
ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

125 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

A Study Paper on Performance Degradation due to Excessive 

Garbage Collection in Java Based Applications using Profiler 

Emi Retna. J 

Abstract  

Applications are becoming more complex, more larger and 
demand high quality. Application Server is the component on 
which most of the applications are hosted. It acts in the middle 
tier providing lot of functionalities like transaction 
management, caching ,persistence clustering etc. There are a 
variety of application servers to choose from like JBoss, 

Websphere, Tomcat etc, some are open source while others 
are proprietary. Quality parameters like performance, 
availability, scalability, maintainability, re-usability vary 
between different application servers. The application servers 
can be analyzed and monitored for performance using various 
tools and metrics. The quality parameters of an application 
server are affected by various factors such as memory leak, 
poor performing code, etc. It is necessary to evaluate the 

performance, to verify if the quality requirements are met. 
Software Engineering has several methodologies, metrics and 
calculations to evaluate the quality requirements. [1] discusses 
the various measurements and metrics that can be used to 
calculate the quality parameters. 

Key Words - garbage collection, profiling, generation, 
calibration 

Lot of factors affects the performance of a Java application. 

Factors that directly affect the performance of a Java 
application are heap size, threads and connection pooling. If 
more heap size is allocated then more java objects can be 
stored in the heap space. So the garbage collection can take 
place sparingly or the application can utilize more CPU cycles 
on performing the functionality rather than garbage collecting. 
But when garbage collection takes place, more objects needs 
to be searched for collecting the garbage object. On the other 

hand if less heap space is allocated the application does 
garbage collection very often. In this paper we discuss on the 
memory usage monitoring and garbage collection in Java 
based applications. Excessive garbage collection affects the 
performance of a Java based application though there are 
tunable parameters in JVM to perform garbage collection. The 
tool used for memory usage analysis is the Netbeans IDE 
profiler. The result shows that for high scaling applications 
improper garbage collection and memory leak can be a 

serious bottleneck that needs to be addressed. 

This project is a motivation of a research work on 
performance study in Java based applications. This paper 

proposes an analysis on memory that may cause poor 
performance in an application. Problems like memory leak 
slow down the processing of jobs [2]. The memory leak needs 
to be identified at the early stage of deployment and remedial 
actions taken to fine tune the code so as to avoid memory 
leaks. 

Experiments - Identifying Memory Leaks  

There are several tools to analyze memory and monitor 
memory usage. The Netbeans IDE profiler is one among them 
that records the behavioral aspects of the application. The 
profiler is a tool that has been inbuilt with the latest version of 
Netbeans IDE. It helps in analyzing the memory, the heap size 
etc. The process involved in performing the profiling is out of 
the scope of this paper. 

These experiments were conducted in  uniprocessor system. 

The Java platform used was jdk1.6 in Windows operating 
environment. 

Several case studies were performed and access the memory 
utilization and how they affect the overall performance of an 
application server. The results are discussed below. 

Case Study 1 and Evaluation Results 

The NetBaeans profiler was used to evaluate some of the Java 
applications developed. The Java application developed was 

deployed in NetBeans IDE and the JBOSS Application Server 
was started. Inorder to run the NetBeands profiler the 
following steps were followed; 

1. Run the profiler calibration. Calibration is done on 
the JDK running on the machine.This is a one time 
action. 

2. Integrate the profiler with the project 
3. Analyze the results of memory profiling 

The entire application can be profiled or parts of 
application alone can be profiled. Further there is 
option of profiling all Java classes or only project 
classes. There is option of filtering out Java core 
classes alone. User defined profiling points alone 
can also be taken up for analysis. 

The experiment was conducted to profile the entire 
application as well as only core java classes of the application. 

Results 

 

Fig 1: Memory profiling result of entire application 

Inference: 



ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

126 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

 The red shade indicates the allocated size of the 
JVM heap size (left graph). 

 The purple shade indicates the amount of JVM heap 
size actually in use (left graph). 

 The red shade indicates the count of active threads 
in the JVM (right graph). 

 The purple shade indicates the classes loaded in the 
JVM (right graph). 

 The red shade indicates the surviving JVM objects 
that has not been garbage collected over time. As 
the object survives different garbage collections that 
occur, the age of the object increases. The age of the 
object is the number of garbage collection that the 
object has survived(centre graph).. 

 The purple shade indicates the percentage of 

execution time spent by JVM doing garbage 
collection (centre graph). This percentage of 

execution time the JVM does not execute the 
application. If this percentage is more then the 
garbage collection parameters needs to be tuned in 
JVM. 

