
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

127 | P a g e w w w . c i r w o r l d . c o m

Software Quality
Sukhvir Kaur

Assistant Professor,
CTIEMT, Jalandhar

ABSTRACT

 In the given paper I present the information regarding
quality metrics. Different quality factors can be imposing
with relation to cost, schedule and rework. It’s very
important to make quality assurance plans. For that you
have to cover many milestones which can be represented in

time sheets. The main characteristics of the quality models
have covered in this paper.

Keywords

Quality, Cost, Quality assurance plans, Fault, Reliability,
Milestone

1. SOFTWARE QUALITY

The software quality is a planned and systematic set of
activities to ensure that quality is built into the software. It
consists of software quality assurance, software quality
control, assessment and other aspects. According to the
IEEE 610.12(IEEE, 1990) standard, software quality is a

set of attributes of a software system and is defined as:

 The degree to which software, or process meets

customer or user needs or expectations.

 The degree to which software, or process meets
specified requirements.

 Quality comprises all characteristics and significant
features of a product or an activity which relate to the

satisfaction of given requirements.

These standards are in existence for a long time and their
relevance might be a little too broad. IEEE standard
expresses quality in terms of customer expectation. If a
customer's expectation is nil, it doesn't mean that a product
with nil characteristics is a quality product.

A high quality product is one which has associated with it a
number of quality factors. These could be described in the
requirements specification, or they could be quality factors

which the developer regards as important but are not
considered by the customer and hence not included in the
requirements specification.

Quality is the totality of features and characteristics of a
product or a service that bears on its ability to satisfy the
given needs, for example, conformance to specifications. It
is the degree to which a customer or user perceives that
software meets his or her composite expectations. The

evaluation of quality for a software system depends upon
the following:

Quality Model

Quality characteristics which may further be classified

into several subs - characteristics.

Metrics to measure the attributes of characteristics and

sub - characteristics

 In the ISO standard 8402 (ISO, 1994), a software quality
model is defined as:

“The set of characteristics and the relationships between
them which provide the basis for specifying quality
requirements and evaluating quality”

Software quality models have been proposed to provide
many benefits like these can be used as a base to define a
commonly agreeable quality framework, which
consolidates the different views on quality, they can be

tailored to specific contexts, and they provided a
measurable base to the evaluation of software quality.

2. QUALITY ATTRIBUTES FOR

SOFTWARES

2.1 Functionality

Functionality is a set of attributes that bear on the existence
of a set of functions and their specified properties (ISO,

1991). It means that the software should provide the
functions and services as per the requirement when used
under the specified Condition. Pre-existing software with
low cost, faster delivery of end product .The sub-
characteristics under functionality are:

Suitability: Suitability expresses how well the software

fits into the developer‟s requirements. As means
requirement can only be known to system Developer, it
cannot be measured by software developer during its
development.

Accuracy: It evaluates accuracy of the software with

correct precision level required by the system developer.

Interoperability: This indicates whether the format of the

data, handled by the target software is compliant with any
international standard.

Security: It refers how the software is able to control the

unauthorized access to the services provided to it.

Compliance: This characteristic indicates if software is

conforming to any international standard or certification
etc.

2.2 Reliability

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

128 | P a g e w w w . c i r w o r l d . c o m

In general, reliability is the probability that a system or
software will produce failure within a given period of time.
In other words, reliability expresses the ability of the
software to maintain a specified level of fault tolerance,
when used under specified conditions. Reusability aspect of
the same software with multiple applications will increase
the reliability of that software as it may be observed here

that this software would have been thoroughly tested before
using it in previous applications. Reliability is broken into
the following sub -characteristics:

Maturity: In software context, it deals with the
number of commercial versions of the software and the
time interval between each version.

Recoverability: It measures the ability for software to

recover from an unexpected failure and also to recover the
lost data along with the original performance.

Fault Tolerance: This sub-characteristic indicates

whether the software ca n maintain a specified level of
performance in case of faults.

2.3Usability

It is the ability of software to be understood, learned, used,
configured, and executed, when used under specified
conditions. Obviously, here the user of the software is
application/system developer rather than end user.

