by: 

y [80] =   (2) 

As an alternative, the group of points from the input signal 
can be chosen symmetrically around the output point: 

y [80] =     (3) 

This corresponds to changing the summation in Eq. 2 from:  
j= 0 to M-1, to: j= - (M-1) /2 to (M-1) /2. For instance, in an 
11 point moving average filter, the index, j, can run from 0 to 
11 (one side averaging) or -5 to 5 (symmetrical averaging). 

Symmetrical averaging requires that M be an odd number. 
Programming is slightly easier with the points on only one 
side; however, this produces a relative shift between the input 

and output signals. We can easily recognize that the moving 
average filter is a convolution using a very simple filter 
kernel. For example, a 5 point filter has the filter kernel: ….0, 
0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 0…. . That is, the moving average 
filter is a convolution of the input signal with a rectangular 
pulse having an area of one. 

As far as implementation is concerned, at the nth sampling 
instant we could either:  

1. Multiply N past input samples individually by 1 /N and sum 
the N products, 

2. Sum N past input samples and multiply the sum by 1 /N, or 

3. Maintain a moving average by adding a new input sample 
(multiplied by 1/ N) to and subtracting the (n − N + 1)th input 
sample (multiplied by 1/ N ) from a running total. 

In this report, we used first option, even though it is not the 
most computationally efficient. The value of N defined near 

the start of the source file determines the number of previous 
input samples to be averaged. Source file average.c is stored 
in folder average, which also contains project file average.pjt. 
Then we build the project as average and run the program.  

Several different methods exist by which the characteristics of 
the five point moving average filter may be demonstrated. A 
test file mefsin.wav, stored in folder average, was containing a 
recording of speech corrupted by the addition of a sinusoidal 

tone. We can listen to this file using Gold-Wave, Windows 
Media Player, or similar. Then, we connected the PC 
soundcard output to the LINE IN socket on the DSK and 
listen to the filtered test signal (LINE OUT or 
HEADPHONE). We found that the sinusoidal tone has been 
blocked and that the voice sounds muffled. 

To analyze the frequency response of the filter, we use a 
signal generator and an oscilloscope to measure its gain at 

different individual frequencies. We identified the distinct 
notches in the magnitude frequency response at 1600 Hz and 
at 3200 Hz. The magnitude frequency response of the filter is 
illustrated in Figure 6. 

3.2 MOVING AVERAGE FILTER WITH 

INTERNALLY GENERATED 

PSEUDORANDOM NOISE AS INPUT 
In another example, we tried to assess the magnitude 

frequency response of a filter by using wideband noise as an 
input signal. The rest of the procedure remains the same for 
this example also. A pseudorandom binary sequence (PRBS) 
is generated within the program and used as an input to the 
filter in lieu of samples read from the ADC. The filtered noise 
is analyzed on a spectrum analyzer and whereas the frequency 
content of the PRBS input is uniform across all frequencies, 
the frequency content of the filtered noise will reflect the 

frequency response of the filter. Goldwave player can also be 
used as another option for a dedicated spectrum analyzer. 
Figure 7 shows the output captured using the oscilloscope and 
figure 8 using Goldwave. One can easily compare the three 
figures 6, 7 & 8. 
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Fig. 6 Magnitude frequency response of five point moving 

average filter  

 

 
 

Fig 7 Magnitude frequency response of five point moving 

average filter on oscilloscope 

 

 
Fig 8 Magnitude frequency response of five point moving 

average filter using Goldwave 

3.3 IDENTIFICATION OF MOVING 

AVERAGE FILTER FREQUENCY 

RESPONSE USING A SECOND DSK 
In this program, we tried to analyze the characteristics of the 
moving average filter. For this, we used two DSKs connected 
as shown in Figure 9. On these two DSKs, we run two 

different programs. The program identifies the characteristics 
of the system connected between points A and B in figure 9, 
including the codec DAC between point A and the LINE OUT 
socket and the codec ADC between the LINE IN socket and 
point B. In broad terms, it identifies the system connected 
between LINE OUT and LINE IN sockets. 

 

Fig. 9 Connection diagram to identify characteristics of 

the moving average filter 

Figure 10 shows the graph exported from Code Composer as a 
text file and imported to MATLAB; plotted on the same axes 
as the magnitude frequency response of the five point moving 
average filter. The discrepancy between figure 6 & 10 at 
frequencies greater than 3.5 kHz is due to the characteristics 
of the anti aliasing and reconstruction filters in the AIC23 
codec. 

 

Fig 10 Magnitude frequency response of five point moving 

average filter using two DSK 

 

3.4 FIR FILTER WITH MOVING 

AVERAGE, BANDSTOP, AND 

BANDPASS CHARACTERISTICS 
Next we analyzed different filter structures using the different 
procedures. Coefficient file ave5f.cof is generated. Using that 
file, program implements the same five point moving average 

filter implemented by figure 6. The number of filter 
coefficients is specified by the value of the constant N and the 
coefficients are specified as the initial values in an N element 
array, h, of type float. We build the project as fir, run the 
program and verify that it implements a five point moving 
average filter. 

To implement a Bandstop filter which is centered around 
2700 Hz we changed the coefficient file again. Build and run 

this project as fir. Input a sinusoidal signal and vary the input 
frequency slightly below and above 2700 Hz and verified that 
the output is a minimum at 2700 Hz. The values of the 
coefficients for this filter were calculated using MATLAB’s 
filter design and analysis tool, FDA tool. 

Same way to design a Band Pass filter centered at 1750 hz, we 
again changed the coefficient file which is again generated 
using MATLAB. Again, the output is verified.  

Generating Filter Coefficient (.cof) Files Using MATLAB 

If the number of filter coefficients is small, a coefficient (.cof) 
file can be edited by hand. For larger numbers of coefficients 
the MATLAB function dsk_fir67 () can be used. This function 
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expects to be passed a MATLAB vector of coefficient values 
and prompts the user for an output filename. 

4. CONCLUSIONS 
This present report provides a unique and dynamic 
environment for sound engineers to experiment in without 

having to physically construct any filters. A PC based GUI 
provides intricate customization, circumventing the need to 
trawl through oceans of manuals when programming an 
effects system manually. The presence of a built-in codec on 
the C6713 kit allows much more flexibility. This work 
incorporated a vast range of software, hardware, digital signal 
processing and embedded systems and this is what made this 
work an exciting and challenging venture.  
We have analyzed codes for real time implementation of     
FIR/Moving Average Filter. We have analyzed the 
characteristics of designed filter: Effect of internally generated 
Pseudorandom Noise; FIR Filter with Moving Average, Band 
stop and Band pass characteristics; Effects on voice or music 
using three FIR Low pass Filters; Implementation of four 
different FIR filters: Low pass, High pass, Band pass, and 
Band stop.  
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