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ABSTRACT 

Wavelet analysis being a relatively new subject of study is being explored, all around the globe, using various 
mathematical tools, currently available. This paper is a humble attempt to provide a comprehensive study of the same, by 
means of exhaustive mathematical analysis. Since frame theory has been established as a standard notion in applied 
mathematics, so it was used as the analytical tool to explain the formation, purpose and use of wavelets. The theoretical 
explanation follows the mathematical analysis, which is an attempt to give picture the „theorems‟, „definitions‟ and the 
„lemmas‟. 
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INTRODUCTION 

A standard way of modelling both the physical and the virtual worlds is by writing systems of equations. General systems 
of equations are hard to deal with in a systematic fashion: they are tough to solve practically, and also difficult to analyse 
theoretically. The so called linear system turns out to be a nice exception: they are relatively straightforward to solve 
practically, and their theoretical analysis is supported by a rich and powerful theory. This paper covers the short-time 
Fourier transform, which is frequently utilized for non-stationary signal analysis. Although a powerful tool, it has some 
limitations in analysing time-localized events. The wavelet transform has similarities with the short-time Fourier transform, 
but it also possesses a time-localization property that generally renders it superior for analysing non-stationary 
phenomena. In this paper, we review the Fourier and short-time Fourier transforms, discuss some often desirable 

properties that the short-time Fourier transform does not possess, and introduce the wavelet transform. Moreover, the 
concepts of wavelet transforms are analysed using the frame theory concepts.  

TIME FREQUENCY ATOMS 

The basic property of the Fourier transform is that any signal and its Fourier transform when mapped onto the σ𝑡  X 

σ𝜔 domain is localised to a box of minimum area half i.e, a signal localised in time cannot have compact support in 

frequency and vice-versa [13]. The mathematical proofs and explanations supporting this claim are given below. A linear 
time-frequency transform correlates the signal with a family of waveforms that are well concentrated in time and in 
frequency. These waveforms are called time-frequency atoms. Let us consider a general family of time-frequency atoms    

{𝜙𝛾}𝛾𝜖𝑁 where  𝛾  might be a multi-index parameter. We suppose that      𝜙𝛾𝜖𝕃2(ℝ)       and that || 𝜙𝛾  || = 1. The 

corresponding linear time-frequency transform of 𝑓𝜖𝕃2(ℝ)    is defined by[13]: 

 

𝑇 𝑓 =  𝑓 𝑡 𝜙𝛾
 𝑡         𝑑𝑡 =< 𝑓, 𝜙𝛾

∞

−∞
> (1.0) 

If     𝜙𝛾(𝑡)   is nearly zero when 𝑡 is outside a neighbourhood of an abscissa𝑢, then < 𝑓, 𝜙𝛾 >depends only on the 

values of 𝑓 in this neighbourhood. Similarly, if  𝜙𝛾
 (𝜔)     is negligible for 𝜔 far from 𝜁  then the right integral of (1.0) proves 

that < 𝑓, 𝜙𝛾 > reveals the properties of   𝑓   in the neighbourhood of𝜁. Here 𝑢 and 𝜁 are the means of 𝑓 𝑡  and its Fourier 

transform 𝑓. 

Heisenberg Boxes[6] 

The slice of information provided by  < 𝑓, 𝜙𝛾 >       is represented in a time-frequency plane  (𝑡, 𝜔)   by a region whose 

location and width depends on the time-frequency spread of    𝜙𝛾    [13] .Since, 

 |𝜙𝛾| =   𝜙𝛾
 𝑡  

2∞

−∞

𝑑𝑡 = 1                                           

We interpret ||𝜙𝛾||2 as a probability distribution centred at, 

  𝑢𝛾 =  𝑡
∞

−∞
 𝜙𝛾

 𝑡  
2

𝑑𝑡. 

The spread around 𝑢𝛾  is measured by the variance, 

𝜎𝑡
2 𝛾 =  (𝑡 − 𝑢𝛾)2  𝜙𝛾

 𝑡  
2∞

−∞

𝑑𝑡 

The Parseval‟s Identity proves that, 

  𝜙𝛾
     𝜔  

2∞

−∞

𝑑𝜔 = 2𝜋||𝜙𝛾||2 

The centre frequency of 𝜙𝛾
     𝜔  is therefore defined by   𝜉𝛾 =

1

2𝜋
 𝜔

∞

−∞
 𝜙𝛾
     𝜔  

2

𝑑𝜔 

And its spread around 𝜉𝛾  is, 
   𝜎𝜔

2

 𝛾 =  (𝜔 − 𝜉𝛾 )2  𝜙𝛾
     𝜔  

2

𝑑𝜔
∞

−∞
. 

It can be proved rigorously that the 𝜎𝑡
2 𝛾 𝜎𝜔

2 𝛾  for any signal which obeys the Fourier transformability criteria is greater 

than = 
1

2
 .Consequently there is a limit to the amount of localization that a signal can achieve in both the time and 

frequency domains leading to the representation of a signal as boxes in the 𝜎𝑡𝑋𝜎𝜔  plane called Heisenberg Boxes. 