Therefore the usability of the software should be less
complex and more reusable and developer friendly so that
it can be assembled properly in the system. Sub
characteristics of Usability are defined as under.

Understandability: It is the capability of the software to

enable the user (system developer) to understand whether
the software is suitable, and how it can be used for
particular tasks and conditions of use.

Learn ability: This sub-characteristic refers the ability of

the software to enable the system developer to learn the
software. For example, the user documentation and the help

system should be complete; the help should be context
sensitive and explain how to achieve common tasks, etc.

Attractiveness: It indicates the capability of the software

to be attractive to the user. Here as stated earlier, the user is
system developer, and he/she may be more interested in the
programmatic interfaces, API‟s defining the services
provided by the software so that they can be composed and
integrated with the target system rather than it‟s a
attractiveness or GUI interfaces. Therefore, we may omit
this sub-characteristic from the proposed model.

Compliance: This characteristic indicates if software is

conforming to any international standard or certification
etc. Relating to usability. Currently, no standards have been
set up for this sub -characteristic in the software context;
therefore it may be omitted from the quality model for the
time being.

2.4 Efficiency

This characteristic expresses the ability of a software to
provide appropriate performance, relative to the amount of
resources used. Efficiency is affected by technology,
mainly though rough resource usage by the runtime system
but also by interaction mechanism. Module can be
internally optimized to improve performance without
affecting their specifications. Modules should be tested on

various platforms to check the performance. The two sub-
characteristics of efficiency are defined as follows:

Time behavior: This characteristic indicates the ability to

perform a specific task at the correct time, under specified
conditions.

Resource behavior: This characteristic indicates the

amount of the resources used, under specified conditions.

2.5 Maintainability

It describes the ability of software to be modified. As the
developers do not have the source code of the software,
they can only adapt it, reconfigure it and finally test it
before integrating it in the final product. The sub -
characteristics under maintainability are:

Customizability: A system developer can only adapt,

reconfigure, test and finally embed it into the system, as he
is not having the Source code of the software.
Customizability refers to the ability to modify the software
through its limited available information, like interfaces

and Parameters.

Testability: It refers whether the software provides some

sort of tests or test suites that can be performed to the
software to check its functionality inside the final system in
which the software will be integrated.

Stability: It refers to the software ability to handle the

unexpected changes during the maintenance. In other
words, it is the degree to which software is composed of
discrete software‟s such that a change to one software has

zero impact on the other software‟s or the system.

Analyzability: It refers to the auto-analysis of software. It

identifies the parts of the software‟s, which are to be
modified. However, software rarely consists of methods for
its auto analysis. Therefore analyzability may not be

required and is removed from the model.

2.6 Portability

This characteristic is defined as the ability of software to be
transferred from one environment to another with little
modification, if required. The software should be easily and

quickly portable to new environments if and when
necessary, with minimized costs and schedules. The
specification of software should be platform independent.
Various sub-characteristics defined under portability are:

Replace ability: This sub-characteristic indicates whether

the software is backward compatible with its previous

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

129 | P a g e w w w . c i r w o r l d . c o m

versions. This means that the new software can substitute
the previous ones without any major efforts.

Adaptability: It refers whether the software can be

adapted to different specified platforms.

Install ability: It is the capability for software to be

installed easily on different platforms.

3. Quality Models for Systems

Quality model is a set of characteristics and sub-
characteristics, as well as the relationships between them
that provide the basis for specifying quality requirements
and for evaluating quality of the component or the system.
Quality model establishes a framework to perform some
kind of measurement of the specific features that are
needed in the final system and described by the developer.
Measurement of quality attributes is concerned with

deriving the numerical values by using the appropriate
metrics for that attribute.

There is several quality models proposed so far. The most
well known model is McCall Model purposed by McCall
and Joseph, in 1978. They presented a software quality
framework 17 and classified the quality attributes into three
groups namely:

 product operation

 product revision

 Product transition.

 McCall and Joseph proposed 11 characteristics under these
categories.

