
   ISSN 2277-3061 
 

4430 | P a g e                                                     M a y  0 9 ,  2 0 1 4  

 

3-D from 2-D Using Warping Transformations 

M. A. Ashabrawy1, E. E. Elbehadi2 
1 
Salman bin Abdulaziz University, Community College, Computer Department, KSA 

ashabrawy@hotmail.com 
   

2 
Salman bin Abdulaziz University, Faculty of Science, Mathematics Department,  KSA. 

h_feast@yahoo.com 

 ABSTRACT 

Shown in this paper are methods on how to find the third dimension of a single image or from the two views of the image 
taking in a different angle using the method more accurate and faster to get to the third dimension in the following cases: 
One image of the same scene. Two views of the same scene from two different perspectives. Pictures of parts of the 
same scene. Set of pictures for different views of the work of the subject Panorama. This method is known Image 
Warping, which falls below a set of transfers such as (Affine - Bilinear - Projective - Mosaic – Similarity transformation) 
was compared to the work of transfers between the previous and this will be applied to more pictures. The idea is based 
on building code software is built on the programming language Visual C + + with the library for drawing an OpenGL 
program Matlab, which way can build a model of the following conversions, which fall under the so-called image warping 
of the conversion linear Bilinear Mapping and conversion Affine Mapping and conversion imagery Projective Mapping . 

shown in this paper are methods on how to correct camera exposure changes and how to blend the stitching line between 
the images. We will show panorama photos generated from both still image. 
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Introduction 

Digital image warping is a growing branch of image processing that deals with geometric transformation techniques. Early 
interest in this area dates back to the mid-1960s when it was introduced for geometric correction applications in remote 
sensing. Since that time it has experienced vigorous growth, finding uses in such fields as medical imaging, computer 
vision, and computer graphics. Although image warping has traditionally been dominated by results from the remote 
sensing community, it has recently enjoyed a new surge of interest from the computer graphics field. This is largely due to 
the growing availability of advanced graphics workstations and increasingly powerful computers that make warping a 
viable tool for image synthesis and special effects. Work in this area has already led to successful market products such 
as real-time video effects generators for the television industry and cost-effective warping hardware for geometric 
correction. Current trends indicate that this area will have growing impact on desktop video. 

Digital image warping has benefited greatly from several fields, ranging from early work in remote sensing to recent 
developments in computer graphics. The scope of these contributions, however, often varies widely owing to different 
operating conditions and assumptions morphing = (warping)

2
 + blending. 

The  equation  above  refers to  the  fact  that  morphing  is a two-stage  process  which involves coupling  image  warping  
with color interpolation. As the morphing proceeds, the first image (source) is gradually warped towards the second image 
(target) while fading out. At same time the second image starts warping towards the first image and is faded in. Thus, the 
early images in the sequence are much like the first image. The middle image of the sequence is the average of the first 
image distorted halfway towards the second one and the second image distorted halfway back towards the first one.  The 
last images in the sequence are similar to the second one. Then, the whole process consists of warping two images so 
that they have the same "shape" and then cross dissolving the resulting images [1]. 

Geometric transformations permit elimination of the geometric distortion that occurs when an image is captured. 
Geometric distortion may arise because of the lens or because of the irregular movement of the sensor during image 
capture. 

Geometric transformation processing is also essential in situations where there are distortions inherent in the imaging 
process such as remote sensing from aircraft or spacecraft. On example is an attempt to match remotely sensed images 
of the same area taken after one year, when the more recent image was probably not taken from precisely the same 
position. To inspect changes over the year, it is necessary first to execute a geometric transformation, and then subtract 
one image to other. We might also need to register two or more images of the same scene, obtained from different 
viewpoints or acquired with different instruments. Image registration matches up the features that are common to two or 
more images. Registration also finds applications in medical imaging [2] and [3]. 

