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ABSTRACT 

This paper investigates the use of fractal geometry for analyzing ECG time series signals. A technique of identifying
cardiac diseases is proposed which is based on estimation of Fractal Dimension (FD) of ECG recordings. Using this 
approach, variations in texture across an ECG signal can be characterized in terms of variations in the FD values. An 
overview of methods for computing the FD is presented focusing on the Power Spectrum Method (PSM) that makes use of 
the characteristic of Power Spectral Density Function (PSDF) of a Random Scaling Fractal Signal. A 20 dataset of ECG 
signals taken from MIT-BIH arrhythmia database has been utilized to estimate the FD, which established ranges of FD for 
healthy person and persons with various heart diseases. The obtained ranges of FD are presented in tabular fashion with 
proper analysis. Moreover, the experimental results showing comparison of Normal and Abnormal (arrhythmia) ECG 
signals and demonstrated that the PSM shows a better distinguish between the ECG signals for healthy and non-healthy 
persons versus the other methods. 
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1. INTRODUCTION 

Heart is one of the vital organs of human being. An Electrocardiograph (ECG) is a signal that records the electrical activity 
of the heart muscle as it changes with time; they usually printed on paper for easier analysis. It is a very popular and 
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useful biosignal which has been used by doctors and physicians for the purpose of diagnosis different of cardiac diseases 
including arrhythmia. Heart rhythm disorders, called arrhythmias, present abnormal electrical activities due to 
cardiovascular diseases.  

Analysis of heart failure is of tremendous significance since it is a major medical problem that affects most of people all 
over the world [1]. Healthy normal heart rhythm which is called Normal sinus rhythm is a rhythm where the sinus node 
triggers the cardiac activation [2]. This is easily diagnosed by noting that the three deflections, P-QRS-T, follow in this 
order and are differentiable, see Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Typical ECG signal 

When the activation in the cardiac atria is fully irregular and disordered, producing irregular fluctuations in the baseline 
heart rhythm disorders. A consequence is that the ventricular rate is rapid and irregular, though the QRS contour is usually 
normal [2]. Atrial fibrillation (AV) occurs as a consequence of rheumatic disease, atherosclerotic disease, hyperthyroidism 
[2]. It may also occur in healthy subjects as a result of strong sympathetic activation. . Supraventricular tachycardia (SVT) 
means that from time to time heart beats very fast for a reason other than exercise, high fever or stress,. When the P-
wave always precedes the QRS-complex but the PR-interval is extended over 0.2s, heart block is diagnosed. Finding 
arrhythmia characteristics corresponding to Atrial Fibrillation (AF), Supraventricular tachycardia (SVT), and Heart Block 
from ECG recording have received considerabl attention in recent years. Differences in normal and abnormal ECG signals 
can’t be easily determined especially with human eyes. Developing an intelligent method for identification of such cardiac 
diseases is very helpful in biomedical field, as it will be an aid to clinical staff in the absence of doctor, it will also he lp 
doctor to diagnose and act faster in case of emergency conditions. 

In this paper, a fractal dimension (FD) for 20 dataset of ECG signals has been determined in time domain and frequency 
domain, then ranges of FD, is established for healthy person and persons with various heart diseases. The sample of 
ECG signals for the present study is obtained from MIT/BIH database via Physionet website [3]. The MIT-BIH database 
contains both normal and abnormal types of ECG signals. In this study, the considered beats refer to the following 
classes: Normal Sinus Rhythm (N), Atrial Fibrillation beat (AFIB), Supraventricul Arrhythmia (SVT), and Heart Block (BII). 
The beats were selected from the recordings of 20 patients, which correspond to the following les: 16786m, 17052m, 
16420m, 19088m, 16265m for Normal Rhythm, 05261m, 04908m, 05121m, 04746m, 06453m for Atrial Fibrilliation beat, 
801m, 803m, 805m, 820m, 824m for Suparventricul Arrhythmia, and  ecg2_20m, ecg4_20m, ecg10_20m, ecg11_20m, 
ecg12_20m for Heart Block. The properties of these signals are directed in Table 1 and their plots are shown in Figure 2 to 
Figure 5. 
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                Figure 2. (A) - (D) ECG signals of Normal Rhythm Figure 3. (A) - (D) ECG signals of an Atrial Vibrillation 

 

Figure 4. (A) - (D) ECG signal of a Suparventricul 
Arrhythmia         Figure 5. (A) - (D) ECG signals of   Heart Block 

 

The rest of this paper is organized as follows: In section 2 we present definition of fractals and fractal dimension. An 
overview of time domain methods for estimating fractal dimension is given in Section 3. In Section 4, the power Spectrum 
Method (PSM) is introduced as a method of estimating the fractal dimension in frequency domain. The experimental results 
are given in Section 5. Finally, in Section 6 we conclude with the conclusions and future works. 