This is shown as in the figure below. 
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Figure 1: Heisenberg‟s uncertainty box 

The time-frequency resolution of 𝜙𝛾    is represented in the time-frequency plane  (𝑡, 𝜔)     plane by a Heisenberg box 

centred at    (𝑢𝛾 , 𝜉𝛾 )      whose width along time is  𝜎𝑡     and whose width along frequency is     𝜎𝜔 .The Heisenberg 

uncertainty Theorem proves that the area of the rectangle is at least  
1

2
. i.e. 

σωσt ≥
1

2
 [6]    

This limits the joint resolution of  𝜙𝛾    in time and frequency. The time-frequency plane must be manipulated carefully 

because a point  (𝑡0, 𝜔0)        is ill-defined.  There is no function that is perfectly well concentrated at a point   𝑡0   and a 

frequency   𝜔0    .Only rectangles with area at least   
1

2
 may correspond to time-frequency atoms. 

THE FOURIER TRNSFORM AND THE SHORT TIME FOURIER TRANSFORM 

The Fourier transform is best suited to analyse stationary periodic functions-those that exactly repeat themselves once per 
period, without modification [15]. It provides a single spectrum for the whole signal. For non-stationary signals we are 
interested in the frequencies that are dominant at any given time. For example, we perceive a musical melody as a 
succession of notes, each with its own frequency spectrum, rather than as one big signal with an overall spectrum. To 
analyse such signals, we may turn to the short-time Fourier transform. 

The short-time Fourier transform (or STFT) of a function at some time t is the Fourier transform of that function as 
examined through some time-limited window centred on t. A different Fourier transform exists for each position t of the 
window. These transforms, produced by sliding the examination window along in time, constitute the STFT. 

If the examination window simply omits the signal outside the window, two problems are encountered. One is the sudden 
change in the power spectrum as a discontinuity enters or leaves the window, compounded by a lack of sensitivity to the 
position of the discontinuity within the window. The other problem is spectral leakage: if some component of the signal has 
a cycle time which is not an integral divisor of the window width, the transform exhibits spurious response at many 
frequencies. These problems are ameliorated by attenuating samples away from the centre of the window, by a 

"windowing function," g. An example of a windowing function is the Gaussian, 𝑒−𝑎𝑡2
, for some constant a. mathematically, 

the STFT at time T is given by: 

 𝑓 𝜔, 𝜏 =  𝛿 𝑡 − 𝑡0 𝑔 𝑡 − 𝜏 𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 

The response of the STFT, centered at time 𝜏 = 𝜏0       , to an impulse function 𝛿 𝑡 − 𝑡0 occurring at time t 

=𝑡0is given by: 

𝑓 𝜔, 𝜏0 =  𝛿 𝑡 − 𝑡0 𝑔 𝑡 − 𝜏0 𝑒−𝑖𝜔𝑡
∞

−∞

𝑑𝑡 = 𝑔 𝑡0−𝜏0 𝑒−𝑖𝜔𝑡0  

The power spectrum of the STFT is𝑔2 𝑡0 − 𝜏0   . As shown in figure , the power spectrum is the same for all frequencies. 
The cross-section of the transform at constant frequency produces a time-reversed copy of the windowing function. Thus, 
the width (standard deviation) of the windowing function limits the accuracy with which the impulse can be located in time. 

Although the STFT windowing function's width is constant, its impact varies with frequency. At high frequencies the 
number of waves in a window is high, producing good accuracy in frequency measurement; yet the window width prevents 
good localization of signal discontinuities, which the high frequencies otherwise could provide. Narrowing the window width 
to accommodate more precise time-localization of discontinuities causes other problems. A narrow window width is 
inappropriate at low frequencies, because a narrow windowing function spans fewer cycles. It distorts the signal noticeably 
over. 
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Figure 2: THE STFT of the inpulse function using the Gaussian window, centred at 0. 

One wavelength, degrading accuracy of frequency measurement. Indeed, wavelengths longer than the 
window width cannot be measured. From these considerations it seems advantageous to let the windowing 
function be broad for analysing low frequencies and narrow for high frequencies. 

For example let us analyse the following wave using STFT, there are four frequency components at different times. The 
interval 0 to 250 ms is a simple sinusoid of 300 Hz, and the other 250 ms intervals are sinusoids of 200 Hz, 100 Hz, and 50 
Hz, respectively. Apparently, this is a non-stationary signal. We will be using a Gaussian window w(t) to evaluate the 
STFT, where, 

 

𝑤 𝑡 = 𝑒
(−𝑎 

𝑡2 

2
 )

 

 

 

Figure 3: Multi-frequency wave 

The size of the window is a function which varies as „a‟, the below figure shows different windows for different values of the 
variable „a‟. 
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Figure 4: The window function. 

First we will compute the STFT with a=.01, the STFT plot is shown below. Note that the four peaks are well separated from 
each other in time. Also note that, in frequency domain, every peak covers a range of frequencies, instead of a single 
frequency value. 

