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Abstract

In this paper we study three dimensional surfaces in E’ generated by equiform motions of a pseudohyperbolic
surface. The properties of these surfaces up to the first order are investigated. We prove that three dimensional

surfacesin E' ingeneral, is contained in a canal hypersurface, which is gained as envelope of a one-parametric set of
6-dimensional pseudohyperbolic. Finally we give an example.
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1. Introduction

An equiform transformation in the N -dimensional Euclidean space R" is an affine transformation whose linear partis
composed from an orthogonal transformation and a homothetical transformation. Such an equiform transformation

maps points X € R" according to

X+ sAx+d, .5cmAeSO(n),seR",deR". 1)

The number S is called the scaling factor. An equiform motion is defined if the parameters of (1), including S, are
given as functions of a time parameter t. Then a smooth one-parameter equiform motion moves a point X via

X(t) = s(t) A(t)x(t) +d(t) . The kinematic corresponding to this transformation group is called equiform kinematic.

See [2]. Recently, the equiform kinematic geometry has been used in computer vision and reverse engineering of
geometric models such as the problem of reconstruction of a computer model from an existing object which is known (a
large number of) data points on the surface of the technical object [9, 11]. In [8], they studied two-parameter spatial

motions M 2 (/1, ,u) in three dimensional Euclidean space from a differential geometric point of view, which (up to the

second order) instantaneously move on locally one-dimensional point paths. In [1, 12], they studied some first order
properties of cyclic surfaces generated by the equiform motions in five dimensional Euclidian space and
semi-Euclidean space.

In Minkowski (semi-Euclidean) space E* with scalar product <X, Y >=-XY, +X,Y, +X;Y; the pseudosphere
or Lorentz sphere and the pseudohyperbolic surface play the same role as sphere in Euclidean space. Lorentz sphere
ofradius >0 in E® is the quadric

S*(r)={peE®<p, p>=r?}.
This surface is timelike and is the hyperboloid of one sheet — Xf + X22 + X§ = r? which is obtained by rotating the

hyperbola —X12 I X§ =r? in the plane X, = 0 with respect to the X, -axis. The pseudohyperbolic surface is the
quadratic

Hy () ={pecE’:< p,p>=-r’}.
This surface is spacelike and is the hyperboloid of two sheet — Xf + X; + X32 = —r? which is obtained by rotating the
hyperbola X12 —X?? =r? inthe plane X, = O with respect to the X, -axis [10].
In this paper we consider the equiform motions of a pseudohyperbolic surface ko in E". The point paths of the

pseudohyperbolic surface, generate three-dimensional surface, contains the positions of the starting pseudohyperbolic
surface ko . The first order properties of these surfaces for the points of these pseudohyperbolic surfaces have been

studied for arbitrary dimensions N > 3. We restrict our considerations to dimension N'=7 because, at any moment

the infinitesimal transformations of the motion maps the points of the pseudohyperbolic surface ko to the velocity
vectors, whose end points will form an affine image of kc (in general a pseudohyperbolic surface kc). Both these

surfaces are space and therefore span a subspace W of E" with n<7 . Moreover, we show that any

three-dimensional surfaces in E is in general contained in a canal hypersurface, which is gained as envelope of a
one-parametric set of 6-dimensional pseudosphere.

2. Local study in canonical frames

Consider a unit pseudohyperbolic surface ko in the space 7, = [X1X2X3] centered at the origin represented by
X(, ¢) = (cosh ,sinh @sin ¢,sinh #¢0s ¢,0,0,0,0)" ,6 eRand ¢ €[0,27],

the general representation of the motion of three-dimensional surface in E’ foliated by two-dimensional
pseudohyperbolic surface is given by
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X(t,0,0) = st)A)X(0,4) +d(t)t eR e
where d(t) = (b, (t),b, (t),bs(t), b, (t),bs (), b, (t),b, (t))" describes the position of the origin of X° at the
time t, A(t)=(a;(t)). 1<i,j<7 is a semi orthogonal matrix and $(t) provides the scaling factor of the

moving system. Moreover we assume that all involved functions are of class Cl. Using Taylor’'s expansion, up to the
first order then the representation of the motion is given by

