PERFORMANCE ANALYSIS OF OPEN SOURCE STORAGE CLOUDS IN CLOUD COMPUTING

Shaveta rani

Student, M.Tech. Deptt. of Computer Sc. LPU, Jalandhar

ABSTRACT

ISSN: 2277–3061 (online)

Cloud computing is one of the latest research area that helps in storing the information permanently on the servers and manages the different resources for the requested users to provide ondemand services. In order to create the more usable and economic value based cloud computing, the principles, goals and structure of the cloud engineering is of vital importance. The objective of this study is to analyze the CPU and memory performance of different open source clouds. We will use different open source cloud to measure the different performance metrics like CPU time for downloading and uploading of file, memory usage while downloading and uploading the file, standard deviation of CPU usage and standard deviation of memory usage.

General Terms

Cloud Computing, Standard deviation, open source clouds etc.

Keywords

Cloud computing, Metrics, CPU Time, Memory usage, etc.

1. INTRODUCTION

One of the major aspects of software engineering is to develop and manage software for commercial use [2]. But now days most organization must continue to use its local resources to operate its daily systems and to store its data but these organization don't use their resource and service efficiently and most of time they remain ideal. This leads to technology where one organization shares its service, resource and store its data on another organization server's known as cloud technique [1] [6]. So, whenever capacity or service is required at short notice it can be accessed by using linked server capacity by paying some considerable fee for such facilities. Here comes the need and role of cloud engineering. Cloud engineering is the study and applied research of the application of the engineering to "cloud".

Cloud computing [3] [9] is a technology that uses the internet and central remote servers to maintain data and applications. Cloud computing allows consumers and businesses to use applications without installation and access their personal files at any computer with internet access. This technology allows for much more efficient computing by centralizing storage, memory, processing and bandwidth.

Clouds [1] can be defined as large pool of data storage that can be easily used and access virtualized resources such as hardware, development platform and services. In simple words one can say that cloud is the web of different types of server which share resources.

Sangeeta sharma

Assistant Professor, Deptt. of Computer Sc. LPU, Jalandhar

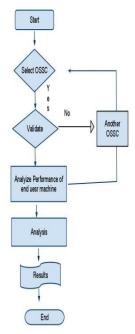
There are numbers of different cloud storage [3] [4] systems, some of these have a very specific focal point, such as storing Web e-mail messages or digital pictures. Others are available to store all forms of digital data. Some cloud storage systems are small operations, while others are so large that the physical equipment can fill up an entire warehouse. The facilities that keep cloud storage systems are called **data centers**.

In simple terms a cloud storage system needs just one data server connected to the Internet. In this case client sends replica of files over the Internet to the data server, which then records the information. When the client wishes to retrieve the information, it accesses the data server through a Web-based interface. The server then either sends the files back to the client or allows the client to access and manipulate the files on the server itself.

Cloud storage [4] systems generally rely on hundreds of data server. Because computers occasionally require maintenance or repair, it's important to store the same information on multiple machines. This is called **redundancy**. Without redundancy, a cloud storage system couldn't ensure clients that they could access their information at any given time. Most systems store the same data on servers that use different power supplies. That way, clients can access their data even if one power supply fails.

Not all cloud storage clients are worried about running out of storage space. They use cloud storage as a way to create backups of data. If something happens to the client's computer system, the data survives off-site. It's a digital-age variation of "don't put all your eggs in one basket."

2. PROBLEM DEFINTION


With the passage of time open source storage clouds [7][8] are getting attention. There are various different open source storage clouds exist such as Amazon cloud, google docs, Adrive, open drive etc. Cloud is one of the major challenges being faced by the SaaS users, because the introduction of cloud computing changes our thinking as what is considered to be "our system" and "our data" is no longer physically stored on a specific set of computers and disks, but rather both the concept of system and the locus of our data have evolved into something diffuse geographically distributed. In a cloud data is totally isolated, user does not know where the data is stored so there may be more effect on the performance of the end user machine. In this paper especially I am going to concentrate on analysis of the performance of end user machine in the virtual environment of open source storage clouds, such as google docs, dropbox, and skydrive. Different experiment will be conducted to measure the performance of end machines using different storage clouds. The above mentioned analysis will be conducted by following considering following performance tests on various Open source storage clouds.