 

Figure 5: STFT with a=.01 

 

Now the STFT of the above mentioned wave with a=.0001 will be: 

 

Figure 6: STFT of the above signal with a=0.0001 

Note that the peaks are not well separated from each other in time, unlike the previous case, however, in 
frequency domain the resolution is much better. Now let's further increase the width of the window, and see 
what happens: 
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Figure 7: STFT with a=.00001 

These examples should have illustrated the implicit problem of resolution of the STFT Narrow windows give good time 
resolution, but poor frequency resolution. Wide windows give good frequency resolution, but poor time resolution; 
furthermore, wide windows may violate the condition of stationarity. 

CHOICE OF WINDOWS 

As we have seen before using the stft the σ𝑡  X σ𝜔domain is divided into an infinite no. of Heisenberg boxes the union of 

which gives a entire domain as proved by Banach Tarski Theorem. But we wish to reconstruct this space by using 
Heisenberg‟s boxes of constant area but of different lengths and widths. The main motivation behind is that according to 
the uncertainty principle the greater the localisation in time the smaller the localisation in the frequency domain, we wish to 
utilize this property using a new transform with a kernel of compact support, the support of which can be dilated depending 
on a dilatation parameter, so that we may control the localization in time of the windowed transform, at will. This leads us 
to the continuous wavelet transform. 

WAVELET TRANSFORM 

To analyse signal structures it is necessary to use time frequency atoms with varying time supports. The Wavelet 

transform decomposes signals over dilated and translated wavelets. a wavelet is a function 𝜓𝜖𝕃2(ℝ)       with zero 

average [6]: 

  𝜓(𝑡)∞

−∞
𝑑𝑡 = 0 

It is normalised and centred in the neighbourhood of 𝑡 = 0.a family of time-frequency atoms is obtained by scaling 𝜓 by 𝑠 

and translating it by: 

 𝜓
𝑠,𝑡

 𝑡 =
1

 𝑠
𝜓(𝑡−𝑠

𝑠
) 

These atoms remain normalised. The Continuous Wavelet Transform of a function 𝑓𝜖𝕃2(ℝ)  is thus given by: 

𝑊𝑓 𝑢, 𝑠 =< 𝑓, 𝜓
𝑠,𝑡

>  =  𝑓(𝑡)
1

 𝑠
𝜓∗(

𝑡 − 𝑠
𝑠

)
∞

−∞

𝑑𝑡 

Its time frequency resolution depends on the time-frequency spread of the wavelet atoms𝜓
𝑠,𝑡

. We suppose that 

𝜓𝑖𝑠𝑐𝑒𝑛𝑡𝑟𝑒𝑑𝑎𝑡 0 i.e. 𝜓𝑠,𝑡 𝑖𝑠𝑐𝑒𝑛𝑡𝑟𝑒𝑑𝑎𝑡𝑡 = 𝑢 . With the change in variable 𝑣 =
𝑡−𝑢

𝑠
 we see that: 

 

 (𝑡 − 𝑢𝛾 )2|𝜓
𝑠,𝑡

 𝑡 |2∞

−∞
𝑑𝑡 = 𝑠2𝜎𝑡

2 ,  

 

Where,  

𝜎𝑡
2 =  (𝑡)2|𝜓

𝑠,𝑡
 𝑡 |2∞

−∞
𝑑𝑡. 

Similarly with respect to the Fourier of 𝜓 denoted by 𝜓  it is centred at 𝜂. The energy spread of a wavelet time frequency 

atom 𝜓𝑠,𝑡  thus corresponds to a Heisenberg box centred at (𝑢,
𝜂

𝑠
) of size 𝑠𝜎𝑡  along the time axis and 

𝜎𝜔

𝑠
 along frequency. 

The area of the rectangle remains equal to 𝜎𝑡𝜎𝜔  at all scales but the resolution in time and frequency becomes dependent 

on 𝑠. 
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We have thus obtained the expression for the CWT which can be used to obtain windowed Fourier transforms of varying 

time support for any Fourier transformable signal. Now intuitively we can say that the 𝜎𝑡𝑋𝜎𝜔  plane can be divided into 

many such Heisenberg boxes using wavelet atoms of varying scale which gives us the entire frequency characterisation of 
the signal at any time.  

This is exactly the approach used in the Discrete Wavelet Transform in which we sample the shift 𝜏 and scaling parameter 

𝑠 to get orthogonal expansions of wavelet bases along which the projections of the signal are taken. Understanding of this 

method requires the Frame Theory approach, the basic theorems of which are provided in the following section. 

FRAME THEORY APPROACH 

The Fourier transform has been a major tool in analysis for over 100 years. However, it solely provides frequency 
information, and hides (in its phases) information concerning the moment of emission and duration of a signal. D. Gabor 
resolved this problem in 1946 [92] by introducing a fundamental new approach to signal decomposition. Gabor‟s approach 
quickly became the paradigm for this area, because it provided resilience to additive noise, quantization, and transmission 
losses as well as an ability to capture important signal characteristics. Unbeknownst to Gabor, he had discovered the 
fundamental properties of a frame without any of the formalism.  