2. FRACTALS AND FRACTAL DIMENSION 

Fractal geometry mathematically characterizes systems that are fundamentally irregular at all scales. The term fractal was 
first introduced by Mandelbrot [4]. Fractals are fragmented geometric objects that can be divided into parts, each of which is 
approximately similar to the original whole. 

Therefore, they are self-similar objects independent of scale. The fractal dimension (FD) is a measure of how complicated a 
self-similar object is, taking greater values for increasing complexity. FD is a non integer number that measures the degree 
of irregularity over multiple scales and it determines how fractal differs from Euclidean objects [5]. Strict self-similarity is a 
property that only artificially generated mathematical objects are characterized by. Sierpinski triangle is such an example 
[6]. 
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Table 1. Description of the used dataset 

 

 

 

 

 

 

 

Natural objects show statistical self-similarity. In the statistical sense, an object is self-similar if its parts, on average, 
are similar to the whole, but there exist no exact replicas of particular parts. In statistical self-similarity or self-affinity, a 
measure of complexity for a given magnification will have the same statistical moments as at any other magnification, 
although the details will not be identical [8]. Many real-world phenomena exhibit fractal properties. So it can often be 
useful to characterize the FD of a set of sampled data.  

There are numerous signals such as speech signals [9], biomedical signals [10], and Internet Traffic time series signal 
[11] with fractal properties such that their graph is a fractal set. FD is a descriptive measure that has been proven 
useful in quantifying the complexity or self similarity of biomedical signals. Such analysis of complexity of biomedical 
signals helps us to study physiological processes underlying the systems. The FD can be used to study dynamics of 
transitions between different states of systems like heart, as also in various physiological and pathological conditions 
[12].  

As ECG signal of a human heart is a self-similar object, so it must has a fractal dimension that can be extracted using 
mathematical methods to help identifying and distinguish specific States of heart pathological conditions. Several 
methods have been proposed in the literature to estimate the FD of signals or time series data either in time or 
frequency domain. Analysis in the time domain processing the signal data directly, while analysis in frequency domain 
requires Fourier or wavelet transform of the signal [13]. 

3.TIME DOMAIN METHODS OF ESTIMATING FRACTAL DIMENSION  

Herein, fractal complexity of signal is characterized in real time by computing its FD using each of Katz’s method, 
Hugshi’s method and Hurst’s method. 

 A. Katz’s method 

The FD of a signal curve, based on Katz’s method [15], can be defined as: 

)log(

)log(

d

L
FD                                                   (1) 

where, L is the total signal curve length or sum of distance between successive points, and d is the diameter estimation 
of the distance between the first data point and the data which gives the farthest distance. d and L , are respectively, can 
be expressed mathematically as below:  
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Normalizing distances in (1) by the average distance between successive points, say a, gives: 
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Defining  n as the number of steps in the signal curve less than the number of points N, then 
a
Ln  . Substituting n in 

(4), FD according to Katz’s approach is expressed as:   
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Signal Type 
No. of samples/ 

signal 
Sampling Frequency Sample Intervals 

Normal Sinus Rhythm 1280 128 Hz 0.1132740 sec 

Atrial fibrillation 2500 250 Hz 0.0040000 sec 

supraventricul Arrythmia 1280 128 Hz 0.0078125 sec 

Heart Block 5000 500 Hz 0.0020000 sec 
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B. Higuchi’s method 

Higuchi proposed an efficient algorithm to calculate the FD directly from time series [16]. Assume a one dimensional 
time series X= {X(1), X(2), X(3), …, X(N)} where, N is the total number of samples, in our case the series X would be 
the successive values of ECG signal. The Higuch’s algorithm constructs k new time series as:  

)}.(....,),2(),(),({ kMmXkmXkmXmXX m

k
              (6) 

where k and m are integers, represent time interval between points and initial time value respectively, M =  For 

each new time series constructed the length  is computed as: 
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where,  is a normalization factor for the curve length of  . The length of the series L(k) for the time interval k 

is computed as the mean of the k values, for m = 1, 2, ..., k . 
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If L (k) is proportional to , then the curve describing the shape of ECG time series is fractal-like with the 

dimension FD. In this case, if  ln(L(k)) is plotted against ln(k) , k = 1, 2, 3, ..., , the points fall on a straight line 

with a slope equal to FD. The fractal dimension of ECG signal is calculated via above method while applying adaptive 
and fixed windowing method. 

