
Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3. No. 1, AUG, 2012

48 | P a g e www.cirworld.com

Finite State Testing and Syntax Testing

Amandeep Singh
Assistant Professor

PCTE Group of Institutes

Baddowal, Ludhiana,
Punjab,India

Harmanjit Singh
Assistant Professor

PCTE Group of Institutes

Baddowal, Ludhiana,
Punjab,India

ABSTRACT

This paper is concerned with the testing of the software which
is being developed in a structured way. The advantages which
accrue from a well-structured or modular organization of
software depend upon an ability to independently test a
module well before the full development of all the modules
with which it communicates. This paper describes techniques

(Finite State Testing & Syntax Testing) which effectively test
various applications. With advanced computer technology,
systems are getting larger to fulfill more complicated tasks,
however, they are also becoming less reliable. Consequently,
testing is an indispensable part of system design and
implementation; yet it has proved to be a formidable task for
complex systems. This motivates the study of testing finite
state machines to ensure the correct functioning of systems

and to discover aspects of their behavior. Finite state
machines are widely used to model systems in diverse areas,
including sequential circuits, certain types of programs, and,
more recently, communication protocols. In a testing problem
we have a machine about which we lack some information;
we would like to deduce this information by providing a
sequence of inputs to the machine and observing the outputs
produced. Because of its practical importance and theoretical

interest, the problem of testing finite state machines have been
studied in different areas and at various times. Some old
problems which had been open for decades were resolved
recently, new concepts and more intriguing problems from
new applications emerge. This paper reviews the fundamental
problems in testing finite state machines and techniques for
solving these problems, tracing progress in the area from its
inception to the present and the state of the art. In addition,

this paper covers syntax testing which is also called grammar
based testing technique for testing various applications where
the input data can be described formally.

.Keywords

Mealy Machines, State Transition Diagrams, Backus Naur

Forms, Syntax Testing, State Space

1. INTRODUCTION

Finite State Testing

Finite state machines have been widely used to model systems
in diverse areas, including sequential circuits, some types of
programs (in lexical analysis, pattern matching etc.), and,
more recently, communication protocols [FM1, Koh, ASU,
Hol]. The demand of system reliability motivates research
into the problem of testing finite state machines to ensure their
correct functioning and to discover aspects of their behavior.
There are two types of finite state machines: Mealy machines

and Moore machines. The theory is very similar for the two
types. We mainly consider Mealy machines here; they model
finite state systems more properly and are more general than
Moore machines. A Mealy machine has a finite number of
states and produces outputs on state transitions after receiving
inputs. We discuss the following two types of testing

problems. In the first type of problems, we have the transition

diagram of a finite state machine but we do not know in which
state it is. We apply an input sequence to the machine so that
from its input/output (I/O) behavior we can deduce desired
information about its state. Specifically, in the state
identification problem we wish to identify the initial state of
the machine; a test sequence that solves this problem is called
a distinguishing sequence. In the state verification problem we
wish to verify that the machine is in a specified state; a test
sequence that solves this problem is called a UIO sequence. A

different type of problem is conformance testing. Given a
specification finite state machine, for which we have its
transition diagram, and an implementation, which is a „„black
box‟‟ for which we can only observe its I/O behavior, we
want to test whether the implementation conforms to the
specification. This is called the conformance testing or fault
detection problemand a test sequence that solves this problem
is called a checking sequence. A finite state machine (FSM)

M is a quintuple

M = (I, O, S, δ, λ)

where I, O, and S are finite and nonempty sets of input
symbols, output symbols, and states, respectively.

δ: S×I → S is the state transition function;

λ: S×I → O is the output function. When the machine is in a
current state s in S and receives an input a from I it moves to
the next state specified by δ(s, a) and produces an output

given by λ(s, a). An FSM can be represented by a state
transition diagram, a directed graph whose vertices
correspond to the states of the machine and whose edges
correspond to the state transitions; each edge is labeled with
the input and output associated with the transition. Suppose
that the machine is currently in state s 1. Upon input b, the
machine moves to state s 2 and outputs 1. Equivalently, an
FSM can be represented by a state table with one row for each

state and one column for each input symbol. For a
combination of a present state and input symbol, the
corresponding entry in the table specifies the next state and
output. A state machine represents a system as a set of states,
the transitions between them, along with the associated inputs
and outputs.So, a state machine is a particular
conceptualization of a particular sequential circuit. State
machines can be used for many other things beyond logic
design and computer architecture. Any Circuit with memory

is a Finite State Machine. Even computers can be viewed as
huge FSMs. Design of FSMs Involves: Defining
states,Defining transitions between states, Optimization
/Minimization.