People have always been fascinated about capturing the entire view of the scenes. Before the era of digital cameras, 
wide-angle view is captured using special optical lens. However, these lenses are usually mounted on SLR cameras which 
most people do not have. Plus, lens distortion is often introduced in these pictures and even with the wide-angle lenses we 
are still unable to obtain the full 360 degree view. A new generation of digital cameras based on the line scanning 
technologies, such as the ones produced by Panoscan.com, allows us to capture incredible 360 degree views of the 
scenes. The pictures produced from these cameras often have very high quality. The drawback is that those cameras are 
very expensive and far beyond the reach of average consumers. One of the major advantages of using image processing 
is affordability as anyone can install a piece of software on a PC and is able to process the data to produce the panorama 
photos. However, since the images are taken at multiple moments while the camera is panning around the scene, they 
need to be registered to each other in order to obtain the final result. This registration or motion matching has proven to be 
a difficult problem and that is what most of the research work in this field has focused in the past. In a perfect world where 
we can have the camera placed horizontally and panning exactly around its focal point, if we know the tilt angle and how 
much the camera has panned, we can warp all the images to a sphere based on the focal field of view of the camera 
model. In the case when the tilt angle is zero, a cylinder is a good substitute for the sphere. Theoretically, all the images 
can be warped to such a common reference sphere or cylinder and we can then reproduce the entire field of view from 
this sphere or cylinder. This is known as spherical or cylindrical warping [1]. 

In reality, without knowing any camera angles and camera focal field of view, a correct estimation for this kind of warping 
is difficult to obtain. Instead, people have been mostly trying to use 2D planar matching techniques to obtain relative 
matching between two images, such as affine matching. However, without correct warping, there would always 

be errors during introduced during the matching due to the perspective changes from the 3D scene to the 2D image. One 
interesting idea is to use only narrow center strips of video frames [4]. This approach works for high frame-rate video data. 
It, in fact, is mimicking the line-scan cameras mentioned earlier. The line-scan cameras scan one vertical line at a time 
and there is no geometric distortion. However, issues still remain. What if there are objects moving in the scene? The 
strips would likely cut the moving objects into parts. Plus, this approach would not work on still photo stitching. 

The work in the literature has mostly focused on how to match images in the general cases of transformation, i.e. in the 
case when the camera pan, rotate, and tilt in any directions. We realize that no matter how well the matching is done, 
there will be some misalignments between the images. This could happen because the camera is drifting away from its 
initial focal point position, as is always the case for hand-held cameras. It could also happen because there are moving 
objects in the scene or because of the 3D to 2D transformation that can not be accounted by 2D image matching. So 
instead, this work rather focuses on the stitching side to avoid such kind of misalignments or make them less visible[5]. 

We do assume that people capture the data with the panorama photos in mind. This means that the camera is held 
roughly horizontally and the panning is done consistently along the horizontal or vertical direction, rather than the general 
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scenario when the camera can be moved in any directions. We will present some interesting observations in motion 
matching assuming this panorama mode [6] and [7] and [8]. 

We will also show how to deal with some other practical issues in generating good panorama photos. One problem we 
have faced is the change of exposure in camera settings, since most cameras are in automatic mode and adjust to lights 
when taking pictures. As a result, one picture could be significantly brighter than another. And this needs to be corrected 
before the final stitching process. Another issue is on how to blend two images.  

Methods and algorithms 

1.0 Steps can be divided in three stages which are as follows: 

(i)  - Access to the images you want to work through the following: 

              - Scanner with  a high resolution high dpi. 

              - Digital camera with a high resolution high dpi. 

(ii)  - After downloading the images on the computer begins the second phase of the programming consists of the   

                 following steps: 

              - Convert images from one image to a digital data file: (*. Dat ,*. Bmp or *. Jpg ...), convert to through a program     

                 that is currency programming languages (Matlab code) And this file is a digital file in two dimensions (matrix    

                composed of two dimensions) 2-D. 

              - Then the candidate digital deviate that is used to address the work to the images to delete Disturbances and     

                distortions that are in the photos and the work of purification of the images is done through the programming of      

                this filter through the work program languages Programming the following in Fortran Language. 

              - Normalization of the digital file after the previous entry by the candidate in order to ensure that all the values of   

                this file takes Limited to values between zero and one: [0,1], through the work on language Visual C++ . 

                Language Repeat steps in (b) and (c) more than once until you improve the image and the work The opposite    

                process is drawing digital file and return it to the image:(*. Dat Convert to *. Bmp or *. Jpg,…) data  file is   

                converted from digital two dimensions to three dimensions (2-D Convert to 3-D File *. Dat) this step is very   

                 important steps to terminate the work and to put thedecision and the end of the third stage and that through the   

                work program of the following programming language Visual C + +  . 