Second model Boehm was proposed which in addition to
most of the McCall factors; also include hardware
characteristics, documentation, and others.

Third model FURPS model decomposed quality into two

different categories of requirements,

 Functional requirement

 Non Functional requirement

Functional requirements defined by input and expected
output and non-functional requirements like usability,

reliability and others.

Third Model Dromey added two more characteristics i.e.
reusability and process maturity to propose a new model. It
categorized the characteristics into four categories:

 Correctness

 Internal

 contextual

 Descriptive.

ISO proposed a quality standard ISO 9 126 (ISO, 2001)
providing a generic definition of software quality, in terms

of six main characteristics.

 Functionality

 Reliability

 Performance

 Usability

 Portability

 Maintainability.

3.1 McCall Model

The first quality model was proposed by McCall and

Joseph in 1976. They presented a Software Quality Factor
Framework and classified the quality attributes into three
groups

Product Operation: The system‟s ability to be quickly

understood, efficiently operated and capable of providing
the results required by the user i.e. involving attributes such
as correctness, reliability, efficiency, integrity and usability.

Product Revision: It relates to error correction and

system adaptation. This aspect is generally considered the
costliest part of the software and involves attributes such as
maintainability, flexibility and testability.

Product transition: It refers to distributed processing,

together with rapidly changing hardware and involves
attribute such as portability, reusability and interoperability.

Main Factors are:

• Correctness

• Reliability

• Maintainability

• Testability

• Portability

The major advantage of this model is the relationship

created between its quality characteristics; however, the
main drawback is that it does not include the functionality
aspect of the software product. Also, some of the factors
and measurable properties like Traceability and self-
documentation among others are not really definable or
even meaningful at an early stage for non-technical
stakeholders. It is, therefore, difficult to use this framework
to set precise and specific quality requirements. This model

is not applicable with respect to the criteria outlined in the
IEEE Standard for a software quality metrics methodology
for a top-down approach to quality engineering.

3.2 Boehm's Model

The Boehm model is similar to the McCall model in that it

represents a hierarchical structure of characteristics, each of
which contributes to total quality and it includes users'
needs like McCall's does. Boehm‟s model looks at utility
from various dimensions, considering the types of user
expected to work with the system once it is delivered.
General utility is broken down into portability, utility and
maintainability. Utility is further broken down into
reliability, efficiency and human engineering.

Maintainability is, in turn, broken down into testability,
understandability and modifiability. However, Boehm‟s

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

130 | P a g e w w w . c i r w o r l d . c o m

model does not elaborate the methodology to measure these
characteristics.

3.3 FURPS Model

FURPS takes into account the five characteristics that make

up its name: Functionality, Usability, Reliability,
Performance, and Supportability. The model proposed by
Robert Grady from Hewlett -Packard Co. decomposes
characteristics into two different categories of
requirements:

Functional requirements: Defined by input and expected

output.

Non-functional requirements: Usability, Reliability,

Performance, and Supportability.

One disadvantage of the FURPS model is that it does not
consider the portability aspect, which may be an important

criterion for application development, especially for
software-based systems.

3.4 Dromey’s Model

Dromey proposed a quality evaluation framework that
analyzes the quality of software component through the

measurement of tangible quality properties. All these
software‟s possess properties can be classified into four
categories:

Correctness: Evaluates software whether some basic

principles are violated.

Internal: Measure how well software has been deployed

according to its intended use.

Contextual: Deals with the external influences by and on

the use of software.

Descriptive: Measures the descriptiveness of software.

These properties are used to evaluate the quality of the
software‟s. It is difficult to see how it could be used at the
beginning of the lifecycle to determine user quality needs.

3.5 ISO 9126 Model

International Organization for Standardization (ISO)
proposed a standard, known as ISO 9126 (ISO, 2001),
which provides a generic definition of software quality in
terms of six main characteristics for software evaluation.
These characteristics include: Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability.
Which are further subdivided into many parts like:

Suitability, Accuracy, Interoperability, Recoverability,
Fault-Tolerance, Understandability, Operability, Testability

One of the advantages of this model is that it identifies the
internal and external quality characteristics of a software
product. The quality models described above (McCall and
Joseph, Boehm, Grady, Dromey, and ISO, 2001) contain
several factors in common, like maintainability, efficiency,

reliability. However, some of the factors like correctness,

maturity, and understandability are not so common and are
found in one or two models.