C. Rescaled Rang (R/S) Method 

Hurst developed R/S method which is a statistical technique to analyze a large number of natural phenomena [17]. 

The R/S method is one of the oldest and best known methods for estimating H (Hurst parameter). Let {  , k = 1, 

2, 3, ..., N be a set of N sample points of an ECG recordings. The mean  and the standard deviation S(N) of 

these points are, respectively,  and S(N) =  The R/S-statistic or rescaled 

adjusted range , is defined by the ratio: 
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where,                         
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Hurst found empirically, that for many time series observed in nature, they are well represented by the relation 
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where C is a finite positive constant. By taking logs we obtain 
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Therefore, the slope of a plot of log(R/S) against log(N) provides the Hurst parameter, H [6]. The relation between 
the Hurst exponent and the fractal dimension is simply determined as FD=2-H. So fractal dimension with the help of 
these equations can easily evaluated in the rescaled range analysis. 

4. FREQUENCY DOMAIN METHOD OF ESTIMATION FRACTAL DIMENSION  

As we have seen that the Hurst parameter (Dimension) H measures the feature of self-affinity of time series in real-time 
domain. Herein, we present the description of this feature through processing the time series in the frequency domain 
in which we assume that the power spectrum of this signal is dominated by a Random Scaling Fractal(RSF) model P(f) 

= c/ , where c > 0. In the following we introduce a power spectrum method (PSM) depending on the frequency 

analysis by which we try to capture the fractal behavior of ECG signals based on the RSF model. 
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  4.1 The Power Spectrum Method (PSM) 

Fractals are applicable when the underlying process being mathematically modeled has a similar appearance 
regardless of the scale over which it is observed. It turns out that many of natural signals can be modeled using 
fractals. Many signals observed in nature are random fractals including biomedical signals such as ECG time series 
signal. Random Scaling Fractal (RSF) signals are signals whose probability distribution function (PDF) has the same 
‘shape’ irrespective of the scale over which they are observed. So that, random fractal signals are statistically self 
similar (self-affinity), they are self-similar in a statistical sense [18].   

However, ECG time series signal exhibit the features of self-affinity so it can be considered as an example of RSF 

signals. RSF signals are characterized by power spectra whose frequency distribution is proportional to 1/ where  

is the frequency and q > 0 is the ‘Fourier Dimension’, a value that is simply related to the Fractal Dimension, FD and 
Hurst (Dimension) parameter H, by the relation q = H + 1/2 = (5 - 2D)/2. This power law    describes the conventional 
RSF models which based on stationary processes in which the ‘statistics’ of the RSF signals are invariant of time and 
the value of q is constant.  

Assume X(t), in time domain, is a time series of ECG signal which assumed to be a self-affine signal. Notice that each 
of Figure 6 and Figure 7 shows the plotting of 1024 points of normal and abnormal ECG signals, respectively, with its 
similar small version of size 512 points from each of them. . The power spectrum of such a signal can be written as P 

( ) =   , where X ( ) is Fast Fourier Transform (FFT) of the time series in frequency domain ( i.e. X( ) = 

t(X(t))). For such time series the power spectrum, P ( ) obeys the RSF model   

qf

c
fP )(                                       (13) 

To estimate the fractal parameter in this series we convert them to frequency domain in which we assumed that the 
empirical power spectrum of each series has an envelope Power Spectrum Density Function (PSDF) which given as 

the RSF model P ( ) = .By using Moving Window technique, we choose a window q of size N to move over the 

points of the time series to be analyzed. From each window segment we apply the PSM to estimate the Fourier 
Dimension q, after implementing normalizing and transformation to spectral domain on the given segment.  