(iii)- After the completion of the initial stages and the third stages are doing a software code of the previous transfers such   

               as transfers (bilinear mapping, affine mapping, projective mapping and mosaicing) by Matlab program. 

              - After the construction of the previous transfers and applied on the image we find a fortress on the third     

               dimension or depth of the image required. 

 

1.1 Bilinear mapping  

Bilinear mapping are most commonly defined as a mapping of a square into a quadrilateral this mapping can be computed 
by linearly interpolating u linearly along the top and bottom edges of the quadrilateral and then linearly interpolating v 
between two interpolated points to yield a destination point ( x , y ) [8] and [9] and [10].   
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Fig1:  Bilinear mapping 
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The general form in matrix rotation is: 
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For the first point (0, 0) we have A bilinear mapping is affine if a = e = 0. The matrix of 8 coefficients may be computed 
from the four point correspondence of Fig 1 as follows: 
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Now it remains to find the inverse of the matrix T. 
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By using Elementary row operation in Gauss- Seidl, the bilinear mapping has an unmusical wise of properties, because of 
its linear interpolation the forward transform from source to destination space preserves lines which are horizontal or 
vertical in the source space. But it dose not preserve diagonal lines, diagonal lines are actually mapped into parabola. 

The inverse mapping from destination space to source space is not even single valued [11]. 
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We have the x- component:  

dubvcuvax 
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Also have the y- component: 
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Substituting for v from the above equation we get  
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Then we can done for v, yielding the two quadratic equations  
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So                       
02  CuBuA

 

02  FvEvD
 

We can find ( u , v ) in terms of ( x , y ) by evaluating the coefficient A, B, C above and then computing, where:  
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The inverse transform is multi-valued and is much more difficult to compute than the forward transform. 

 

 

Fig 2: Bilinear warp of a test grid. 

 a) Grid in source space. B) Warped grid in destination space for quadrilateral 1 (vertices marked with dots) and 
note the curvature of diagonals.  

c) Warped grid in destination space for quadrilateral 2. Diagonals map to parabolas in destination space. And 
note foldover of some diagonals (caused by the existence of two roots in quadratic equation).  
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In practice, the geometric transform is often approximated by the bilinear transformation. 4 pairs of 
corresponding points are sufficient to find the transformation. 

                                                   
xyayaxaau 3210 

 

       
xybybxbbv 3210 

 ……………………………  (1.1) 

Even simpler is the affine transformation for which three pairs of corresponding points are sufficient to find the coefficients 

                                                               
yaxaau 210 

 

                                                              
ybxbbv 210 

  …………………………………..(1.2) 

The only difference between bilinear and affine transformation is that the coefficients 3a  and 3b in (1.2) are set to be 

zeros in (2.3). In fact, affine transformation is a particular form of bilinear transformation. 

For example, a second-degree approximation requires only six coefficients to be solved. In this case, N=2 and K=6. We 
thus have the inverse mapping equation [12]. 
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And forward mapping equation 
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Where 6M . A similar equation holds for v  and ijb . Both of these expressions can be written in matrix form as  

                                                     WBV
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            For inverse mapping …………………… (1.5) 

And 

                                                    WBY
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



            For forward mapping ……………………..(1.6) 

 

This is a least-squares problem. Pseudo-inverse solution gives the following results:  
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1.2 Affine Transformations 

 Affine mappings include scales, rotation, translation, and shears; they are linear mappings plus a translation[3] and [9]. 
Formally, A mapping  T( x ) is linear if and only if t( x + y ) = T( x ) + T( y )  and T( αx )  = α T( x ) for any scalar α.    

A mapping T(x) is affine if and only if there exits a constant c and a linear mapping L(x) such that. T(x) = L(x) +c for all x.  
obviously, linear mappings are a subset of affine mappings.  
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A general 2-D affine mapping may be written 

              sdsd MPP 
………………………………. (2.1) 
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cvbuax 

 

                          
fvbuay 

………………..(2.3) 

Transform matrix abM where a is the initial coordinate system and b is the final coordinate system has 6 degrees of 

freedom. The vectors ( a , d )  I = ( 1, 0 ) and ( b , e )  I = ( 0, 1 ) are basis vectors of the destination space and ( c , f ) 
is the origin. 

