
 ISSN 2277-3061

4625 | P a g e M a y 2 2 , 2 0 1 4

 A Group Collaboratable Proof of Retrievability Scheme for
Cloud Data Storage

Jyh-Shyan Lin1, Kuo-Hsiung Liao2, Chao-Hsing Hsu3
1
Department of Information Management, Yuanpei University, No.306, Yuanpei St., HsinChu, Taiwan, R.O.C.

jslin@mail.ypu.edu.tw
2
Department of Information Management, Yuanpei University, No.306, Yuanpei St., HsinChu, Taiwan, R.O.C.

liao@mail.ypu.edu.tw
3
Department of General Education Center, Yuanpei University, No.306, Yuanpei St., HsinChu, Taiwan, R.O.C.

hsuch@mail.ypu.edu.tw

ABSTRACT

Cloud computing and cloud data storage have become important applications on the Internet. An important trend in cloud
computing and cloud data storage is group collaboration since it is a great inducement for an entity to use a cloud service,
especially for an international enterprise. In this paper we propose a cloud data storage scheme with some protocols to
support group collaboration. A group of users can operate on a set of data collaboratively with dynamic data update
supported. Every member of the group can access, update and verify the data independently. The verification can also be
authorized to a third-party auditor for convenience.

Keywords

Cloud computing; Cloud data storage; Information security.

Academic Discipline And Sub-Disciplines

Information Management.

SUBJECT CLASSIFICATION

Information Techonology.

TYPE (METHOD/APPROACH)

Provable data possession, Proof of retrievability, Merkle hash tree, Aggregate group signature.

Council for Innovative Research
Peer Review Research Publishing System

Journal: INTERNATION JOURNAL OF COMPUTERS AND TECHNOLOGY

Vol. 13, No. 7

editorijctonline@gmail.com

www.ijctonline.com, www.cirworld.com

http://member.cirworld.com/
mailto:editorijctonline@gmail.com
http://www.ijctonline.com/

 ISSN 2277-3061

4626 | P a g e M a y 2 2 , 2 0 1 4

INTRODUCTION

Cloud computing (includes cloud data storage) allows users to obtain required services speedier than ever and easily to
expand the services they need, with cheaper software acquisition and hardware maintenance costs. It also provides a
flexible and convenient environment for users to access data and services. Furthermore, cloud computing allows people to
create potential brand-new applications, such as automatic data backup and cross-regional group collaboration. Recently,
group collaboration has become an important trend in cloud computing, and has been acknowledged as one of top 10
cloud computing trends for the decade [16]. In this paper, we propose a cloud data storage scheme with some protocols to
support group collaboration. The proposed scheme possesses the following properties:

 Proof of retrievability: A Cloud storage service provider can provide a proof to a user to ensure that the data

stored in the cloud servers are intact and retrievable.

 Fully dynamic data updatable: Users can make changes, including insertion, modification, deletion, and

appending, to their data at their well at anytime.

 Fully anonymous: Non-group members cannot identify that a data change is made by which group member, and

cannot distinguish that whether two data are modified by the same or different group members.

 Fully traceable: The group manager can find out that a data change is made by which group member, even though

the change is generated by the collusion of multiple members.

RELATED WORKS

Early related works focused on peer-to-peer (P2P) network data storage problems. Lillibridge et al. proposed a scheme for
P2P data backup by using (m+k,m)-erase codes to distribute file blocks to m + k peer hosts [14]. Filho et al. used RSA-
based hash functions to verify data integrity, achieving undeceivable data authentication in P2P networks [10].

Ateniese et al. introduced the model of provable data possession (PDP) [1]. The main intention of PDP is to confirm the
accuracy of data stored in untrusted storage servers. In the following research, Ateniese et al. used traditional symmetric
key encryptions to construct their PDPs [3], providing more efficiency than the previous scheme, and supporting dynamic
data file block appending and modification. Curtmola et al. extended the PDP model to multiple data replicas across
distributed storage systems [6]. Their scheme can ensure the integrity of data without encoding each replica separately.