In 1952, Duffin and Schaeffer  were studying some deep problems in nonharmonic Fourier series for which they required a 
formal structure for working with highly overcomplete families of exponential functions in L2[0, 1]. For this, they introduced 
the notion of a Hilbert space frame, in which Gabor‟s approach is now a special case, falling into the area of time-
frequency analysis . Much later—in the late 1980s—the fundamental concept of frames was revived by Daubechies, 
Grossman and Mayer [3][5][6][8], who showed its importance for data processing. Traditionally, frames were used in signal 
and image processing, nonharmonic Fourier series, data compression, and sampling theory. But today, frame theory has 
ever-increasing applications to problems in both pure and applied mathematics, physics, engineering, and computer 
science, to name a few.  

Thus a typical frame possesses more frame vectors than the dimension of the space, and each vector in the space will 
have infinitely many representations with respect to the frame. It is this redundancy of frames which is key to their 
significance for applications. The role of redundancy varies depending on the requirements of the applications at hand. 
First, redundancy gives greater design flexibility, which allows frames to be constructed to fit a particular problem in a 
manner not possible by a set of linearly independent vectors.. A second major advantage of redundancy is robustness. By 
spreading the information over a wider range of vectors, resilience against losses (erasures) can be achieved. Erasures 
are, for instance, a severe problem in wireless sensor networks when transmission losses occur or when sensors are 
intermittently fading out. A further advantage of spreading information over a wider range of vectors is to mitigate the 
effects of noise in the signal. 

DEFINATION OF FRAMES 

The definition of a (Hilbert space) frame originates from early work by Duffin and Schaeffer on nonharmonic Fourier series. 
The main idea, is to weaken Parseval‟s identity and yet still retain norm equivalence between a signal and its frame 
coefficients.Some of the basic results of finite frame theory are given here without proof.For proofs of the same refer to 
[16]. 

Definition  [16] A family of vectors (𝜑𝑖)𝑖=1
𝑀 𝑖𝑛ℋ𝑁 is called a frame for 𝐴| 𝑥 |2 ≤  | < 𝑥, 𝜑𝑖 > |2 ≤ 𝐵| 𝑥 |2𝑀

𝑖=1   for all 

x ϵℋ𝑁 , if   there exist constants       𝐴 and  𝐵such that,  

0 < 𝐴 ≤ 𝐵 < ∞. 

The following notions are related to a frame :-. 

(a) The constants A and B) are called the lower and upper frame bound for the frame, respectively. The largest lower 
frame bound and the smallest upper frame bound are denoted by Aop, Bop and are called the optimal frame bounds. 

(b) Any family (𝜑𝑖)𝑖=1
𝑀 satisfying the right-hand side inequality is called a B-Bessel sequence. 

(c) If A = B is possible then (𝜑𝑖)𝑖=1
𝑀 is called an A-tight frame. 

(d) If A = B = 1 is possible i.eParseval‟s identity holds, then  (𝜑𝑖)𝑖=1
𝑀  is called a Parseval frame. 

(e) If there exists a constant c such that  𝜑𝑖  = 𝑐for all i= 1, 2, . . . , M, then (𝜑𝑖)𝑖=1
𝑀 is an equal norm frame. If c= 1, 

(𝜑𝑖)𝑖=1
𝑀  is a unit norm frame. 

(f) The values (< 𝑥, 𝜑𝑖 >) for al M are called the frame coefficients of the vector 𝑥with respect to the frame (𝜑𝑖)𝑖=1
𝑀 We 

can immediately make the following useful observation. 

LemmaLet (φi)i=1
M be a family of vectors in ℋN     . 

If (φi)i=1
M is an orthonormal basis, then (φi)i=1

M is a Parseval frame. The converse is not true in general. 
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FRAME AND OPERATORS 

We set ℓ2
𝑀 =  ℓ2(1,2, … 𝑀). Note that this space in fact coincides with ℝ𝑀𝑜𝑟ℂ𝑀or     endowed with the standard inner 

product and the associated Euclidean norm. The analysis, synthesis, and frame operators determine the operation of a 
frame when analyzing and reconstructing a signal.  

Analysis and Synthesis Operators: - Two of the main operators associated with a frame are the analysis and synthesis 
operators. The analysis operator—as the name suggests—analyzes a signal in terms of the frame by computing its frame 
coefficients. We start by formalizing this notion. 

Definition  [16] Let(𝜑𝑖)𝑖=1
𝑀 be a family of vectors in ℋ𝑁 . Then the associated analysis operator 𝑇 ∶  ℋ𝑁 → ℓ2

𝑀
 

is defined by : 

𝑇𝑥 = (< 𝑥, 𝜑𝑖 >)𝑖=1
𝑀 𝑎𝑛𝑑𝑥𝜖ℋ𝑁  

In the following lemma we derive two basic properties of the analysis operator. 

