
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

121 | P a g e w w w . c i r w o r l d . c o m

In Search of a Better Heuristic Algorithm for
Simplification of Switching Function A Challenge to

ESPRESSO

ABSTRACT

Finding minimum cost switching function is an intractable

problem. The number of prime implicant of a typical switching
function is the order of 3n [5][13]. When fitness function with
respect to cost is the only goal, the existing algorithms require
faces combinatorial explosion [20]. The allurement of
approximation and heuristic algorithms in this area has already
generated ESPRESSO algorithm. We find that our algorithm
presented here is at least equal or more cost effective than the
ESPRESSO algorithm. The paper shows a new approach for

attainment of our claim. We hope the algorithm presented here
is a new attachment to the existing state of the art technology.

Keywords

Minimization, Two-level logic, Prime implicant, greedy-

heuristic, Arrange

1. INTRODUCTION

The problems of simplification of switching functions occur in
many areas of the logic design. Boolean representations of

switching functions are obtained from a function description.
The optimization of logic functions, and in particular two-level
logic minimization is performed on the Boolean representation.
The result of simplification depends on the representation of
literals. As an example, the complexity of the combinatorial
component of a FSM depends on the Boolean literals to the
internal states. The design of switching functions is restricted to
combinatorial two-level SOP representations, as it appears in the

logic synthesis process. The need for simplification of the
number of terms of the SOP form is apparent. Starting with the
classical approach of minimization techniques many different
simplification techniques have been developed. In 1953
Karnaugh [4] proposed a technique for simplifying Boolean
expressions using an elegant visual technique, Quine [2] and
McCluskey [3] proposed a tabular technique that uses a two-step
process which first generates all prime implicants and then
obtains a minimal covering for simplifying switching functions.

The heuristic based approach differs from the classical one in
two aspects. At first, the cost function is simplified by assigning
an equal weight to every implicant, and then the final solution is
obtained from an initial solution by iterative improvement rather
than by generating and covering prime implicants. Because of
the required storage and computations in many applications,
exact solutions are not necessary but near minimum solution
solutions are sufficient. Heuristic usually produce solution that

are near to the optimum in a relatively short time. MINI[6],
ESPRESSO[7] are the heuristic based simplification procedures,
but lacks in quality and runtime for functions with large number
of literals. BOOM[9] handles it well but it needs to have the
function‟s off-set specified explicitly, which limits its usability
in cases of functions specified by their on-sets only. We have

proposed a SOP representation based on greedy-heuristic
strategy that suggests that one can devise an algorithm that work
in stages, considering one input at a time. At each stage, a
direction is regarding whether a particular input is in an optimal
solution and reduces time-space complexity.

2. PRELIMINERIES

Switching function [Definition]: Let T (x1, x2. . . xn) be a
switching expression. Since each of the variables x1, x2. . . xn can
independently assume either of the two values 0 or 1, there are
2n combinations of values to be considered in determining the
values of T . In order to determine the value of an expression for

a given combination, it is only necessary to substitute the values
for the variables in the expression. In other words, a switching
function f (x1,x2, . . . , xn)is a correspondence that associates an
element of the Boolean algebra with each of the 2n combinations
of variables x1,x2, . . . , xn. This correspondence is best specified
by means of a truth table. Note that each truth table defines only
one switching function, although this function may be expressed
in a number of ways. For example, if T (x, y, z) = x’z + xz’+ xy,

then for the combination x = 0, y = 0, z = 1, the value of the
expression is 1 because T (0, 0, 1) = 0‟1 + 01‟ +0‟0‟= 1. In a
similar manner, the value of T may be computed for every
combination, as shown in the right-hand column of Table 1.If
we now repeat the above procedure and construct the truth table
for the expression x’z + xz „+ y ’z’, we find that it is identical to
that of Table 1.
Minimization [Definition][19]: In simplifying a switching

function f (x1, x2. . . xn) is to find an expression g(x1, x2, . . . , xn)

which is equivalent to f and which minimizes some cost criteria.

The most common are:

1. The minimum number of appearances of literals;

2. The minimum number of literals in a SOP expression;

3. The minimum number of terms in a SOP expression, provided

that there is no other such expression with the same number of

terms and fewer literals.