Juels et al. introduced the proof of retrievability (PoR) model to ensure the integrity of remote data [13]. Their scheme
utilized error-correcting codes and pseudo-random dispersed checking blocks to ensure both possession and retrievability
of data. Shacham et al. extended this PoR model with a random linear function, called homomorphism authenticator, and
presented a PoR scheme without limitation on the number of verifications [17]. Bowers et al. generalized Juels’s model
and Shacham’s model and presented an improved PoR scheme [4]. Latter, Bowers et al. expanded their scheme to a
distributed architecture [5]. Dodis et al. linked PoR with the well studied topic hardness amplification in complexity theory
and defined a purely information- theoretic notion of PoR codes [7]. Some improved PoR codes were also introduced.
Recently, Wang et al. proposed a public auditing scheme for cloud data storage with zero knowledge privacy based on an
aggregatable signature based broadcast (ASBB) encryption scheme [18]. Esiner1 et al. proposed a PoR scheme based
on a data structure called FlexDPDP to impove the effeciency [9]. Han et al. proposed a PoR scheme with efficient
aggregatable operations based on Maximum Rank Distance (MRD) codes [11].

Using erasure correction codes and homomorphism symbols, Wang et al. proposed a decentralized scheme which
supports dynamic data modification, deletion, and appending (but no data insertion supported) [20]. Data errors can be
detected and trying to find the location of the error blocks, recovering errors efficiently. In their follow-up study, Wang et al.
utilized the Merkle hash tree (MHT) data structure to improve the PoR model, supporting both public verification and fully
dynamic data update [19].

MHT is a widely employed authentication model, which is intended to effectively authenticate a set of data from an
untrusted source with a small amount of trusted information [15]. A MHT is constructed as a binary tree, in which the
leaves are the hashes of authentic data values. Figure 1 illustrates an authentication of a MHT with seven leaves. A
verifier with the authentic root R requests for the data B2 and B5. Apart from providing the data, the prover also prepares

some auxiliary authentication information (AAI) A2 = G, D and A5 = I, F for the verifier, where G = h(B1), D = h(B3), I =
h(B4), F = h(h(B6) || h(B7)), || denotes concatenation operation, h is a public hash function. When received the data and the
AAI from the prover, the verifier first computes H′ = h(B2), J′ = h(B5), C′ = h(G || H′), E′ = h(I || J′), A′ = h(C′ || D), B′ = h(E′ ||
F), and the root R′ = h(A′ || B′). Then the verifier compares R′ and R. Accept if they are the same, reject otherwise.

Around the same time, Erway et al. extended the PDP model to a fully dynamically updatable scheme [8]. They utilized the
skip list data structure to support dynamic data updates, in particular for data insertions. Wang et al. extended their

scheme to a public-key encryption-based scheme which supports public verification and fully dynamic data update, and
ensures no privacy leakage during public verifications [21]. To increase efficiency, this scheme also utilized aggregate
signature to combine multiple verifications into one verification. Ateniese et al. proposed a general construction of public-
key homomorphic linear authenticator (HLA) [2]. Any identification protocol can be transformed into a public-key HLA as

long as the protocol satisfies appropriate conditions. Around the same time, Itani et al. presented some protocols to
ensure the privacy of individual users in cloud data storage [12]. Recently, Zhou et al. proposed an attribute-based cloud
data storage scheme for mobile devices [23]. However, they did not consider PDP or PoR.

 ISSN 2277-3061

4627 | P a g e M a y 2 2 , 2 0 1 4

Figure 1. An example illustrates the authentication of a Merkle hash tree

ARCHITECTURE

A cloud data storage architecture for group collaboration is illustrated in Figure 2. In the architecture, messages between
entities are transmitted by secured channels. The architecture consists of the following entities:

 User: A user is an individual who stores data in the cloud storage system. A user has full access right to his data and
can verify the integrity and retrievability of the data at any time. A user may belong to one or more groups. In each
group there is a group manager who is able to manage group members and trace a signature of the group to a
member. All members of a group may work on a set of data on behalf of the group.

 Cloud Storage Service Provider (CSSP): A CSSP is an organization which possesses abundance of resources and
expertise in order to construct and maintain a cloud data storage system.

 Third-Party Auditor (TPA): A TPA is an agency authorized by users or groups to verify the integrity and the
retrievability of their data. In the cloud data storage architecture, TPA is an optional entity in the architecture.