LemmaLet (𝜑𝑖)𝑖=1
𝑀 be a sequence of vectors inℋ𝑁with associated analysis operator T . 

(i) We have: 

| 𝑇𝑥 |2 =   | < 𝑥, 𝜑𝑖 > |2𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖ℋ𝑁

𝑀

𝑖=1

 

Hence, Let(𝜑𝑖)𝑖=1
𝑀 is a frame for ℋ𝑁  if and only if 𝑇is injective. 

ii) The adjoint operator of  𝑇𝑖𝑠𝑇∗ ∶  ℓ2
𝑀 → ℋ𝑁  which is given by: 

 

  𝑇∗(𝑎𝑖)𝑖
𝑀 =  𝑎𝑖𝜑𝑖

𝑀
𝑖  

Definition: Let   (𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in  ℋ𝑁with associated analysis operator 𝑇. Then the associated 

synthesis operator is defined to be the adjointoperator 𝑇∗. 

The next result summarizes some basic, yet useful, properties of the synthesis operator. 

Lemma 1.4 Let(𝜑𝑖)𝑖=1
𝑀 be a sequence of vectors in ℋN with associated analysis operator.𝑇 

(i) Let (𝑒𝑖)𝑖
𝑀denote the standard basisofℓ2

𝑀
. Then for all i= 1, 2. . . M, we have  

where𝑇∗𝑒𝑖 = 𝑇∗𝑃𝑒𝑖 = 𝜑𝑤𝑕𝑒𝑟𝑒𝑃 ∶  ℓ2
𝑀 → ℓ2

𝑀
denotes the orthogonal projection onto ran T 

(ii) (𝜑𝑖)𝑖=1
𝑀 is a frame if and only if 𝑇∗is surjective. 

We observe that the analysis operator maps from a space of dimension N to a space of dimension M where necessarily 

𝑀 ≥ 𝑁 and again the synthesis operator maps from a space of dimension M to a space of dimension N. Hence both 

operators are non-invertible. To get an invertible expression which is our final goal, we concatenate the two operators 
which maps from a space of dimension N to a space of dimension N and has both the properties of T and T* i.e. it is 
injective as well as surjective thus bijective hence invertible. Hence using this operator we can decompose a vector into its 
frame coefficients and recover the entire information from these coefficients using the inverse operator. This operator is 
thus called the Frame operator. 

FRAME THEORY 

The frame operator might be considered the most important operator associated with a frame. Although it is “merely” the 
concatenation of the analysis and synthesis operators, it encodes crucial properties of the frame, as we will see in the 
sequel. Moreover, it is also fundamental for the reconstruction of signals from frame coefficients. 

Fundamental properties: 

The precise definition of the frame operator associated with a frame is as follows. 

Definition Let(𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in  ℋ𝑁with associated analysis operator  T .Then the associated frame 

operator 𝑆 ∶  ℋ𝑁 → ℋ𝑁    is defined as 

𝑆𝑥 = 𝑇𝑇∗𝑥 =  < 𝑥, 𝜑𝑖 > 𝜑𝑖𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖ℋ𝑁

𝑀

𝑖=1

 

A few very important properties of the frame operator are : 

(i). Let(𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in  ℋ𝑁with associated frame operator  S,then  
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< 𝑆𝑥, 𝑥 > =  | < 𝑥, 𝜑𝑖 > |2𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖ℋ𝑁

𝑀

𝑖=1

 

Clearly, the frame operator 𝑆 =  𝑇𝑇∗ is self-adjoint and positive. The most fundamentalproperty of the frame operator—if 

the underlying sequence of vectors formsa frame—is its invertibility, which is crucial for the reconstruction formula. 

(ii).The frame operator S of a frame (𝜑𝑖)𝑖=1
𝑀 with frame bounds A and B 

is a positive, self-adjoint invertible operator satisfying 

𝐴 · 𝐼𝑑 ≤ 𝑆 ≤ 𝐵 · 𝐼𝑑 

(iii).If (𝜑𝑖)𝑖=1
𝑀 is a Parseval Frame then both𝑆𝑎𝑛𝑑𝑇are isometries . 

The analysis of a signal is typically performed by merely considering its frame coefficients.However, if the task is 
transmission of a signal, the ability to reconstruct thesignal from its frame coefficients and also to do so efficiently becomes 
crucial.An exact reconstruction strategy utilises the fdact that the Frame operator is invertible.Due to this invertibility the 
Inverse of the Frame operator itself forms a fame operator which can be associated with a frame called the dual frame. 
The definitions are given below. 

Theorem . Let(𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in  ℋ𝑁with associated frame operator  S,then for every 𝑥𝜖ℋ𝑁  we have  

 𝑥 =   < 𝑥, 𝜑𝑖 > 𝑆−1𝜑𝑖 =  < 𝑥, 𝑆−1𝜑𝑖 > 𝜑𝑖
𝑀
𝑖=1

𝑀
𝑖=1  

This theorem leads directly to the result that the sequence If (𝑆−1𝜑𝑖)𝑖=1
𝑀  forms a frame for ℋ𝑁  with frame bounds 

𝐴−1𝑎𝑛𝑑𝐵−1. 