The dimensional for aP  is ( 1 x 3 ) and for bP is ( 1 x 3 ) and for 
abM  is ( 3 x 3 ) Affine mapping  preserve parallel lines 

and equispaced point are transformed as equispaced point along a line in the destination space, although the spacing in 
the two coordinate systems may be different.  

We can invert and affine mapping to find the destination to source transformation simply by inverting the mapping matrix 

sdM if and only if 
sdM has an inverse. Since an affine mapping has 6 degrees of freedom, it may be defined 

genetically by specifying the source points ),(,),(,),( 221100 vuvuvu and the destination points 

),(,),(,),( 221100 yxyxyx this is obviously done by using  
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 Affine mapping can either map any triangle in source space into any triangle in destination space, or map a source 
rectangle into a parallelogram but no more general destinations are possible. To warp a rectangle into general 
quadrilaterals, we need a bilinear projection, or some other more complex mapping.    

Properties of Affine Transformations. 

 Affine transformations preserve affine combination of points W = a1P1 + a2P2 is affine then 

                                       T(W) = a1T(P1) + a2T(P2) is affine……………….………………….……. (2.5) 

This follows because the transformation is represented by matrix multiplication. 

Affine transformations preserve lines and planes a line is represented by two points parametrically by L (t) = (1-t) A + Bt 
Parallel lines remain parallel under affine transformation, two parallel lines can be expressed as: 

                                                         L1(t) = A1 + bt 

                                                         L2(t) = A2 + bt………………………………………………….. (2.6)                         

Then the transformed lines are 

                                                         T(L1(t)) = MA1 + Mbt 

                                                         T(L2(t)) = MA2 + Mbt 

 are still parallel. 

 Note : 

     - Affine transformation cannot represent perspective because they can not generate vanishing Points.      

     - Any Affine Transformation is composed of elementary operations. 

      M = (shear)(scaling)(rotation)(translation) in 2D. 

      M = (scaling (rotation) (shear1) (shear2) (translation) in 3. 
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1.3 Projective mappings 

The Projective mapping, also known as the perspective or homogeneous transformation, is a projection from one to plane 
through a point onto another plane[9] .Homogeneous transformations are used extensively for 3-D affine modeling 
transformations and for perspective camera transformations[12]. 

The 2-D projective mappings studied here are a subset of these familiar 3-D homogeneous transformations. 

The general form of a projective mapping is a rational linear mapping: 

            
ivhug

fevdu
y

ihvug

cvbua
x









 ,

        ……………… (3.1) 

Manipulation of projective mappings is much easier in the homogeneous matrix notation: 
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qvuyxMpp sddd ()
…………..  (3.2) 

Where          

.0),(),(,0),(),(  qforqvquvuandforyxyx 
Although there 9 coefficients in the matrix above, these mappings are homogeneous, so any nonzero scalar multiple of 
these matrix gives an equivalent mapping. Hence there are only 8 degrees of freedom in a 2-D projective mapping. We 
can assume without loss of generality that i=1 except in the special case that source point (0, 0) maps to a point at infinity. 
A projective mapping is affine when g = h = 0. 

Projective mappings will in general map the line at infinity to a line in the real plane. We can think of this line as the horizon 
line of all vanishing points (is a point in a perspective drawing to which parallel lines not perpendicular to the image plane 
appear to converge), by analogy to the perspective projection.  

Affine mapping are the special case of projective mappings that map the line at infinity into itself. By defining the projective 
mapping over the projective plane and not just the real plane, projective mappings become bijections (one-to-one and 
onto), except when the mapping matrix is singular. For non-degenerate mappings the forward and inverse transforms are 
single-valued, just as for an affine mapping [11] and [12]. 

 

 

Fig 3: Projective warps of a test grid controlled 

a) Warp grid in destination space for quadrilateral b) Warped grid in destination space for quadrilateral 2. 

Note the vanishing points. 