Table 1

Subhajit Guha
Dept. of Computer Science

B.R.S College
Barrackpore, India

Uma Mitra
Dept. of Computer Science

B.R.S College
Barrackpore, India

Pinki Dey
Dept. of Computer Science

B.R.S College
Barrackpore, India

guha.subhajit@gmail.com

 Samar Sen Sarma
Dept. of Computer Science and

Engg. , CU
Kolkata, India

guha.subhajit@gmail.com

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

122 | P a g e w w w . c i r w o r l d . c o m

 x y z f g f’ f + g f.g

0 0 0 1 0 0 1 0

0 0 1 0 1 1 1 0

0 1 0 1 0 0 1 0

0 1 1 1 1 0 0 1

1 0 0 0 0 1 0 0

1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0

1 1 1 1 1 0 0 1

Two-Level Logic Minimization: A disjunctive normal form

(DNF), also called SOP, is a disjunction of products. A product

is in term of literals. For instance, x and y‟ are literals, xy‟z is a

product, and xy‟z + xyz + y‟z‟ is a sum-of-products (SOP). The

problem is to find, given a Boolean function f, the minimal SOP

that represents f. This problem is known as two-level logic

minimization.

Heuristic [Definition]: It refers to experience-based techniques

for problem solving, learning, and discovery. By using a rule of

thumb, an educated guess, an intuitive judgment, or common

senses; heuristic methods are used to speed up the process of

finding a near optimal solution.

Greedy Heuristic [Definition]: It follows the problem solving

heuristic of making the locally optimal choice at each stage with

the hope of finding a global optimum. In many problems, a

greedy strategy does not in general produce an optimal solution,

but nonetheless a greedy heuristic may yield locally optimal

solutions that approximate a global optimal solution in a

reasonable time. In switching function simplification problem,

the cost function is minimized by distributing an equal weight to

every implicant. The ultimate solution is obtained from an initial

solution by iterative improvement, rather than by covering prime

implicants. Bounding the cost function to the number of

implicants in the solution has the improvement of eliminating

many of the problems associated with local minima. Since only

the number of prime implicants is important, their figures can be

changed as long as the coverage of the minterms remains proper.

3. SIMPLIFICATION OF SWITCHING

 FUNCTION

A switching function can usually be represented by a number of
expressions. Our aim was to develop a procedure for obtaining a
minimal expression for such a function. All algorithms based on
the classical approach for the simplification of Boolean logic,
start with the computation of all prime implicants. Afterwards

prime implicant is used to construct a minimal logic. It is not

known whether one may compute efficiently minimize the
function without computing implicitly prime implicants.
However, the number of prime implicants of one class with n

literal is proportional to 3n/n [5] [13]. Thus, for many functions,
the number of prime implicants can be very large. Consequently,
the covering step leads to a greater problem because of its well
known computational complexity. Because of the required
storage-space and computations, machine processing to obtain

the minimum solution by the classical approach becomes
impractical. On the other hand, heuristic seeks a minimal
implicant solution, without generating all prime implicants,
which can be converted to prime implicants if required. The
ESPRESSO is a standard heuristic process that uses approximate
methods based on previous experience to obtain a near optimal
solution. As a successful minimization algorithm, the
ESPRESSO plays the important role of our proposed work.

3.1 ESPRESSO Algorithm

 ESPRESSO (Fan, Fdc)

Foff = Complement (Fan, Fdc);
F = Expand (Fan, Foff);
F = Irredundant (F, Fdc);

E = Essentials (F, Fdc);
F = F - E;
Fdc = Fdc - E;
do {

 F= Reduce (F, Fdc);
 F= Expand (F, Foff);
 F= Irredundant (F, Fdc);

} while (Too_High (Cost (F)));

 return (F U E);
Basic principle is laid on three steps; Expand, Reduce and

Irredundant.

Expand: Expands implicants into prime implicants. Any

implicants covered by the expanded prime implicant omitted

from further consideration.

Reduce: Transforms prime implicants into implicants of least

possible size such that all minterms of the function are still

covered. This may lead to better solutions later.

Irredundant: Chooses a minimal subset of prime implicants

obtained so far such that the subset covers all minterms of the

function. Similar to prime implicant chart covering, however,

less time-consuming due to fewer prime implicants. In

Figure 1 to Figure4 applying f (x, y, z) = (1, 2, 3, 4, 5, 6) for

simplification according to Expand, Reduce and Irredundant to

the initial set of minterms. After the set of transformations, a

superior SOP is obtained.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

123 | P a g e w w w . c i r w o r l d . c o m

 Fig 1: Initial covering of f

 Fig 2: After the Reduce Step

 Fig 3: After the Expand Step

 Fig 4: After the Irredundant Step
'
These three procedures are iterated with different starting points

until there is no further improvement in the optimality of the

reduction.