Formallthi s can be written as a proposition : 

Let Let(𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in  ℋ𝑁with associated frame operator  S,then the sequence (𝑆−1𝜑𝑖)𝑖=1

𝑀  is a 

frame in ℋ𝑁  with frame bounds 𝐴−1𝑎𝑛𝑑𝐵−1and with frame operator𝑆−1. 

This new frame is called the Canonical Dual Frame.[16] 

Definition : 

Let (𝜑𝑖)𝑖=1
𝑀  and (𝜓𝑖)𝑖=1

𝑀  be frames in ℋ𝑁  and let 𝑇𝑎𝑛𝑑𝑇 Be the analysis operators of the two frames respectively.then the 

following conditions are equivalent : 

I)𝑥 =   < 𝑥, 𝜓𝑖 >𝑀
𝑖=1 𝜑𝑖𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖ℋ𝑁  

II)𝑥 =   < 𝑥, 𝜑𝑖 >𝑀
𝑖=1 𝜓𝑖𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖ℋ𝑁  

III)𝑇∗𝑇 = 𝑇 𝑇∗ = 𝐼 

With respect to the last property in case of parseval frames we see that due to isometric property of the analysis operator 
the synthesis operator of the dual frame is the same as the analysis operator.thus it is seen that for Parseval Frames the 
canonical dual frame and the original frame are the same. 

Mathematician Ingrid Daubechies proved that Wavelet frames(explained shortly) are parseval frames. It is on this property 
that we base the entirety of our treatment of the DWT.[2] 

The treatment of frame theory as given above deals entirely with finite dimensional Hilbert spaces.But for application to 
wavelets we will need to use subsets of the general.Hilbert space which are infinite dimensional by nature.The extension of 
finite frames and all results regarding these can be extended to infinite dimensional frames using transfinite theorems such 
as Zorn‟s lemma and other more involved mathematical reasoning. The proof of this extension is beyond the scope of this 
paper. We will thus suffice to say that all results regarding finite frames which have been previously explored are equally 
applicable to infinite frames. 

An intuitive explanation of this can be given as follows : 

A Riesz basis be it finite or infinite dimensional is given by the definition 𝐴| 𝑥 |2 ≤  | < 𝑥, 𝜑𝑖 > |2 ≤ 𝐵| 𝑥 |2 for all 𝑥 𝜖 ℋ 

.Notice here we have used  and not ℋ𝑁 . This definition of the Riesz basis is extremely similar to that of finite frames and 

it is indeed true that all properties regarding finite fames can be extended to such a basis. 

That wavelet bases are indeed Riesz bases was also proved by Ingrid Daubechies in her paper [2]. 

MULTIRESOLUTION ANALYSIS 

In our previous treatment of the CWT we mentioned that intuitively it can be conceived that the entire plane be converged 
using Heisenberg boxes of varying localisation in time and frequency. This is essentially same as saying that we want to 

construct orthonormal wavelet bases that are complete in  ℋ. One way to do this is to sample the scaling parameter and 
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the shifting parameter in the CWT as 𝑠 → 𝑛𝑠0  and 𝜏 → 𝑚𝑡0.Where m and n are integers . Thus the continuous wavelet 

transform becomes  

   𝑓(𝑡)
1

 𝑠
𝜓∗(

𝑡−𝑚𝑡0

𝑛𝑠0
)

∞

−∞
𝑑𝑡 

For all 𝑚𝑎𝑛𝑑𝑛 we can cover the entire plane. It is convenient to characterise 𝑚𝑎𝑛𝑑𝑛as 2𝑗 .Where, j is an integer [6] [7]. 

Each 2−𝑗  is called a resolution.But this approach leads us to the novel idea of multiresolutions described as follows.The 

term multiresolutions was first used by Mallat and much more comprehensive  analysis can be found in his book [6] and 
the paper by Meyer [7] . 

Our search for orthogonal wavelets begins with multiresolution approximations. For 𝑓𝜖𝕃2(ℝ)   the partial sum of wavelet 

coefficients  < 𝑓, 𝜓𝑗 ,𝑛 > 𝜓𝑗 ,𝑛
∞
−∞ can indeed be interpreted as the difference between two approximations of 𝑓 at the 

resolutions 2−𝑗 +1and 2−𝑗 Multiresolution approximations compute the approximation of signals at various resolutions with 

orthogonal projections on different spaces 𝑉𝑗  . Adapting the signal resolution allows one to process only the relevant 

details for a particular task. The approximation of a function 𝑓 at a resolution 2𝑗  is specialised by a discrete grid of samples 

that provides local averages of 𝑓 over neighbourhoods of size proportional to 2𝑗 .A multiresolution approximation thus 

composed of embedded grids of approximations. More formally the approximation of a function at a resolution 2𝑗  is 

designed as an orthogonal projection on a space 𝑉𝑗 .The space 𝑉𝑗 regroups all possible approximations at the resolution 

 2−𝑗 . The orthogonal projection of 𝑓 is the function 𝑓𝑗 ⊂ 𝑉𝑗  that minimizes ||𝑓 − 𝑓𝑗 || .  