Projective mappings share many of the desirable properties of affine mapping. Unlike bilinear mappings, which preserve 
equispaced points along certain lines, the projective mappings do not in general preserve equispaced points as in Fig 3 

http://en.wikipedia.org/wiki/Perspective_(graphical)
http://en.wikipedia.org/wiki/Parallel_lines
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Instead they preserve a quantity called the cross ratio of points [11]. Like affine mapping, projective mappings preserve 
lines at all orientations. In fact, projective mappings are the most general line- preserving projective mappings and may be 
concatenating their matrices. Another remarkable property is that the inverse of a projective mappings, which explained by 
reversing the plane-to-plane mapping by which a projective mapping is defined. The matrix for the inverse mapping is the 

inverse or adjoint of the forward mapping. (The adjoint of a matrix is the transpose of the matrix of cofactors [32],

)(det
)(1

M
Madj

M  ). 

 In homogeneous algebra, the adjoint matrix can be used in place of the inverse matrix whenever an inverse transform is 
needed, since the two are scalar multiples of each other, and the adjiont always exits, while the inverse does not if the 
matrix is singular. The inverse transformation: 

dsds Mpp 
 

 

 












































bdaeafcdcebf

ahbgcgaibich

egdhdifgfhei

yx

IFC

HEB

GDA

yxqvu



()

………...… (3.4) 

When mapping a point by the inverse transform we compute (u, v) from (x, y). If 00  qand then we can choose 

1  and calculate: 

            
IyHxG

FEyxD
v

IHyxG

cyBxA
u









 ,

      ……………. (3.5)                   

                                                                                                                      

In an interactive image warper one might specify the four corners of source and destination quadrilaterals with a tablet or 
mouse, and wish to warp one area to the other. This sort of task is an ideal application of projective mappings, but the 
problem is to find the mapping matrix. 

A projective mapping has 8 degrees of freedom which can be determined from the source and destination coordinates of 

the four corners of a quadrilateral. Let correspondence map (finite).To compute the forward mapping matrix sdM , 

assuming that i=1, we have eight equations in the eight unknowns from a to g: 

……(3.6)

kkkkkkk

kk

kk
k yhyvgyufevdu

vhug

fveud
y 






1
…… (3.7) 

For k = 0, 1, 2, 3. This can be rewritten as an 8 x 8 system: 

 

kkkkkkk

kk

kk
k xhxvgxucbvau

vhug

cvbua
x 






1
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……... (3.8) 

This linear system can be solved using Gaussian elimination for the forward mapping coefficients a to h. If the inverse 

mapping is desired instead, then either we compute the adjoint of  sdM  or we follow the same procedure, starting from 

Equ. (3.4)  instead of Equ. (3.1), and solve an 8 x 8 system for coefficients A to H. 

There are more efficient formulas for computing the mapping matrix. The formula above handles the case where the 
polygon is a general quadrilateral in both source and destination spaces. We will consider three additional cases: square-
to- quadrilateral, quadrilateral-to-square, and the general quadrilateral-to-quadrilateral mapping.    

Case1. The system is easily solved symbolically in the special case where the uv quadrilateral is a unit square. If the 
vertex correspondence is as follows: 

Table 1 

 

x
 

 

y
 

 

u
 

 

v
 

 
0y

 

 

0 

 

0 

 1y
 

 

1 

 

0 

2x
 2y

 

1 1 

3x
 

3y
 

0 1 

    

Then the eight equations reduce to:- 

                                                 
0xc

 

                                                 11 xxgca 
 

                                                 222 xxhxgcba 
 

                                                  33 xxhcb 
 

0x

1x
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                                                   0yf 
 

                                                    11 yygfd 
 

                                                   222 yyhygfed 
 

                       

                                                 33 yyhfe 
……………. (3.8) 

                                                                     

If we define  

  3210232211 xxxxxxxxxxx
 

  3210232211 yyyyyyyyyyy
 

Then the solution splits into two sub-cases: 

.00)(   yandxa This implies that the xy polygon is parallelogram, so the mapping is affine, 

and  
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.0,0,,,,,, 0120101201  hgyfyyeyydxcxxbxxa
 

 

00)(   yorxb
. Gives a projective mapping: 
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……………………… (3.9) 

                                         0
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yhyye

ygyyd
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xhxxb

xgxxa













…………………………………………. (3.10) 

This computation is much faster than a straightforward 8 x 8 system solver. Then mapping above is easily generalized to 
map a rectangle to a quadrilateral by pre-multiplying with a scale and translation matrix. 