Memory stress test: RAM utilization based Tests will be conducted to check the stress on system memory in different OSSCs environment.

CPU test: To test the effects of processor interference due to background load if any, it should be analyzed how each instance uses the processor.

3. ANALYSIS

Software metrics one of the important concepts of software engineering plays a great role in coordinating [5] and managing the software project. With the help of software metrics one is able to compute and analyze various attributes of a software project. I have analyzed different open source storage clouds while uploading and downloading the files. We have focused on computing different performance metrics like CPU time, System, Memory Usage, and their variation over different storage clouds.

The following algorithm is used for analyzing the different open source storage clouds.

torage cro	orage clouds.									
File name	Google docs uploading time CPU (%) usage (X)	Google docs uploading time memory usage (MB) (Y)	X2	Y2	Google docs downloading Time CPU usage	Google docs downloading time memory usage	X2	Y2		
File1	14	869	196	755161	21	925	441	855625		
File2	4	866	16	749956	18	929	324	863041		
File3	4	859	16	737881	21	926	441	857476		
File4	8	854	64	729316	45	924	2025	853776		
File5	23	848	529	719104	40	922	1600	850084		

Step 1: Read Z

Step 2: For I=1 to Z

Step 3: Read Filesize F[I]

Step 4: Read units U of file

Step5: Now convert unit U of the Filesize F[I] in Bytes called UB [i]

Step 6: Read data transmission speed

Step 7: Read data transmission unit DU

Step 8: Convert DU into bytes called DTSB (Data Transmission Speed in Bytes)

Step 9: Download time DT[i]=UB/ (DTSB*60) minutes

Step 10: Read memory usage MU[I] while uploading/downloading a file

Step 11: set X[i]=DT[i], compute square of X[i]

Step 12: Set Y[i]=MU[I], compute Square of Y[i]

Step 13: Set I=I+1

Step 14: End For

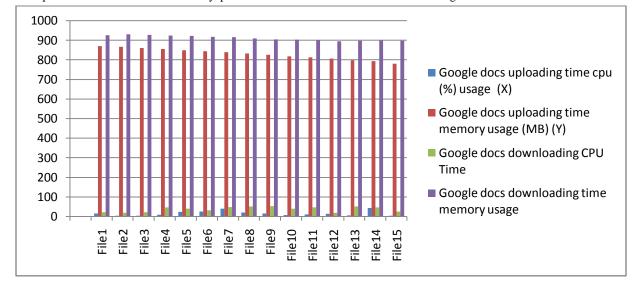
Step 15: Now Computer mean of X by using the formula $XAM = \sum x(i)/Z$

Step 16: Similarly compute the mean of Y by using the formula $YAM = \sum Y(i)/Z$

Step 17: Compute Standard deviation of X (CPU Time) by using

formula
$$\sigma = \sqrt{\frac{\varepsilon x^2}{Z} - \left(\frac{\varepsilon x}{Z}\right)^2}$$

Step 18: Compute standard deviation of Y (memory usage) as


$$\sigma = \sqrt{\frac{\varepsilon Y^2}{Z} - \left(\frac{\varepsilon Y}{Z}\right)^2}$$

Case I: The following table shows how memory and CPU performs during uploading and downloading for selected set of files.