The following definition introduced by Mallat and Meyer[6][7] specifies the mathematical properties of multiresolution 
spaces. 

Definition Multiresolutions: A sequence {𝑉𝑗 } of closed sub spaces of 𝕃2(ℝ)   is a multiresolution approximation if the 

following properties are satisfied : 

𝑓𝑜𝑟𝑎𝑙𝑙 𝑗. 𝑘 , 𝑓 𝑡 ∈ 𝑉𝑗 ⟺ 𝑓 𝑡 − 2𝑗 𝑘 ∈ 𝑉𝑗           (1) 

𝑉𝑗 +1 ⊂ 𝑉𝑗                (2) 

𝑓 𝑡 ∈ 𝑉𝑗 ⟺ 𝑓  
𝑡

2
 ∈ 𝑉𝑗    (3) 

lim𝑗→−∞ 𝑉𝑗 =   𝑉𝑗
∞
−∞ =  0               (4) 

lim𝑗→−∞ 𝑉𝑗 =  𝑉𝑗 =∞
−∞ 𝕃2(ℝ)          (5) 

[6] 

An intuitive explanation of these mathematical properties : Property (1) means that 𝑉𝑗  is invariant by any translation 

proportional to the scale 2𝑗 . This space can be assimilated to a uniform grid with intervals 2𝑗  which characterizes the 

signal approximation at the resolution 2−𝑗  The inclusion (2) is a causality property which proves that an approximation at a 

resolution 2−𝑗  contains all the necessary information to compute an approximation at a coarser resolution 2−𝑗  Dilating 

functions in 𝑉𝑗  by  enlarges the details by 2 and (3) guarantees that it defines an approximation at a coarser 

resolution2−𝑗−1 When the resolution 2𝑗 goes to 0. (4) implies that we lose all the details of 𝑓and 

lim
𝑗→−∞

|  𝑓 − 𝑃𝑉𝑗
𝑓 | = 0 . 

On the other hand_ when the resolution 2𝑗 goes to  property (5) Imposes  that the signal approximation converges to the 

original signal. 

lim
𝑗→−∞

  𝑓 − 𝑃𝑉𝑗
𝑓  = 0 

TheoremThere exists 𝜙such that  𝜙(𝑡 − 𝑛)is a Riesz basis of 𝑉0. This theorem is the final key in our puzzle as Riesz 

bases are what we have characterised before as FRAMES. 

Thus this theorem provides us with the result: 

There exist A>0 and B such that : 

𝑓 𝑡 =   𝑎 𝑛 𝜙(𝑡 − 𝑛)∞
𝑛=−∞ with 𝐴| 𝑓 |2 ≤  | < 𝑎[𝑛] > |2 ≤ 𝐵| 𝑓 |2𝑀

𝑖=1 . 

This existence theorem provides the mathematical basis for the existence of wavelet frames. It proves that wavelet bases 
provide a stable signal representation.It can be proved that wavelet bases as we have constructed them are Parseval 
frames as they are orthonormal.For computer analysis we use finite frames along a single resolution and characterise the 

signal with the addition of an error function. The details of fat any resolution 2𝑗  is simply a projection of f onto a subspace 
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𝑊𝑗 of 𝕃2(ℝ) . This projection may be formally represented by a projection operator𝑄𝑚 : 𝕃2 ℝ → 𝑊𝑗 . Furthermore, there 

exists another projection operator 𝑃𝑗 : 𝕃2 ℝ → 𝑉𝑗 such that 𝑃𝑗 f is the smoothed version of  f. 

As j increases the resolution of the smoothed version of f becomes coarser, and consequently, the finer detail information 

is contained in the scales corresponding to low values of 𝑗. For any multiresolution analysis the Wjare orthogonal both to 

each other and to 𝑉𝑗 . In addition, assuming that 𝑉0 ⊂ 𝕃2 ℝ we have𝕃2 ℝ =⊕1
𝑀 𝑊𝑗 ⨁𝑉𝑗  

And hence we may write𝑓 =  𝑃𝑗 f +  𝑄𝑗 𝑓
𝑗
1 as our final expression. 

COMPUTATION OF CWT 

Let us compute the CWT of a similar signal for which we computed the STFT, comprising 4 frequencies 30, 20,10,5 Hz. 
The signal is shown below: 

 

Figure 8:A non-stationary signal. 

 Once the mother wavelet is chosen the computation starts   with s=1 and the continuous wavelet transform is   computed 
for all values of s, smaller and larger than ``1''. In this study, some finite intervals of values for s were used, as will be 
described later in this chapter. For convenience, the procedure will be started from scale s=1 and will continue for the 
increasing values of s. This first value of s will correspond to the most compressed wavelet. As the value of s is increased, 
the wavelet will dilate.  