    Case 2. The inverse mapping, a quadrilateral to a square, can also be optimized. It turns out that the most efficient 
algorithm for computing this is not purely symbolic, as in the previous case, but numerical. We use the square-to-
quadrilateral formulas just described to find the inverse of the desired mapping and then take its adjoint to compute the 
quadrilateral –to-square mapping [11]. 

  Case 3.  Since we can compute quadrilateral-to-square and square-to- quadrilateral mappings quickly, the two mappings 
can easily be composed to yield a general quadrilateral-to-quadrilateral mapping as Fig 4 below. This solution method is 
faster than a general 8 x 8 system solver.  

 

Fig 4: Quadrilateral-to-quadrilateral mapping as a composition of simpler mappings. 

1.4 Comparison of simple mapping 

Affine and projective mappings are closed under composition, but bilinear mappings are not. The three basic mapping 
classes compose as follows: 
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                                                                      Table 2 

    MAP1    MAP2   
Affine Bilinear Projective 

Affine Affine Bilinear Projective 

Bilinear Bilinear Biquadratic Rational Bilinear 

Projective Projective Rational Biquadratic Projective 

 

Thus, the composition of two bilinear mapping is a biquadratic mapping. Since (nonsingular) affine and projective 
mappings are closed under composition, have an identity and inverses and obey the associative law, they each form a 
group under the operation of composition. Bilinear mappings do not form a group in this sense and [12]. 

We summarize the properties of affine, bilinear and projective mappings below: 

                                                                     Table 3 

Property Affine Bilinear  Projective 

Preserves parallel lines 

Preserves lines 

Preserves equispaced points 

Maps square to 

Degrees of freedom 

Closed under composition  

Yes 

Yes 

Yes 

Parallelogram 

6 

Yes 

 

No 

No 

No 

Quadrilateral 

8 

No, biquadratic 

No 

Yes 

No 

Quadrilateral 

8 

Yes 

 

  

From the above table, affine mappings are the simplest of the three classes. If more generality is needed, then projective 
mappings are preferable to bilinear mappings because of the predictability of line preserving  

mappings. For the implementer, the group properties of affine and projective mappings make their inverse mapping as 
easy to compute as their forward mappings. Bilinear mappings are computationally preferable to projective mappings only 
when the forward mapping is used much more heavily than the inverse mapping [13]. 

1.5  Image Mosaicing  

One application for image warping is merging of several images into a complete mosaicing to form a panoramic view. In 
mosaicing, the transformation between images is often not know beforehand [8]. Two images are merged and we will 
estimate the transformation by letting the user give points of correspondence (also called landmarks or fiducially markers) 
in each of the images. In order to recover the transformation, the warping equation so that warping parameters is the 
vector t in [13] and [14]: 

tZx 
…………………………………. (5.1) 
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x 



   ………………………….. (5.2) 

The warping parameters is now obtained by solving the linear system above in 
xp

Zt   where xp (: ) and  

yx (:) are column vectors containing the yandx   coordinates in matlab. 

Mathematical Formulation of parametric warping for video registration [5] and [16] 

Let: 
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(i)  
Tyxx ),(


 denote some pixel coordinates in the image plane, where 










y

x
x


. 

(ii) ),( txI


 be the intensity value for image pixel x


is in same two dimensional images I, taken        

           at same time t.   

(iii) The gray level image gradient at the image point x


is denoted by ),( txx


 .  

      A region I with N pixels after same time T has elapsed is defined finally by: 

                                            
),...,,,( 321 NxxxxI




 

Let f be same transformation relation
22: RRf  . Which is parameterized by the coefficient vector  ,  

))(;( txf 


 denotes the parametric motion of each image pixel x


 in terms of )(t  with m components, which 

)(t  is a set of time variant parameters that need to be estimated in real time [19] and [20].  

...)( 876543210  tatatatatatatataat
 ....... (5.3) 

This transformation called warping can be expressed as: );( xfu


 , )( xfu


  at the same time 

determined by   . 

The transformation called warping can be expressed as: );(),( xfvuu T 
 with the intensity constancy 

constraint, this means that the pixel intensity ravines  even if constant and unchanged its position changed, i.e. 

),(),))(;(( 00 txIttxfI


  as  delay [18].  