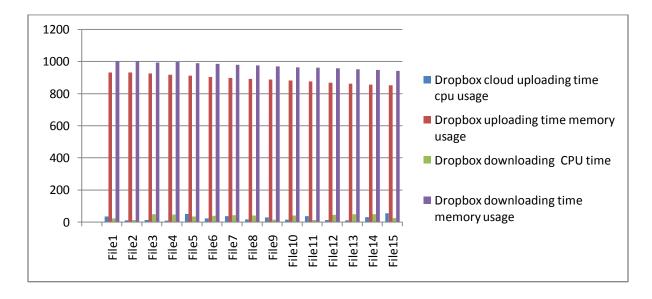
File6	25	843	625	710649	31	916	961	839056
File7	39	838	1521	702244	47	915	2209	837225
File8	20	831	400	690561	51	909	2601	826281
File9	14	825	196	680625	53	903	2809	815409
File10	7	817	49	667489	40	902	1600	813604
File11	10	812	100	659344	45	901	2025	811801
File12	13	806	169	649636	18	894	324	799236
File13	5	798	25	636804	50	897	2500	804609
File14	42	793	1764	628849	45	899	2025	808201
File15	4	779	16	606841	25	897	625	804609

The following chart shows the graphical representation of CPU and memory performance of

Google docs cloud storage for uploading and downloading the files.

From the above representation it is clear that uploading CPU time on Google doc is lesser than the downloading CPU time. And in regard to memory usage downloading file consumes more system memory as compare to uploading files.

Case II: the following table shows how CPU and memory performs on dropbox cloud for the same set of files.


File name	Dropbox cloud uploading time CPU usage	Dropbox uploading time memory usage	X1	Y1	Dropbox downloading Time CPU usage	Dropbox downloading time memory usage	X2	Y2
File1	36	932	1296	868624	24	1003.52	576	1007052
File2	12	931	144	866761	13	1003.52	169	1007052
File3	13	925	169	855625	50	993.28	2500	986605.2
File4	9	917	81	840889	47	997	2209	994009
File5	52	911	2704	829921	35	990	1225	980100

ISSN:	2277-	-3061	(online))
--------------	-------	-------	----------	---

File6	23	904	529	817216	40	985	1600	970225
File7	38	898	1444	806404	43	980	1849	960400
File8	17	892	289	795664	41	975	1681	950625
File9	30	887	900	786769	16	970	256	940900
File10	15	881	225	776161	41	964	1681	929296
File11	38	875	1444	765625	14	961	196	923521
File12	14	868	196	753424	45	958	2025	917764
File13	11	862	121	743044	49	951	2401	904401
File14	31	856	961	732736	49	947	2401	896809
File15	55	851	3025	724201	25	942	625	887364

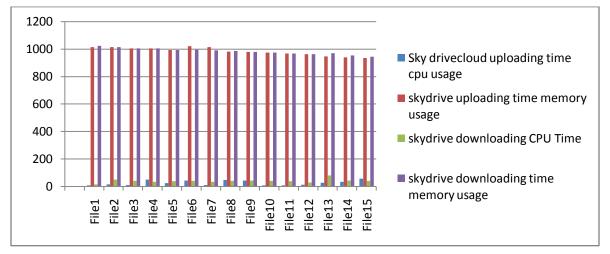
the following chart shows the graphical representation of CPU performance and system memory usage while uploading and

downloading files over dropbox cloud storage.

From the above graphical representation it is clear that the relationship between CPU uploading and CPU downloading time is not as clear as in Googledoc, because in this sometimes the CPU uploading time is more and sometimes CPU

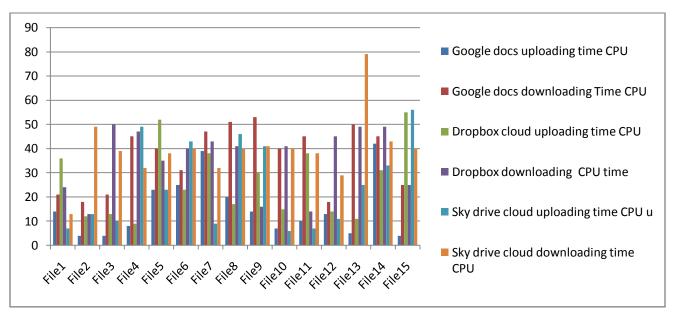
downloading time is more. However like Google docs the memory performance is same that is downloading file consume more system memory as compare to uploading file in dropbox cloud.