X (t, 8, ¢) = {s(0) A(0) +[$(0) A(0) + S(0) A(0)Jt}x(6, #) + d (0) +td (0),

where () denotes differentiation with respect to time (I = 0 ). As an equiform motion has an invariant point, we can

assume without loss of generality that the moving frame E’ and fixed frame X coinciding at the zero position
(t =0), then we have

A0)=1I, s(0)=1 and d(0)=0,
thus
X(t,8,0) =[1 +(s'l + Q)t]x(0,¢) +td’,
where Q= A(O) =(®,),k =1,2,3,...,21 is a semi skew symmetric matrix. In this paper all values of S,b; and

their derivatives are computed at t =0 and for simplicity, we write S’ and b instead of $(0) and bi ()]

respectively. In these frames, the representation of X(t, &, @) is given by

X, 1+s't  te tw, to, to, to, tog cosh ¢ b
X, to, 1+st to, tao, to, to, to, sinh @sin ¢ b,
X, to, -to, 1+st to, to, to, to; sinh &cos ¢ b;
X, _| toy o, —la, 1+st  tw, to, to, 0 i b,
X! to, -to, -to, -to, 1+st to, to, 0 by |
Xs to, -to, -to, -to, -to, 1+st to, 0 bs
Xs to, -to, -to, -to, -to,, -to, 1+s't 0 b’

or in the equivalent form

X, b/} (1+s't to, to,
X, b, to, 1+5s't tw,
X, b; tw, —to, 1+5s't
X4 =t b, + tevs cosh @ + Ly sinh @sin ¢+ ~loy sinh 6 cos ¢
X b, tw, —to, —tw,
Xs bg to, —tw, —tw,
X, b; tw —tw,, —twy,

3)
=t + &, cosh @+, sinh #sin ¢ + &, sinh & cos ¢.
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For any fixed t in the above expression (3), we generally gain an elliptical hyperboloid for € € R and ¢ €[0,27]
centered at the point t(bl', bé , bs', b:l, bé , bé , b;) . The latter elliptical hyperboloid turns to a two-dimensional
pseudohyperbolic surface if éo , é,l and 52 form an orthogonal basis. This gives the conditions

, 0, + ;g + @,y + (OO + W, =~ + (OO P + [OAOR + W5y + (ONO
= —0,0; + Wy + Wy 3+ Wy o0y + WD 5
=0
and
O} + 0F + 0 + 0 + 0 +0f =0} —0F —0) -0} -0y - o,
~ 6022 - (072 - a)lzz - w123 - a)124 - (0125

=a,

where aeR". Thus we get the following equation of the pseudohyperbolic space
7
D & (% —th)? = at® — (1+s't)?,
=

where & =—1,&; = 1,j=2,3,4,5,6,7. The orthogonal projection of these elliptical hyperboloid (t = const . in

(3)) on the space of the starting pseudohyperbolic surface 7, = [X1X2X3], is

X, b} (1+s't to, tw,

X : tew 1+ siaifs : tw, | .

“l=t 2 |+| " |cosh&+ sinh@sing+| ' |sinh&cosg. @)
X, A tw, —toy, 1+st

This equation generalizes in five dimension that happens for ¢ =0. Namely, if ¢ =0 the orthogonal projection of

the elliptical hyperboloid in equation (4) on the space [X1X3] is

X, b/} (1+s't tw,
X, [=t by |+| tw, |cosh@+|1+5s't [sinhé.

