
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

140 | P a g e w w w . c i r w o r l d . c o m

NLP TOKEN MATCHING ON DATABASE USING BINARY
SEARCH

 Ekta Agrawal Shreeja Nair
Department of of Computer Science & Engineering Department of of Computer Science & Engineering
 Oriental Institute of Technology, Bhopal Oriental Institute of Technology, Bhopal

ABSTRACT
 Natural Language Processing (NLP) is an area of research

and application that explores how computers can be used to

understand and manipulate natural language text or speech

to do useful things. The paper deals with the concept of

database where by the data resources data can be fetched

and accessed accordingly with reduced time complexity.

The retrieval techniques are pointed out based on the ideas

of binary search. A natural language interface refers to

words in its own dictionary as well as to the words in the

standard dictionary, in order to interpret a query. The main

contribution of this investigation is addressing the problem

of improving the accuracy of the query translation process

by using the information provided by the database schema.

Keywords
Binary search (BS), natural language interface (NLI),

database management system (DBMS), structure query

language (SQL), database (DB).

1. INTRODUCTION
With the increasing pervasiveness of computers in society,
there has been an upward trend in the search for human-
computer interfaces for database (DB) that the generality of
end-users find easy to use. A major reason for end-user
difficulty with database system (DB) can be traced to the
types of functionality supported by interfaces for
formulating queries, i.e., to the use of expressions and other
constructs that are far removed from the user's natural view
of his or her application domain. There is a need for DB

languages to use concepts that are as close as possible to
those in the user's world. And they also need to have some
idea of what the database contains and what types of
natural language queries are covered. Databases are by
definition closed domain systems. In natural language
interface user can access data with the help of natural
language then searching will be done with the help of
binary search. Be creative in our designs and let us know

how things turn out. Binary search is an extremely efficient
algorithm when it is compared to linear search in binary
search we first compare the key with the item in the middle
position of the array. If there’s a match, we can written
immediately. If the key is less than the middle key, then the
item sort must lie in the lower half of the array; if it’s
greater then the item sort must lie in the upper half of the

array. So we repeat the procedure on the lower (or upper)
half of the array. SQL commands can be use interactively
as a query language, or they can be embedded in
application program thus SQL is not a programming
language; rather it is a data sublanguage, or data access
language, that is embedded in other languages. Database
management systems (DBMSs) have been widely used
because of their efficiency in storing and retrieving data.

However, traditional query language, as a standard
database user interface, has often frustrated database user
including expert users by enforcing rigidity and preciseness
in query writing and returning query results exactly what
are being asked. Such a direct query answering method
requires the user to have a detailed knowledge of both the
database schema and the query language and the user also
has to know exactly what information to search. This

method is inconvenient for non-experienced and casual
users because they often cannot construct a query
intelligently and properly. So we use natural language
interface to provide convenience to access data from DB.
As an example, suppose there is a set of data comprising of
the amount of milk consume by a person from this given
data information can be retrieve as follows:

1. What is a total amount of milk consumed?
2. In which day maximum milk consumed?
3. In which day minimum milk consumed?
4. What is the average amount of milk consumption

per day?
5. What amount of carbohydrate is assimilated?

This information is very difficult to access data from
database by using SQL commands because a general user is

not aware about SQL queries. So we can use NLP that
accept query in natural language and translate it into SQL
query and generate output in natural language.

2. LITERATURE REVIEW

2.1 Lunar
The system LUNAR [7] is a system that answers questions
about samples of rocks brought back from the moon. The
meaning of systems’ name is that is in relation to the moon.
The system was informally introduced in 1971. To

accomplish its function the LUNAR system uses two
databases; one for the chemical analysis and the other for
literature references. The LUNAR system uses an
Augmented Transition Network (ATN) parser and Woods'
Procedural Semantics. According to [6], the LUNAR
system performance was quite impressive; it managed to

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

141 | P a g e w w w . c i r w o r l d . c o m

handle 78% of requests without any errors and this ratio
rose to 90% when dictionary errors were corrected. But
these figures may be misleading because the system was
not subject to intensive use due to the limitation of its
linguistic capabilities.