The wavelet is placed at the beginning of the signal at the point which corresponds to time=0. The wavelet function at 
scale ``1'' is multiplied by the signal and then integrated over all times. The final result is the value of the continuous 
wavelet transform at time zero and scale s=1. In other words, it is the value that corresponds to the point tau =0, s=1 in the 
time-scale plane. The wavelet at scale s=1 is then shifted towards the right by tau amount to the location t=tau, and the 
above equation is computed to get the transform value at t=tau, s=1 in the time-frequency plane.  

This procedure is repeated until the wavelet reaches the end of the signal. One row of points on the time-scale plane for 
the scale s=1 is now completed. Then, s is increased by a small value. Note that, this is a continuous transform, and 
therefore, both tau and s must be incremented continuously. In DWT this corresponds to sampling the time-scale plane. 
The above procedure is repeated for every value of s. Every computation for a given value of s fills the corresponding 
single row of the time-scale plane. When the process is completed for all desired values of s, the CWT of the signal has 
been calculated. 

The figure below illustrates the entire process step by step. At every location, it is multiplied by the signal. Obviously, the 
product is nonzero only where the signal falls in the region of support of the wavelet, and it is zero elsewhere. By shifting 
the signal in time, the signal is localized in time and changing the scale of the signal, s, the signal localized in frequency. 
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Figure 9: scanning the function for s=1 for all t. 

 

Figure 10: scanning the function with lager value of s 

 

Figure 11: scanning the function with even larger value of s 

The transform after being computed will again consist of three axes namely the translation, scale and the amplitude. The 
CWT is shown below: 
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Figure 12: CWT of a non-stationary signal 

Unlike the STFT which has a constant resolution at all times and frequencies, the WT has a good time and poor frequency 
resolution at high frequencies, and good frequency and poor time resolution at low frequencies. In Figure 11, lower scales 
(higher frequencies) have better scale resolution (narrower in scale, which means that it is less ambiguous what the exact 
value of the scale) which correspond to poorer frequency resolution. Similarly, higher scales have scale frequency 
resolution (wider support in scale, which means it is more ambitious what the exact value of the scale is), which 
correspond to better frequency resolution of lower frequencies. 

Biorthogonal wavelets: At first we need to construct an orthogonal family of wavelets that are applicable to images. In the 
analysis so far we have not dealt with any particular family of wavelets but it was clear that we based our analysis 
exclusively with signals in the time domain in mind. The main difference between signals in the time domain and images is 
that signals in the time domain have only one degree of freedom in the sense that their amplitude is a function of only one 
variable that is time. 

For images the amplitude of the signal is a function of two independent coordinates x and y.Thus analysis of images 
requires two independent wavelets, one along the x the other along the y direction, the concatenation of which form a 
family of orthogonal wavelets to which the multiresolution analysis can be extended exactly as it was done previously. 

The biorthogonal family of wavelets offers just such a family of wavelets. 

The construction is as follows: 

Let (𝜑𝑖)𝑖=1
𝑀  be a frame in ℋ𝑁 ,not necessarily a parseval frame, and let (𝜓𝑖)𝑖=1

𝑀  be its Canonical Dual.Then if we create a 

new family of wavelets using the pairs𝜙𝑖𝑗  = <𝜑𝑖 , 𝜓𝑗 > for all M then this family of wavelets creates a Parseval Frame of 

orthogonal wavelets.  

Also it can be proved that the new family of wavelets forms a Riesz basis. The proof of this statement can be found in a 
paper by Ingrid Daubechies. Thus we may use this new family of wavelets having two degrees of freedom in independent 
orthogonal directions and which forms a Riesz basis to apply the DWT to an image. 

In case of the application of the biorthonormal wavelets to an image we state some formal properties; 

I)𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 … where 𝑉𝑖 = 𝑠𝑝𝑎𝑛 {2
𝑗

2𝜙(2𝑗 𝑡 − 𝑘)} 

II)𝑉−1 ⊂ 𝑉0
 ⊂ 𝑉1

 …. Where 𝑉𝑗 = 𝑠𝑝𝑎𝑛 {2
𝑗

2𝜙 (2𝑗 𝑡 − 𝑘)} 

III) <𝜙𝑖𝑗  ,𝜙𝑖′𝑗 ′
 > = 𝛿 𝑖 − 𝑖 ′ 𝛿[𝑗 − 𝑗′] 

The last property is taken as the defining equation for biorthonormality and the two wavelet families (𝜙𝑖𝑗 ) and (𝜙𝑖′𝑗 ′
 ) 

individually form Riesz bases. 

CONCLUSION  

In this paper we have used the methods and theorems of frame theory to describe the construction of orthogonal wavelet 
frames. We have put the theory of wavelets, specifically the discrete wavelet transform in the context of vector algebra 
using frame theory. This analysis makes it easier to understand the DWT in a mathematical context. Algorithms for the 
efficient implementation of wavelet analysis in signal processing and image processing can be derived directly from this 
analysis. The requirement is being only of changing the kind of wavelet based on specific applications, like, edge detection 
in images using bi-orthogonal wavelet bases as well as texture mapping of images. 
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