Figure 8 and Figure 9 show example of different plots of the measured power spectrum of normal and abnormal 
ECG signal, respectively, over different window size. These figures give the evident that the power spectrum of the 
ECG time series signals obeys the RSF model. The behavior of ECG signals can be characterized through 
estimating the parameter q in the proposed model where the estimated value of this parameter reflects the degree 
of self-similarity (fractality) in ECG signals. To do this the least square technique is applied on the measurements of 
ECG signals as follow: 

Let, , , ...,  (N being a power of 2) be sample points of an ECG signal . By Consider the case in which the 

digital power spectrum P( ) is give by applying a FFT to this time series. This data can be approximated by: 

2
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     Figure 6. (left) Normal Sinus Rhythm ECG signal 

     size 1024,(right) Zoom in version of Normal Sinus 

      Rhythm ECG signal of size 512 

       Figure 7. (left) Suparventricul Arrhythmia ECG 

       signal  of size 1024,  (right) Zoom in version of 

       Suparventricul Arrhythmia ECG signal of size 512 
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If we consider the error function 
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where  = , and it is assumed that the spatial frequency and the measured power spectrum  then the 

solution of  equation the 0
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 using least square method, and  gives: 
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Since the power  spectrum of real signals of size N is symmetric about  the DC level, where the DC level is taken to 

the midpoint  + 1 of the array, so in practice only the  data that lie to the right of DC [18]. 

Figure 8. Measured power spectrum of Normal Sinus 
Rhythm ECG signal (left-to-right and top-tobottom) for 
window size 1024; 512; 256; 128 

Figure 9. Measured power spectrum of Atrial 
Fibrillation ECG signal (left-to-right and top-to-bottom) 
for window size 1024; 512; 256; 128 for window size 
1024; 512; 256; 128 
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Table 6. Distinct range of FD values for sample ECG 

signal using PSM 

 

 

 

 

 
 

Signal Type Range 

Heart Block       0.0859 - 0.1229 

Atrial fibrillation 0.1401-  0.3795 

supraventricul 
Arrythmia 

0.3806 - 0.5175 

Normal Sinus Rhythm 1.1617 -  1.7882 

Table 7. Distinct range of FD values for sample ECG 

 sign using Katz’s Method 

 

 
Signal Type Range 

Heart Block 1.8081 - 1.8155 

Atrial fibrillation 1.5401- 1.9910 

supraventricul 
Arrythmia 

1.7745 - 1.9881 

Normal Sinus Rhythm 1.3996 -1.9771 

Table 2. The Estimated FD values for Normal Sinus 

 

 

Dataset 

(1280 
beats ) 

FD estimation methods  

Katz Higuchi's 

RS 

(FD = 2-
H) 

PSM 

16786m 1.7681 1.5126 1.3634 1.1617 

17052m 1.9181 1.6051 1.3384 1.3069 

16420m 1.9027 1.5768 1.3452 1.5411 

19088m 1.3996 1.1140 1.3570 1.7805 

16265m 2.1371 1.1140 1.3377 1.7882 

 

Dataset 

(2500 
beats) 

FD estimation methods  

Katz Higuchi's 

RS 

(FD = 2-
H) 

PSM 

05261m 2.0127 1.5564 1.2191 0.1401 

04908m 1.9766 1.4359 1.1685 0.2673 

05121m 1.5401 1.1013 1.1906 0.3015 

04746m 1.8252 1.4748 1.0739 0.3149 

06453m 1.5483 1.1487 1.2441 0.3795 

Table 3. The Estimated FD values for Atrial Fibrillation 
Arrhythmia Signals 

 

 

Table 4. The Estimated FD values for Supraventricul 
Arrythemia Signals 

 

Dataset 

(1280 
beats ) 

FD estimation methods  

Katz Higuchi's 

RS 

(D = 2-
H) 

PSM 

801m 1.7745 1.3263 1.3023 0.3806 

820m 1.7894 1.4185 1.2811 0.3917 

824m 1.7084 1.2762 1.2678 0.3936 

803m 2.1344 1.5698 1.3123 0.4736 

805m 1.8917 1.4422 1.2152 0.5175 

 

 

 

Table 5. The Estimated FD values for Heart Block 
Arrhythmia Signals 

 

Dataset 

(5000 
beats ) 

FD estimation methods  

Katz Higuchi's 

RS 

(D = 
2-H) 