2.2 Ladder
The LADDER system was designed as a natural language
interface to a database of information about US Navy ships.
According to [4], the LADDER system uses semantic

grammar to parse questions to query a distributed database.
The system uses semantic grammars technique that inter-
leaves syntactic and semantic processing. The question
answering is done via parsing the input and mapping the
parse tree to a database query. The system LADDER is
based on a three layered architecture. The first component
of the system is for Informal Natural Language Access to
Navy Data (INLAND), which accepts questions in a natural

language and produces a query to the database. The queries
from the INLAND are directed to the Intelligent Data
Access (IDA), which is the second component of
LADDER. According to [3], the INLAND component
builds a fragment of a query to IDA for each lower level
syntactic unit in the English language input query and these
fragments are then combined to higher level syntactic units
to be recognized. At the sentence level, the combined

fragments are sent as a command to IDA. IDA would
compose an answer that is relevant to the user’s original
query in addition to planning the correct sequence of file
queries. The third component of the LADDER system is for
File Access Manager (FAM). The task of FAM is to find
the location of the generic files and manage the access to
them in the distributed database. The system LADDER was
implemented in LISP. At the time of the creation of the
LADDER system was able to process a database that is

equivalent to a relational Data base with 14 tables and 100
attributes.

2.3 Chat-80
The system CHAT-80 [6] is one of the most referenced

NLP systems in the eighties. The system was implemented
in Prolog. According to [2], the CHAT-80 was an
impressive, efficient and sophisticated system. The
database of CHAT-80 consists of facts (i. e. oceans, major
seas, major rivers and major cities) about 150 of the
countries world and a small set of English language
vocabulary that are enough for querying the database. The
system translates the English language question by the

creation of a logical form as processes of three serial and

complementary functions where:
1. Words are represented by logical constants.
2. Verbs, nouns, and adjectives with their associated
prepositions are represented by predicates. The predicates
can have one or more arguments.
3. Complex phrases or sentences are represented by
conjunctions of predicates. These functions are being;

parsing, interpretation and scoping. The parsing module
function determines the grammatical structure of a sentence
and the interpretation and scoping consist of various
translation rules, expressed directly as Prolog clauses. The

basic strategy followed by Chat-80 is to append some extra
control information to the logical form of a query in order
to make it an efficient piece of Prolog program that can be
executed directly to produce the answer. According to [6],
the generated control information comes into two forms:

1. Orders the predications for a query that will determine
the order in which Prolog will attempt to satisfy them.
2. Separates the over all program into a number of
independent sub problems to limit the amount of
backtracking performed by prolog.
In this way, Prolog is led to answer the queries in an
obviously sensible way and the Prolog compiler can

compile the transformed query into code that is as efficient
as iterative loops in a conventional language.

3. MOTIVATION
Dictionary are often used to store large amount of data

from which individual words must be retrieved according
to some such criterion. Dictionary can be collection of
words and suppose user can write a query then individual
word can be search on that dictionary if the all words are
found on dictionary that means the word is valid and query
generator generate the corresponding SQL statement for
this natural query by using semantic dictionary.
In previous system data is stored in unsorted form so we

can search words from lexical dictionary and production
rules from semantic dictionary we apply linear search
method to search the words from both the dictionaries.
In linear search word can be search by sequentially moves
through your collection (or data structure) looking for a
matching value.

3.1 Algorithm for Linear Search
Let D be a lexical dictionary of n elements
D(1),D(2),D(3)…………D(n). “Word” is the element to be
searched. Then this algorithm will find the location “LOC”
of word in D. If the word is found on that location then
word is valid otherwise, word is invalid.

1. Input in dictionary D of an element “word” to be

searched and initialize LOC=-1.
2. Initialize i=0; and repeat through step 3 if(i<n) by

incrementing i by 1.
3. If (word=D[i])

(a) LOC=i
(b) GOTO step 4

4. If (LOC>0)
Print “ Word is found and searching is successful”.

Else
Print “Word is not found and searching is
unsuccessful”.
5. Exit

If we search the word on dictionary by using linear search
method, it is a very time consuming method words are
stored in unsorted form so if want to search a particular
word on a dictionary speed of searching is very slow, data

can be stored in a sequential manner on a continuous
location in a dictionary.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

142 | P a g e w w w . c i r w o r l d . c o m

4. PROPOSED WORK
1. In this we propose the concept of binary search for
storing word in dictionary.
2. In this concept words are stored in block form and that
blocks are arranged in sorted manner.
3. Then we apply binary search on that block.
4. It reduce the searching time in comparison to
conventional dictionary.
5. Words can also be add easily in dictionary.