This gives Lorentzian circles centered at (tb],th3) and radii by \/| t*a? — (1+s')*].
Corollary 2.1

The projection of the ruled surface of tangent to ko into the original space will give a three-dimensional surface in E?
, which is foliated by elliptical hyperboloids. Now from (4) we have

1+st to, to, cosh@ b/
to, 1+st te, | sinh@sing b,

X(t,60,¢)= ) +
®, —to, 1+s't|sinhédcosgy b,
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and the first partial derivatives are
b/ s o o cosh@
! ’ H H
b; o, s ]| sinh@sing

X, = + ) ,
b @, —w, s |sinh@cosg

X, = (sinh &, cosh @sin ¢,cosh & cos @)’

X, = (0,sinh & cos ¢,—sinh @sin ¢)'.
Then the linearly dependent points

sinh &[—s" —b/ cosh 8 +b; sinh &sin ¢ +b; sinh & cos @] = 0,
we get
sinhg[-s'+<d’,x(8,¢) >] =0.

The latter equation characterizes the instantaneous curve of contact.
3.Tangent pseudosphere of three-dimensional surface in E’
In this section we will how that at any instant t there exists a pseudosphere K(t) , which is tangent to a given
three-dimensional surface (2) in all points of the instantaneous position k(t) of the pseudohyperbolic surface K_ .
Without loss of generality we investigate the situation at the zero position. Any pseudosphere K_ which is tangent to
the given three-dimensional surface (2) along K_ has to contain K_, hence the center of K_ has coordinates
(0,0,0,m,,m,,mg, m,) with m,,m;, M, M, €R. On the other hand since K_ has to be tangent to all velocity

vectors of the motion, the center of K_ has to lie in each of the hyperplanes through the points of k(’[) orthogonal to
these velocity vectors. This gives us the additional condition

m, (b; + @, cosh @ — aw, sinh @sin ¢ — @, sinh & cos ¢)

+m; (b, + @, cosh @ — e, sinh sin ¢ — w,; Sinh & cos ¢)

+ m, (b + w, cosh & — w,, Sinh 8sin ¢ — w, , Sinh 6 cos @) (5)
+m, (b; + @, cosh @ — @, , Sinh @sin ¢ — @, . Sinh 6 cos @)

= —s —b/ cosh @ + b sinh @sin ¢ + b, sinh & cos ¢.

By comparing the coefficients of {1,cosh &,sinh @sin ¢,sinh &cos ¢} in (5), we have the system of linear

equations
BM =H, (6)
where
b, bl by b m, -
w, ®, 0 o m; -b/
B=lw, o 0, o, M=|mgjand H=|-b;|
W, Wz O O m; —b;

If B is aregular matrix, we get
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M = B™H. @)
Therefore, we have the following theorem:
Theorem 3.1

Definition 3.1 Canal hypersurfaces in E" are envelope hypersurfaces of one-parametric sets of pseudospheres.
Therefore, we have the following theorem
Theorem 3.2
3.1 The singular cases
If the system of equations (6) is singular, we have many cases:
case 1. rank(B) =rank(B\H) =3. in this case, we have a one-parametric set of pseudospheres whose
centers fulfil a straight line in the X, Xz X;X; —Space

M =(0,0,0,m,, Xs(m,), X;(M,), X; (M, )),

where
1 ! ! / ! !
Xs(M,) = E[(wswll — 0s0,0)(s'+b,m,) + (bgeoy, — i, ) (by + oM,
+ (D700, = by ) (b + cyym, )],
1 ! ] ! ! !
Xs (M) = E[(a)aa)g —,0,,)(s"+b;m,) + (070, — s, ) (b + w3m,)
+ (b5 — by, ) (0; + M, )],
1 ! ’ ! ! !
X, (m,) = E[(wﬂ’lo — W5, )(S" + ;M ) + (Bs00 — b0 ) (b + @3m, )
+ (bgeo, —bs;)(0; + wm, )],
where