State Diagram

Illustrates the form and function of a state machine. Usually
drawn as a bubble-and-arrow diagram.

State

A uniquely identifiable set of values measured at various
points in a digital system.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3. No. 1, AUG, 2012

49 | P a g e www.cirworld.com

Next State

The state to which the state machine makes the next
transition, determined by the inputs present when the device is
clocked.

Branch

A change from present state to next state.

Mealy Machine

A state machine that determines its outputs from the present
state and from the inputs.

Moore Machine

A state machine that determines its outputs from the present
state only.

On a well-drawn state diagram, all possible transitions will be
visible, including loops back to the same state. From this
diagram it can be deduced that if the present state is State 5,
then the previous state was either State 4 or 5 and the next

state must be either 5, 6, or 7.

Moore and Mealy Machines

Both these machine types follow the basic characteristics of
state machines, but differ in the way that outputs are

produced.

Moore Machine

Outputs are independent of the inputs, ie outputs are

effectively produced from within the state of the state
machine.

Mealy Machine

Outputs can be determined by the present state alone, or by
the present state and the present inputs, ie outputs are
produced as the machine makes a transition from one state to
another.

Machine Models

Moore Machine Diagrams

The Moore State Machineoutput is shown inside thestate
bubble, because theoutput remains the same aslong as the
state machineremains in that state.The output can be
arbitrarilycomplex but must be thesame every time
themachine enters thatstate.

Mealy Machine Diagrams

The Mealy State Machine generates outputs based on:

 The Present State, and

 The Inputs to the M/c.

So, it is capable of generating many different patterns of
output signals for the same state, depending on the inputs
present on the clock cycle.Outputs are shown on transitions
since they are determined in the same way as is the next state.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3. No. 1, AUG, 2012

50 | P a g e www.cirworld.com

Moore Vs Mealy FSM

Moore and Mealy FSMs can be functionally equivalent.
Mealy FSM Has Richer Description and Usually Requires
Smaller Number of States and smaller circuit area. Mealy
FSM Computes Outputs as soon as Inputschange.Mealy FSM
responds one clock cycle sooner than equivalent Moore FSM.
Moore FSM Has no combinational path between inputs and
outputs. Moore FSM is less likely to have a shorter critical
path.

Syntax Testing

Every real world language in this world has got certain rules
following which the meaningful statements and sentences can

be drafted from the raw words. These rules are collectively
known as the syntax of the language. Similarly syntax also
exists for the computer programming languages.

Syntax and Syntax Test Technique

Each programming language has got its own unique syntax.

The syntax is known to define the surface of a language.

Type of syntax of the language depends upon the type of
programming i.e; whether it is a text based language or a
visual based language.

Syntax forms a part of the semantics.

The syntax test technique involves the process of parsing i.e.,
the linear sequence of the tokens is transformed in to a

hierarchical syntax tree.

Parsing is also an effort and time consuming process but,
nowadays several automated tools are available for this
purpose also and are quite effective in generating parses.

These parses are generated using the language grammar
specifications as stated in the Backus- Naur form.

Backus- Naur forms as well as regular expressions of the
lexicon together comprise the syntax of the textual
programming languages.

There are other rules called productions which are used to
classify the syntax in to different categories.

The syntax just describes whether or not the program is valid.

It is the semantics which describe the meaning of the
program.

It is not necessary that a syntactically correct code of the
program should be semantically correct also.

Steps of Syntax Test Technique

A typical syntax testing technique consists of the following
steps:

Identification of the format of the target language.

 Definition of the syntax of the target language in to formal
notation like Backus- Naur form.

Testing the syntax under normal conditions by keeping the
Backus- Naur form of the language under adequate coverage.
This is the minimal requirement for carrying out a syntax test.