 Binary Search

 If word is valid

 Binary search

 Output

Figure: Flowchart for “NLP TOKEN MATCHING ON
DATABASE USING BINARY SEARCH”

4.1 Natural Language Input
User can interact with our system in the form of natural
query. There is no need to learn any DB query language to
access data from database. In natural language interface
user can interact easily with the system by using natural
language English.

4.2 Lexical dictionary
In lexical dictionary words are arranged in blocks .these
blocks are arranged in alphabetical order .and words on that
blocks are also in alphabetical order.
 If the user write a query in natural
language then individual words are search in lexical
dictionary by using binary search method.

4.3 Algorithm for Binary Search
1. Algorithm for binary searching (d,n,x)
2. //d is an dictionary of n elements.
3. // x(word) is an element we want to search

4. Begin
5. Left=0
6. Right=n-1
7. Flag=False
8. While(Left<=Right)do
9. {
10. mid=[(Left+Right)/2]
11. If(x<d[mid])then

12. Right=mid-1
13. Else if(x<d[mid])then
14. Left=mid+1
15. Else return mid
16. Flag=True
17 End if
18. End if
19.}

20. End

4.4 Query Generator
If the word is valid in lexical dictionary then query
generator generate the corresponding SQL query by using

semantic dictionary.

4.5 Semantic Dictionary
In semantic dictionary words are arranged in blocks .these
blocks are arranged in alphabetical order .and words on that
blocks are also in alphabetical order.

 This dictionary consists of the English semantic grammar
(grammar rules) and the schema of the database in use. The
semantic dictionary is used to replace words and/or phrases
semantically by equivalent words and/or phrases that are
recognized by our system (according to the system
capabilities).
These dictionary is also arrange in a sorted manner so we
apply binary search method for searching a production

rules or grammar for a specific word.

Semantic dictionary

A-B Y-Z

Natural language

input

Lexical dictionary

 A-B C-D Y-Z

….

Query generator

Query executor

Data base

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

143 | P a g e w w w . c i r w o r l d . c o m

4.6 Query Executor
The purpose of Query executor is to get the required results

from the used database. In order to achieve this, the
generated SQL statement would be tested to verify
correctness before applied to the used database and then
represent the result to the user.

5. CONCLUSION
In this paper we propose the concept of binary search in
natural language processing with this concept:
1. We reduce the time of processing to search the word

in dictionary.
2. Output will be generate very fast.
3. Words are arrange in a blocks so the efficiency of

system will be increase.

6. REFERENCES

[1] Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A.
Almagrous, and Irdess S. El-Feghi “Generic Interactive
Natural Language Interface to Databases (GINLIDB)”
INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 3, (2009).

[2] T. Amble, “BusTUC - A Natural Language Bus Route

Oracle.” 6thApplied Natural Language Processing
Conference, Seattle, Washington,USA, 2000.

 [3] G. Hendrix, “The LIFER manual A guide to building
practical natural language interfaces”, SRI Artificial
Intelligence Center, Menlo Park,Calif. Tech. Note 138,
1977.

[4] G. Hendrix, E. Sacrdoti, D. Sagalowicz, and J. Slocum,

“Developing a natural language interface to complex data”,
ACM Transactions on Database Systems, Volume 3, No. 2,
USA, 1978, pp. 105 – 147.

[5] D. Warren and F. Pereira, “An efficient and easily
adaptable system for interpreting natural language queries
in Computational Linguistics” Volume 8, 1982, pp. 3 – 4.

[6] W. Woods, “An experimental parsing system for
transition network grammars. In Natural Language
Processing”, R. Rustin, Ed., Algorithmic Press, New York,
USA, 1973.

[7] W. Woods, R. Kaplan and B. Webber, B. “The Lunar
Sciences Natural Language Information System”, Final
Report. B. B. N. Report No 2378, Bolt Beranek and

Newman Inc., Cambridge, Massachusetts, USA, 1972.