PSM 

ecg11_20m 1.8081 1.3450 1.3723 0.1229 

ecg12_20m 1.7933 1.3252 1.3697 0.0859 

ecg2_20m 1.7554 1.2702 1.3568 0.1651 

ecg10_20m 1.7871 1.3431 1.3617 0.0976 

ecg4_20m 1.8155 1.3733 1.3531 0.1090 
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Table 8. Distinct range of FD values for sample ECG 
signal using Higushi’s Method 
 

Signal Type Range 

Heart Block 1.345 - 1.3733 

Atrial fibrillation 1.1013- 1.5564 

supraventricul Arrythmia 1.2762 - 1.5698 

Normal Sinus Rhythm 1.114 -1.6051 

 

Table 9. Distinct range of FD values for sample ECG 
signal using Rescaled Range Method 

 

 

 

 
Signal Type Range 

Heart Block 1.3723 - 1.3697 

Atrial fibrillation 1.0739 - 1.2441 

supraventricul Arrythmia 1.2152 - 1.3123 

Normal Sinus Rhythm 1.3377 - 1.3634 

 

Table 10. Average of the Estimated FD values ( ECG signal type VS. Estimation Method) 

 

 

 

 

 

 

 

 

5. EXPERIMENTAL RESULYS AND DISCUSSION 

In this study, for analysis, we have utilized four dataset which are composed of ECG signals recorded from healthy 
subjects and patients with heart arrhythmia. We have performed the experiments using Matlab 7 on ECG datasets 
from the MITBIH arrhythmia database [8]. The FD feature from each class of ECG timesereis signal is extracted 
using a non overlapping window of size 512 points by means of the presented methods. Tables 2-5 show the 
results obtained for the estimation of FD from the experimental signals and Table 6-9 show the intervals (lower 
bound and upper bound) of the estimated FD for each specific disease corresponding to each estimation method. 
Such intervals can distinguish clearly between healthy and non-healthy parsons by putting each of them in distinct 
FD range.  

On the other hand, Table 10 shows the average of FD values for each of ECG signal type along with the estimated 
methods that are used. For the PSM we note that the average FD value for Normal Sinus Rhythm is 1.5156. 
During the other heart arrhythmias, Atrial Fibrillation, Supraventricular and Heart attack the values are lower, and 
are equal to 0.1161, 0.2806, and 0.4314, respectively. There is a decrease in the average of FD value lie between 
71% and 92%. This decrease in the FD value indicates a decrease in the heterogeneity of the cardiac recording  

Meanwhile, if we compare the average FD value of Normal heart rhythms with abnormal heart rhythms that 
obtained by each of the time domain methods (i.e. Katz’s, Higuch’s and Hurst’s method) and the frequency 
domain method (i.e., PSM) it’s clear that the PSM has an advantage of distinguishing between the normal 
condition and the pathological one more clearly than these methods. So that the PSM it can provides a s ignificant 
clinical advantage where it can readily be incorporated ’on line’ to provide (and to possibly control) the onset of a 
pathological condition, which is indicated by a drop in the FD value. 

6. CONCLUSIONS AND FUTURE WORK  

In this paper a method of identifying Heart disease type based on fractal analysis of biomedical ECG signals is 
presented to help distinguish between normal and pathological condition. Three methods in time domain and one 
method in frequency domain are used to estimate the fractal dimension, FD, values for the normal and different 
pathological conditions which are established different ranges of FD for each specific disease. Such intervals are 
utilized to distinguish clearly between healthy and non-healthy parsons by putting each of them in distinct FD range. 
This should facilitate in its application as a supplemental method to support the diagnosis of a pathological or normal 
heart condition. The Power Spectrum Method (PSM) shows a better distinguish between the ECG signals for 
healthy and non-healthy persons versus the other methods. The results also suggest that FD is a practical tool for 
identification abnormality characteristic in the ECG recordings. For future work, it would be an interesting further to 
analyze another feature of cardiac signal such as the Heart Voice signal, Heart Variability Beat (HRV) signal. 

Signal Type Katz Method Higushi Method 
RS Method 

(FD=2-H) 

PSM 

Method 

 

Heart Block 1.7918 1.3351 1.3627 0.1161 

Atrial Fibrillation 1.7764 1.3434 1.7922 0.2806 

supraventricul Arrythmia 1.8304 1.4066 1.2757 0.4314 

Normal Sinus Rhythm 1.7931 1.3859 1.3483 1.5156 
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