3.2 Proposed Algorithm for Simplifying

Switching Functions

We have developed an alternative to ESPRESSO algorithm that
reduces average computational complexity in time and space
domain. The Reduce step used in basic ESPRESSO has been
removed, as Expand and Irredundant form are the sufficient
criteria to lead a near optimal solution. Here we introduced a
greedy-heuristic approach, the greedy method suggests that one
can devise an algorithm that work in stages under the
consideration of one input at a time. At each stage a direction is

regarding whether a particular input is in an optimal solution.
This is done by considering the input literals in an order into a
list L, determined by an efficient arrangement procedure
Arrange (L). The first element (min-term) belong to the list will
be compared with remaining one.

 If the difference between two of this literals is power

of two or only one bit change in binary representation,
the literals will generate a pair, this process in known
as Expand.

 If any literals in the list are generating a pair before, it

will not compare any other literals in this iteration.
Therefore, an irredundant form of output will be

generated. This irredundant output set is the input set
of the next iteration, until no further pair generates.

Hence, all possible pairs of input are not required to select
proper pairs to achieve the desire goal in irreducible form.
Therefore, the space-time complexity improves in all sense.

Algorithm Simplification {
F =Arrange (L)

F =EXPAND (F)

F =IRREDUNDANT (F)

If F is a goal state {

 return 0;

}

else {

continue with initial state as the current state;

}

Repeat

 Pick the IRREDUNDANT solution;

 EXPAND it in a specific direction using Boolean
 simplification law;

for each COVER do {

 If it is not generate before {
 Evaluate its IRREDANDENT
form and store it with its parent.

 }

 If IRREDANDENT form is a goal
 solution {

 return 0;

 }
 If it is better than present form {

It will be IRREDANDENT form
 }
 If it is not better solution {

Retrieve the parent as a
IRREDANDENT form in
storage;

 }

 } Until a solution found

}

The simplification algorithm is applied on the following

function f (w, x, y, z) = (0 1 3 4 5 7 8 9 11 15). In Figure5 (0-

1) makes a cover as only one bit change in binary representation

among literal 0 and 1, similarly (4-5), (3-7),(8-9) and (11,15)
make covers as the difference between two of this literals is
power of two (see Figure6). Furthermore if any literals generate
a pair before, would not be compared to other literals. Therefore,
an irredundant form of output will be produced, that leads to the
input for next iteration. After further expansion among
irredundant literals (0-1-4-5) and (3-7-11-15) produce covers
and (8-9) remains alone. This will be the simplified function.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

124 | P a g e w w w . c i r w o r l d . c o m

Figure5: Initial covering of f based

on ordered covering rule

 Figure6: After Expansion of covers using greedy

 Approach

 Figure7: Simplified form of function f (w,x,y,z)

4. EXPERIMENTAL RESULTS

The proposed algorithm for simplification of switching function
has been implemented in C language on UNIX platform. To
demonstrate the efficiency of our algorithm, we have taken
ESPRESSO for comparison purpose. TABLE II shows the
experimental results. The columns with labels „Number of
Literals‟ and „Delivered switching functions randomly in SOP‟

show the number of inputs respectively. The next columns
indicate the CPU time needed in millisecond unit for
ESPRESSO and the proposed algorithm. The average time
column gives the information of average time needed for the
ESPRESSO and the proposed simplification algorithm based on
random literals. Our algorithm shows approximately 9.5%
improvement.
 Table 2. Benchmarking Results for Simplification of
 Switching Function

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

125 | P a g e w w w . c i r w o r l d . c o m

 Fig 8: Comparison chart of ESPRESSO vs. proposed

 algorithm

Fig 9: CPU time comaparison for 4 variable random literals

Fig 10: CPU time comaparison for 5 variable random

literals

Fig 11: CPU time comaparison for 6 variable random

literals

Fig 12: CPU time comaparison for 7 variable random

literals

5. CONCLUSION

Sum-of-Product (SOP) of a switching function is equivalent to
prime implicant coverage of true output with minimum cost. It
amounts to searching all possible combinations of prime
implicant coverage of the function. This is an unsolvable
problem. Using the greedy heuristic procedure we have
developed an alternative to ESPRESSO algorithm that reduces
average complexity in time and space domain. The attempt is
worth studying. Better approach like BDD approach is our own

envy. We hope on next approach will be graphical mapping of
the problem.