A" = b (w0, — 0s0,) + b5 (050 — 0,0,,) + B (0,0, — ws05),

with arbitrary M, € R. Thus, we get a straight line of possible centers.
case 2. rank(B) =rank(B\H) =2. In this case, we have a two-parametric set of pseudospheres
whose centers fulfil a surface in X, X;Xg X, —Space
M =(0,0,0, m,, Mg, Xg (m4’ m5)1 Xq (m4’ ms))’
where
m, (bsew; — b, ;) + Mg (bsew, —bsews) + (' —biby)
’ ’ !
b, — b,

Xs(M,, my) =
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m, (b0, —bj@,) + My (biw, —bjw,) —(s'w, —bb))

X; (m,,m;) = Do —bo
705 — DgWs

with arbitrary M,, My € R. Thus, we get a surface of possible centers.

case 3. rank(B) =rank(B\H) =1. in this case, we have a hyperplane of possible centers. Case 4.
rank(B) =3 rank(B\ H). In this case we assume

By using the homogenous coordinates
m=A=0, m=0, m,=0, m,=0,
m, = (b; —A03)[bs (w14 — 05 @15) + b5 (@015 = O 15) + 00 (@505 — @0, 0,,) ]
m = (b; — A03)[b; (w15 — wg01,) + bg (W01, — 300, ) + b7 (@300,,) — s,
mg = (by — A05)[0; (0515 — 0y0015) + b5 (0300 — ws,) + b7 (@0, — 305)]

m, = (b; — Ab)[b; (w,@, — vy@,5) + b (w0, — 0,,) + B (030, — 0, 03,)]

Then the centers of the pseudospheres are an ideal point (point at infinity). The corresponding pseudospheres
degenerates into a hyperplane.

case 5. rank(B) =2 = rank(B\ H) . In this case we assume

!
0, o, _ 0 _ O b/
3 4 5 B!

=—2=2=_2=)] Fiﬂ,,

Wy Wy Wy (O )

1) w, w b,

B o Lo . b
o 0 Y g;’&ﬂ

W, w3 0O, O 3

Using the homogenous coordinates

m=A=0, m=0, m,=0, my=0

m, = (Ab) — Aub)[0] (w00, — @41 5) + g (@05 — 1,01 5) + 15 (0 @15 — 00, )]

my = (Ab; — Aub})[b} (w05 — y,01,) + g (01,0, — 1) + 05 (W) — 0y o, ]
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mg = (Ab) — Aub)) [, (@, 5 — wy;5) + 0 (w0015 — 0y 10,,) + 05 (wy 01, — wy0,5)]

m, = (Ab) — A} [, (@, , — @y 015) + b5 (0 @, — 0y0,,) + 0 (w3005 — 0y,
Then we have the same result as in case 4.

Case 6. rank(B) =1+ rank(B\H). In this case the centers of the possible pseudospheres tends to a straight
line at infinity. The corresponding pseudospheres degenerate and formed a pencil of hyperplanes. They contain 4 -
dimensional subspaces, which contains the given starting pseudohyperbolic surface ko and the corresponding

velocity vectors. This leads directly to the well known result in ES, that there is in general will be no series of
pseudospheres tangent to the three-dimensional surfaces.

4. Curve of centers of the pseudospheres

Now, we consider 1 is varying and in this section, we will determine the centers of pseudospheres which contain a
pseudohyperbolic surface k('[) and are tangent to all tangent planes Z'(t,49, ¢) of the three-dimensional surface

(). Let &;(t),i =1,2,...,7 are the column vectors of the matrix A(t), then (2) can be represented in the following
way

X(t,0,9) = s(t)[a,(t) cosh & +a, (t) sinh 8sin g+ a,(t) sinh & cos @] + d (t), ®)

where d(t) is the center of the moving pseudohyperbolic surface and 8, (t),a,(t),a,(t) are three orthogonal

vectors in the space of the moving pseudohyperbolic surface. The velocity vectors of the points of the sphere are given
by