Case III: The following table shows the performance of CPU and memory for the set of files over skydrive cloud.


File name	Sky drive cloud uploading time CPU usage	skydrive uploading time memory usage	X1	Y1	Skydrive downloading Time CPU usage	skydrive downloading time memory usage	X2	Y2
File1	7	1013.76	49	1027709	13	1024	169	1048576
File2	13	1013.76	169	1027709	49	1013.76	2401	1027709
File3	10	1003.52	100	1007052	39	1003.52	1521	1007052
File4	49	1003.52	2401	1007052	32	1003.52	1024	1007052

ISSN:	2277	3061	(onl	ine)	١
10011:	4411-	-2001	COIL	ше	1

File5	23	993.28	529	986605	38	993.28	1444	986605.2
File6	43	1019.9	1849	1040204	40	995	1600	990025
File7	9	1012.74	81	1025634	32	990	1024	980100
File8	46	982	2116	964324	40	985	1600	970225
File9	41	979	1681	958441	41	979	1681	958441
File10	6	974	36	948676	40	974	1600	948676
File11	7	967	49	935089	38	968	1444	937024
File12	11	963	121	927369	29	963	841	927369
File13	25	946	625	894916	79	969	6241	938961
File14	33	940	1089	883600	43	953	1849	908209
File15	56	934	3136	872356	40	944	1600	891136


The following chart gives graphical representation of CPU

performance and memory usage over skydrive cloud.

From the above graphical representation it is clear that CPU performance while uploading and downloading fluctuates like dropbox cloud. Skydrive also shows fluctuation in system

memory usage while uploading and downloading the files. The following chart gives the comparative analysis of CPU performance of different storage clouds as stated above.

4. CONCLUSIONS

From the above analysis it is clear that different storage clouds shows different behaviours in the performance of CPU and System memory usage. Google docs gives the stable output that is CPU time on Google docs is lesser than the downloading CPU time. And in regard to memory usage downloading file consumes more system memory as compare to uploading files.

5. ACKNOWLEDGEMENT

Authors are highly grateful to Dr. Gurdev Singh, Professor & Head, DCSE, Adesh Institute of Engineering & Technology, Faridkot for their precious guidance from time to time.

6. REFERENCES

- [1] Gurdev Singh, Goruav Garg, Prince Jain, "Structure or Cloud Engineering" IJCA, Volume 33–No.8, November 2011.
- [2] Manik Sharma, Chandni Sharma et. al. "Comparative Study of Static Metrics of Procedural and Object Oriented Programming Languages", IJOCT, February 2012.
- [3] http://computer.howstuffworks.com/cloud-computing/cloud-storage1.htm (online)
- [4] K. Zimmer ,voras, B. Mihaljevi, M. Orli,(2011) "Evaluating open source cloud computing soloutions" MIPRO 2011, May 23-27, 2011, Opatija, Croatia

- [5] Manik Sharma, Gurdev Singh, Parneet Kaur, "A Comparative Study of Static object oriented Metrics", IJoAT, Vol3, No1. January 2012.
- [6] Liladhar R. Raewatkar, Lanjewar, "Implementation of Cloud Computing", IJCA, Number 8 Article 6, 2010
- [7] Patrícia Takako Endo1, Glauco Estácio Gonçalves1,(2008) "A Survey on Open-source Cloud Computing Solutions" VIII Workshop em Clouds, Grids e Aplications.
- [8] Michael Sabala, Robert L., Grossman, Yunhong Gu, (2008) "Compute and Storage Clouds Using Wide Area High Performance Networks National Center for Data Mining University of Illinois at Chicago January 31, 2008 PP-11.
- [9] Nariman Mirzaei "Cloud Computing", IEEE International conference on cloud computing. 2008.