4 Quality Model Attributes of Boehm,

McCall, FURPS, Dromey and ISO 9126

The main attribute or characteristics of quality models is
shown in table 1. Only „reliability‟ is common to all quality
models.

Table 1 . Quality Attribute of Quality Models

Q
u

a
li

ty

A
tt

ri
b

u
te

M
cC

a
ll

 B
o
eh

m

D
ro

m
ey

F
U

R
P

S

l
IS

O
 9

1
2
6

Maintainability × × ×

Flexibility ×

Testability × ×

Correctness ×

Efficiency × × × ×

Reliability × × × × ×

Integrity ×

Usability × × × ×

Portability × × × ×

Reusability × ×

Interoperability ×

Understandability × ×

Functionality × × × ×

Performance × ×

Supportability × ×

4. Reliability

As reliability is common with all the models the main point
to consider in case of reliability of software is faults. There
are major groups of approaches to deal with faults:

 Fault avoidance

 Fault Removal

 Fault tolerance

Fault avoidance: To avoid or prevent the introduction of
faults by engaging various design methodologies,
techniques and technologies, including structured
programming, object-oriented programming, software
reuse, de-sign patterns and formal methods.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

131 | P a g e w w w . c i r w o r l d . c o m

Fault removal. To detect and eliminate software faults by
techniques such as reviews, inspection, testing, verification
and validation.

Fault tolerance. To provide a service complying with the
specification in spite of

5 Conclusions:

In the following paper I had proposed different models
which give bench mark to quality. Different models include
different factors in relation to functional and non functional
requirements but reliability is a important factor in
measuring quality of Software. It‟s very important to have

very good software specification requirements to have best
results. It should be noticed that phases like planning,
requirement, coding implementation should be done in
proper manner to have quality.

6 References:

[1] Deepak Gupta, Vinay Kr.Goyal and Harish Mittal
“Comparative Study of Soft Computing
Techniques for Software Quality Model”
International Journal of Software Engineering
Research & Practices Vol.1, Issue 1, Jan, 2011

[2] Jie Xu, Danny Ho and Luiz Fernando Capretz,
An Empirical Study On The Procedure To Derive
Software Quality Estimation Models,

International Journal of computer science &
information Technology (IJCSIT) Vol.2, No.4,
August 2010

[3] Rafa E. Al-Qutaish,” Quality Models in Software
Engineering Literature: An Analytical and
Comparative Study”, 2010

[4] Ranbireshwar S. Jamwal & Deepshikha Jamwal,”
Issues & Factors For Evaluation of Software
Quality Models “, Proceedings of the 3rd

National Conference, INDIACom-2009

[5] Jean-Louis Letouzey, Thierry Coq, “An analysis
model compliant with the representation
condition for assessing the Quality of Software
Source Code” 2010

[6] http://www.jot.fm/issues/issue_2010_07/article4.
pdf

[7] http://www.4shared.com/document/F0iqxJIV/

Requirements_of_Software_Quali.html

[8] http://people.uncw.edu/simmondsd/courses/Fall2
011 /csc 592 /papers/qualityModels.pdf

[9] http://www.sqa.net/iso9126.html

[10] http//www.jot.fm/issues/issue_2002_09/Article4

http://www.jot.fm/issues/issue_2010_07/
http://www.4shared.com/document/F0iqxJIV/%20Requirements_of_Software_Quali.html
http://www.4shared.com/document/F0iqxJIV/%20Requirements_of_Software_Quali.html
http://people.uncw.edu/simmondsd/courses/%20Fall2011/csc%20592%20/papers/qualityModels.pdf
http://people.uncw.edu/simmondsd/courses/%20Fall2011/csc%20592%20/papers/qualityModels.pdf
http://www.sqa.net/iso9126.html
http://www.jot.fm/issues/issue_2002_09/