X'(t,0,¢) = [s'(t)a,(t)+s(t)a;(t)]cosh & +[s'(t)a,(t) + s(t)a; (t)]sinh Osin @
+[s'(t)a,(t) +s(t)a; (t)]sinh & cos g+ d'(t).
The equation of the hyperplanes orthogonal to such a path is

YTX'(t,0,4) = X" (t,0,4)X'(t,6,9),

9)

where Y = (yl, Yor Y3 Yar Y55 Ys1 Yy )T is the position vector of an arbitrary point Y in the hyperplane. The scalar
product in the above equation is Lorentz metric. According to the inner product this equation is

YTeX'(t,0,4)= XT(t,0,8)eX'(t,0,8), (10)
-1 0 000 0O
0 100000
0 01 00O0O
where & = 0 001000 is the sign matrix. Substitution of equations (8) and (9) into (10), yields
0 000100
0 00 0OT10O0
0 00 O0O0OOT1
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YT g[s'(t)a,(t)+s(t)al(t)]cosh @ +Y T e[s'(t)a, (t) +s(t)a, (t)]sinh Gsin ¢
+YTe[s'(t)a,(t) +s(t)as(t)]sinh Ocos g+ Y Ted'(t)
= (s(t)a, (t)cosh &+ s(t)a; (t)sinh &sin ¢ +s(t)a] (t)sinh@cosg+dT (t)) a1)
e([s'(t)a, (t) +s(t)a, (t)]cosh & +[s'(t)a, (t) + s(t)a, (t)]sinh &sin ¢
+[s'(t)a, (t) + s(t)a;(t)]sinh &cos ¢ +d'(t)).
since ATéA=¢ and ATgA’ is a skew symmetric matrix, let €, (t) = a; (t)ed’(t), h, (t) = a; (t)ed " (t) and
¢, (t)=a, (t)ed" (t),k =1,2,3. Then by comparing the coefficients of

{1, cosh 8,sinh &sin ¢, sinh @cos ¢} in (11), we obtain
Zgi yibi(t) = Zgibi (Db (1) —s(t)s'(V),
S 0220+ SO Y20 = SOEO + K O)+ SO0,

(12)

S 025110+ Y (0) = SOE 0+ 1,(0) + 01, 0,
(025110450 Y, () = SO0 + 1, (0) + S O )

where & =-1, & =1, ]=2,3,4,56,7. we know from the initial position, that the hyperplanes of the
three-dimensional ~ surfaces contain a  point m(t) foor any t and V6&,¢ such that

m(t) = (0,0,0, m, (t), m, (t), ms(t), m, (t)) is the center of this pseudosphere, then from (12), one can find
FM =Q, (13)
where
b (t) b (t) bs (t) b (t)
s'(t)a,, +s(t)a,(t) s'(t)ags; +s(t)as,(t) s'(t)ag, +s(t)ag(t) s'(t)a;, +s(t)ay,(t)
F=|s'(Da, +s(t)aj,(t) s'(t)as,+s(t)as,(t) s'(t)ag, +s(t)ag(t) s'(t)a,,+s(t)a,(t) |
s'(t)a,; +s(t)ag(t)  s'(ag; +s(t)ass(t)  s'(ag +s(t)ag(t) s'(t)ays +S(t)az,(t)

m, (t) i‘gi by ()b; (t) —s(t)s'(t)
ms (1) S (e, (1) +h (1) + 5O, (1)
M =] mg(t) | and Q= s(t)(e,(t)+h,(t))+s'(t)2,(t) |
m; (t) S(t)(&, (1) + hy (1)) + /(1) 24 (1)
If F is aregular matrix, we get
M = Fle. (14)
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Therefor, the coordinates of the centers of the pseudospheres in the fixed frame at any instant t are given by
M, 0
, 0

0
m, (t)
ms (t)
mg (t)
m, (t)

w

= s(t)A(t) +d(t). (15)

[$2]

(2]

ZZZQZZZ

~

Theorem 4.1

Example 1
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