6. REFERENCES

[1] W.V.Quine, “The Problem of Simplifying Truth

Functions,” Am. Math. Monthly 59, pp. 521-531, 1952.

[2] W.V. Quine, “ A Way to Simplify Truth functions, The
American Mathematical Monthly, 62, pp. 627-631, Nov.,
1955.

[3] E. J. McCluskey, Jr., “Minimization of Boolean
Functions,” Bell Syst. Tech. J. 35, pp. 1417-1444, Nov.
1956.

[4] M. Karnaugh, “The Map Method for Synthesis of
Combinational Circuits, Trans. A.I.E.E., 72, Part I, pp. 593-
598, 1953.

[5] R. E. Miller, Switching Theory, Vol. I: Combinatorial
Circuits, John Wiley & Sons, Inc., New York, 1965.

[6] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic
approach for logic minimization”, IBM Journal of Res. &
Dev., Sept. 1974, pp.443-458

[7] R.K. Brayton et al., “Logic minimization algorithms for

VLSI synthesis”, Boston, MA, Kluwer Academic
Publishers, 1984, pp. 192.

[8] J. Hlavička and P. Fišer, „BOOM - a Heuristic Boolean

Minimizer”, Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-
8.11.2001, pp. 439-442.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3, No. 1, AUG, 2012

126 | P a g e w w w . c i r w o r l d . c o m

[9] L. Jozwiak, A. Slusarczyk and M. Perkowski, “Term Trees
in Application to an Effective and Efficient ATPG for
AND/EXOR and AND-OR Circuits”, VLSI Design, Vol.
14, No 1, January 2002, pp. 107-122.

[10] P. Fišer and H. Kubátová, “Flexible Two-Level Boolean
Minimizer BOOM II and Its Applications”, Proc. 9th
Euro micro Conference on Digital Systems Design
(DSD'06), Cavtat, (Croatia), 30.8. - 1.9.2006, pp. 369-376.

[11] P. Fišer, P. Rucký, and I. Váňová, “Fast Boolean
Minimizer for Completely Specified Functions”, Proc. 11th
IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop 2008 (DDECS'08), Bratislava, SK, pp.
122-127.

[12] A.K.Chandra and G. Markowsky. “On the number of prime
implicants”, Discrete Mathematics, North-Holland
Publishing Company©, Vol. 24, 7-11, 1978.

[13] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-
aware AIG rewriting - a fresh look at combinational logic
synthesis”. In Proceedings of the 43rd Annual Conference
on Design Automation, San Francisco, CA, USA, July 24 -
28, 2006, pp. 532-535.

[14] N.N. Biswas, “Computer aided minimization procedure for

Boolean functions”, In Proceedings of the 21st Designed
Automation Conference (DAC‟84), pp. 699-702, IEEE
Press Piscataway NJ, USA© 1984, ISBN: 0-8186-0542-1.

[15] St. Mihailov, A. Popov, Kr. Filipova, N. Kasev,

”Comparative Analysis of Boolean Functions Minimization
in Terms of Simplifying the Synthesis”, First International
Congress of Mechanical and Electrical Engineering and
Technologies, ISBN 954-20-0215-7, MARIND 2002, 6-11
Oct., Varna, pp.273-276.

[16] A. Popov, Kr. Filipova, ”Genetic Algorithms synthesis of
finite state machines”, 27th International Spring Seminar
on Electronics Technology. IEEE Proc., Catalog N
04EX830, ISBN 0-7803-8422-9, pp.388-392, 13-16 may,
2004.

[17] A. Popov, “Genetic Algorithms for Optimization-
Application in the regulator synthesis task”, Bachelors

thesis at Technical University.

[19] Z. Kohavi, Switching and Finite Automata Theory, Tata

 McGraw-Hill publishers, Second Edition.

[20] D.E. Knuth, “The Art of Computer Programming- Vol. 4,

Introduction to Combinatorial Algorithms and Boolean
Functions”, Pearson Education, Inc., ISBN 0-321-53496-4.