Testing of the garbage conditions i.e., testing the software
system against the invalid input test data. This condition has a
high pay off and automation is highly recommended.

Debugging of the whole software program.

 Automation of the test execution process. This is necessary
since a lot of test cases are required for the effective syntax

testing.

For carrying out the whole process, 3 most frequent wrong
actions have been identified as shown below:

The recognizer could not identify the specifications can spoil
a good string and turn it in to a bad one.

The recognizer accepted a bad string.

The recognizer crashed or hanged during the process of the
recognition of the good and bad strings.

Any incorrectness in the Backus- Naur specifications can
spoil a good string and turn it in to a bad one.

There should be a proper testing strategy since all the strings
cannot be tested.

Only one error should be generated and tested each time.

 First, all the single errors should be tested using specifically
created test cases, then the double errors and lastly the triple
errors are tested.

 Your focus should be on one level at a time.

How to find the syntax

 Every input has a syntax.

 The syntax may be:
– formally specified
– undocumented
– just understood

 … but it does exist!
 Testers need a formal specification to test
 the syntax and create useful “garbage”.

Council for Innovative Research International Journal of Computers & Technology
www.ijctonline.com ISSN: 2277-3061 Volume 3. No. 1, AUG, 2012

51 | P a g e www.cirworld.com

BNF

 Syntax is defined in BNF as a set ofdefinitions.
Each definition may in-turnrefer to other definitions
or to itself.

 The LHS of a definition is the name givento the
collection of objects on the RHS.

– ::= means “is defined as”.

– | means “or”.

– * means “zero or more occurrences”.

– + means “one or more occurrences”.

– A n means “n repetitions of A”.

BNF Example

special_digit ::= 0 | 1 | 2 | 5

other_digit ::= 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

ordinary_digit ::= special_digit | other_digit

exchange_part ::= other _ digit2ordinary_digit

number_part ::=ordinary _ digit4

phone_number ::= exchange_part number_part

Correct phone numbers:

– 3469900, 9904567, 3300000

Incorrect phone numbers:

– 0551212, 123, 8, ABCDEFG

Why BNF?

 Using a BNF specification is an easy way to

 design format-validation test cases.

 It is also an easy way for designers to organize their

work.

 You should not begin to design tests until you are

able to distinguish incorrect data from correct data.

Dangers related to syntax Testing

Certain dangers have also been identified related to the syntax
testing:

 It is quite common for the testers to forget the

normal cases.

 While testing, testers often go overboard with the

testing combinations.

 Syntax testing is often taken very lightly since it is

pretty easy when compared to structural testing.

 A lack of knowledge about the program can make

you to execute many test cases. So it‟s better to
have a thorough study of the program before you
test it.

References:

1. David Lee, Mihalis Yannakakis “Principles And

Methods Of Testing Finite State Machines - A Survey” ,
AT&T Bell Laboratories , Murray Hill, New Jersey

2. A.V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
1974

3. B. Austermuehl, „„MHTS/400 - testing message handling

systems,‟‟ Proc. IFIP WG6.16th Intl. Symp. on Protocol
Specification, Testing, and Verification, North Holland,
B.Sarikaya and G. v. Bochmann Ed. pp. 151-162, 1986

4. D. Brand and P. Zafiropulo, „„On communicating finite-
state machines,‟‟ JACM, vol.30, no. 2, pp. 323-342, 1983

5. E. Brinksma, „„A theory for the derivation of
tests,‟‟ Proc. IFIP WG6.1 8th Intl. Symp. on Protocol
Specification, Testing, and Verification, North-Holland,
S. Aggarwal and K. Sabnani Ed. pp. 63-74, 1988

6. K.-T. Cheng and A. S. Krishnakumar, „„Automatic
functional test generation using the extended finite state

machine model,‟‟ Proc. DAC, pp. 1-6, 1993

7. www.cs.tau.ac.il
8. www.wikipedia.org
9. www.cs.washington.edu
10. www.infobarrel.com

http://www.cs.tau.ac.il/
http://www.wikipedia.org/
http://www.cs.washington.edu/
http://www.infobarrel.com/