For certain image region I, we denote its pixel intensity for each ix


 and time t by: 
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………………………………………. (5.4) 

By making the constant intensity assumption, the motion of image pixels can be represented in terms of their spatial and 
temporal derivation as: 

                    

][)..(),(),(),(),)(( termesorderHighertohtIttMtItttI t  


                           

                                                                         …………………………...…………….…………… (5.5)                                                                                                                     

The above linearization is carried out by Taylor series of tand as: 
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                                                                                      ………….………………………………….. (5.6) 

tI


is the derivative of I


with respect to the component of time parameter t and is written as: 
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M is the Jacobian matrix of I


with respect to  , which N x m matrix of partial derivatives.  
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From the intensity constant constraint, the motion parameter vector of the image region can be estimated at time t by 
minimizing the following least squares error function as[16] and [19]: 

 

                     

  2

00 )),(),),)(;(((),( txItttxfIte




…………………………… (5.7)                         

 

By substituting Equ. (5.5) into Equ. (5.7) and ignoring the higher order terms, we obtain: 

                    

2

0 ),0(),(),(),( tIttIMtIte


 
 …………..……….. (5.8)               

With the additional approximation 
),0(),(),( 0tIttIttI


 

 then  

                         

2

0 ),0(),(),( tIttIMte


 
………………………….. (5.9) 

In this equation, ),0(),( 0tIttI


 can be considered as the distortion errors of warping image.  

Applications  

- One a single image still image.  

- Two views from two different perspectives.  

- panorama photos generated from both still image.   

 

 

 

 

 



   ISSN 2277-3061 
 

4446 | P a g e                                                     M a y  0 9 ,  2 0 1 4  

 

       

 

 

 

 

 

 

 

Fig 4a: One a single image still image 
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Fig 4b: Applying of OpenGL programs on one a single image still image. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5a: Input ( First image and Second image ) 
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Fig 5b: Mosaic image after we apply the model of mosaicing Panorama. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6a: Input ( First image and Second image ) 
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Fig 6b: Mosaic image after we apply the model of mosaicing Panorama. 

 

 

 

Fig 7a: Input ( First image and Second image ) 
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Fig 7b:  Mosaic image after we apply the model of mosaicing Panorama.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8a: Input ( First image and Second image ) 
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Fig 8b: Mosaic image after we apply the model of mosaicing Panorama 

 

 

Fig 9a: Input ( First image and Second image ) 
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Fig 9b: Mosaic image after we apply the model of mosaicing Panorama. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10a: Input ( First image and Second image ) 



   ISSN 2277-3061 
 

4452 | P a g e                                                     M a y  0 9 ,  2 0 1 4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10b: Mosaic image after we apply the model of mosaicing Panorama.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11a: Input ( First image and Second image ) 



   ISSN 2277-3061 
 

4453 | P a g e                                                     M a y  0 9 ,  2 0 1 4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11b: Mosaic image after we apply the model of mosaicing Panorama 

 

 

 

 

 

 

 

 

 

 

 

Fig 12a: Input ( First image and Second image ) 
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 Fig 12b: Mosaic image after we apply the model of mosaicing Panorama 

 

Results 

We show here some examples of panorama photos generated from both still photos by using warping transformation 
method (Affine, Bilinear, Projective, Mosaic, Similarity transformation). Fig. 5 to Fig.12 are generated from both still photos 
and Fig. 4 is generated from the one still image by sing OpenGL codes using model. It is worth to mention that in both 
Fig.5 to Fig.12, overall brightness not changes from images to images, intensity correction is done and blending is added 
to smooth out the transition between the images. 

we obtain a smooth panorama photo without any visually disturbing artifacts. This approach does not prevent a moving 
object from appearing more than once in the image. But then multiple appearances make the picture more dynamic and 
more interesting. We have good method to find third dimensional from two dimensional as panorama and more acquitted.  

Conclusions 

This paper presents techniques to handle some practical issues when generating panorama photos. Realizing the fact that 
there would always be some misalignments between two images no matter how well the matching is done, we propose a 
warping transformation method that finds a line of best agreement between two images, to make the misalignments less 
visible bye using Affine, Bilinear, Projective, Mosaic, Similarity transformation. Also shown in this paper are methods on 
how to find 3D from 2D in three cases: One a single image still image. Two views from two different perspectives. 
panorama photos generated from both still image.  

In the future, we plan to add find 3D from 2D bye anther methods. 
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