 Count of generation = age of object1 + age of object 
2 +….+age of object n 

In the experiment: 

 The allocated JVM heap size is above 300 
megabytes (left graph). 

 The JVM heap size actually in use varies from 
above 100 megabytes to 200 megabytes (left graph). 

There is a provisioning to run the garbage collection forcibly. 
When the garbage collection was forcibly done, the results 
obtained are as shown in the below figure:

 

 

Fig 2: Memory profiling – forced garbage collection 

The basic telemetry information of the project as given by the 
tool is as given below: 

 

Fig 3: Basic telemetry information – entire application 

While the experiment is being conducted if there is a need to 
convert profiling to only project classes that can also be done. 
This need may arise due to the factors that too much data 
collected and the profiler ran out of memory. 
OutOfMemoryError may occur due to several reasons 
including HttpUnit doesn’t support Java Script processing. 

 

 

Fig 4: Memory profiling result of only project classes 

 

Now the basic profiler information is as given below: 

 



ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

127 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

Fig 5: Basic telemetry information – only project classes 

When some major operation was performed the below data 
was obtained: 

 

Fig 6: Basic telemetry information – only project classes 

Both object creation and garbage collection can be recorded 
and analyzed. The thread data can be viewed available is :

 

 

Timestamp Heap Size (Bytes) Used Heap (Bytes) 

Nov 10, 2010 11:20:24 AM 128647168 5897920 

Nov 10, 2010 11:20:25 AM 128647168 8608272 

Nov 10, 2010 11:20:27 AM 128647168 12663608 

Nov 10, 2010 11:20:28 AM 128647168 25523112 

Nov 10, 2010 11:20:29 AM 128647168 30235744 

Nov 10, 2010 11:20:30 AM 128647168 9832240 

…. … … 

Nov 10, 2010 11:28:29 AM 356909056 214367632 

Nov 10, 2010 11:28:30 AM 356909056 214367632 

 

CaseStudy 2 and Evaluation Results 

The same experiment was repeated for several projects. Another result of a sample application is as given below: 

 



ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

128 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

 

Fig 7: Memory profiling result of entire application 

 

Fig 8: Basic telemetry information – entire application 

CaseStudy 3 and Evaluation Results 

 

 

Fig 9: Memory profiling result of entire application 

 

 

 

Fig 10: Basic telemetry information – entire application 

Modifying the profiler to profile only project classes the following results were obtained 



ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

129 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

 

Fig 11: Memory profiling result of only project classes 

 

 

Fig 12: Basic telemetry information – project classes only 

 

 

Fig 13: Memory profiling result of only project classes 

 

 

Fig 14: Basic telemetry information – project classes only 

 

On forcibly running GC the values obtained are as follows: 

 

Fig 15: Memory profiling – forced garbage collection 



ISSN: 2277–3061 (online)                                                      International Journal of Computers & Technology 
                                                                                                                                  Volume 2 No. 3, June, 2012 

 

130 | P a g e                                                    w w w . i j c t o n l i n e . c o m  
 

 

 

Fig 14: Basic telemetry information – project classes only on forced GC 

 

Inference: When the GC is forcibly run the used memory is 
getting reduced. Reducing garbage collection times increase 
the performance. Garbage collection (GC) delays can be 

successfully lowered to by using parallel garbage collection 
algorithms. But most of the application do have modules 
which executes sequentially and does not do parallel 
processing. 

Even if the JVM spends 1% of time in garbage collection in a 
uniprocessor system, it translates to more than a 20% loss in 
throughput on 32 processor systems [3]. Hence this is a major 
problem that needs to be addressed. Improvements in garbage 
collection process or avoiding memory leaks to a smaller 

extend can show better performance results. Garbage 
collection may become a principle bottleneck for large scale 
applications. 

Acknowledgement 

The author expresses deep gratitude to Karunya University for 
providing infrastructure for carrying out the research work. 
The author thanks the senior professors and the anonymous 
reviewers for roviding valuable suggestions to improve the 

quality of the research paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] J.Emi Retna, Greeshma Varghese, Merlin Soosaiya, Sumy 
Joseph,  “A Study on Quality Parameters of Software and the 

Metrics for Evaluation” International journal of Computer 
Engineering & Technology (IJCET),ISSN Print :   ISSN 0976 
– 6367  ISSN Online:    ISSN 0976 – 6375 Volume 1, Issue 
1(2010) 

[2] Aad P. A. van Moorsel, Katinka Wolter, “ Analysis of 
Restart Mechanisms in Software Systems”  IEEE 
Transactions on Software Engineering Vol 32, No.8, August 
2006 

[3]http://www.oracle.com/technetwork/java/gc-tuning-5-

138395.html 