Figure 2. Cloud data storage architecture for group collaboration

A CSSP provides a vast amount of storage space that shared by all users. The storage space is usually constructed by
multiple storage servers in a distributed manner. All storage servers work simultaneously and collaboratively. In order to
ensure the accuracy of stored data, appropriate redundancies may be stored in the storage servers for the usage of error
correction codes or erasure correction codes to prevent data loss due to accident or deliberate destruction. Users can
access their private data through the interfaces provided by the CSSP and manipulate the data with appending, insertion,
modification, and deletion operations according to their well. The redundancies in the storage servers must be adjusted
immediately corresponding to the changes made by these operations. In order to let users fell relieved to store their data
on the cloud storage system, there must be some ways to convince users that the data stored in the cloud are intact,
confidential, and retrievable. For this purpose, we need an efficient method by which users can verify their data, and the
verification will cause little computational load to the storage servers. Furthermore, the amount of the message transmitted
between the users and the CSSP for the verification is as small as possible. When data are shared by a group of users, i.e.
under group collaboration, each member can read, modify, and verify the shared data independently. The behavior of a
group member should be concealed from outside of the group. That is, an entity outside a group cannot identify that a
modification was made by which group member, or distinguish that two modifications were made by the same or different
group members. However, the behavior of a group member should be traceable inside the group, i.e., given a modified
data block, the group manager can disclose that which group member had made the modification.

A TPA is an institution trusted by users and has capability and expertise that users may not have. Users may not have
sufficient capacity and resources, e.g. time, computing power and network bandwidth, to verify the accuracy of the data

User

(group member)

Third-Party Auditor

(optional)

Cloud Storage Service Provider

Cloud
storage
servers

User

(group manager)

h(A || B)

R

h(C || D)

A B

C D E F

h(E || F)

h(G || H) h(I || J) h(K || L)

G H

h(B1) h(B2)

h(B3)

I J

h(B4) h(B5)

K L

h(B6) h(B7)

 ISSN 2277-3061

4628 | P a g e M a y 2 2 , 2 0 1 4

stored in the cloud. In such a situation, a TPA can be authorized by users to verity their data immediately or periodically,
and report results to the corresponding user.

PRPPOSED SCHEME AND PROTOCOLS

As described in the previous section, users and TPAs must have an efficient way to verify specific data stored in the cloud.
In the proposed scheme, verifications are carried out by a challenge-response interaction. A user or a TPA can submit a
request to the CSSP as a challenge. The CSSP then computes a set of values corresponding to the challenge and sends
it back to the user or the TPA as a response. If the response coincides with the knowledge about the data, then it has
proved that the data stored in the storage servers are intact and retrievable.

The complete scheme contains the following procedures: Setup, GrpSetup, Join, ReqPermit, Enc, Dec, Sign, Verify,
Open, Aggregate, AggVerify, SigGen, ReqProof, GenProof, ChkProof, ReqUpdate, ExecUpdate and ChkUpdate.
We adopt the methods in [19] and [22] to design these procedures. In the beginning, the scheme is initialized with Setup
by a trusted party, generating public parameters. GrpSetup is called by a group manager to generate secret and public
keys for a new group. A user calls Join to join a designed group, and calls ReqPermit to request one-time signing permits

from the group manager when needed. When a user wants to store a file to the cloud storage, the file is first split into
blocks of constant size, and then SigGen is called to generate metadata of each file block, then the file and its metadata
are transferred to the server. In the execution of SigGen, it will call Enc to encrypt the file and call Sign to generate
signatures of the file. We can use standard cryptographic primitives such as AES to implement Enc. When a user reads a
file block, he first verifies it with Verify, and then decrypts it with Dec. When a user or a TPA wants to check the
retrievability of a file, ReqProof is called to send a request to the CSSP. The CSSP uses GenProof to generate a proof
according to the request and send it back to the requester, who then uses ChkProof to validate the proof. The proof
includes an aggregated signature which is generated by Aggregate and can be verify by AggVerify. The purpose of using

aggregated signature is to enhance verification efficiency and to save communication bandwidth. To update a file, a user
sends an update request to the CSSP via ReqUpdate. The CSSP accomplishes the update with ExecUpdate and sends
a proof for the update back to the user. The user then checks the proof by ChkUpdate. The manager of a group can use
Open to find out which group member lastly updated a file block. The details of these procedures are described as follows.

 Setup(l): This procedure generates global parameters for the scheme according to the security parameter l, including

a large prime power q of length l, an elliptic curve E over finite field Fq, a group order p of length l, two groups G1 and

G2 of order p, a bilinear pairing e : G1 G1 G2, a generator P G1, and a map-to-point hash function H1 : {0,1}
*

 G1.

The discrete logarithm problem (DLP) and the computational Diffie-Hellman problem (CDHP) should be hard in G1,
and the pairing e must satisfy the following properties:

1. Bilinear: e (aP1 , bP2) = e (P1, P2)
ab

 for all P1, P2 G1 and a, b Zp
*
.

2. Non-degenerate: There exists P1, P2 G1 such that e (P1 , P2) 1.

3. Computable: There is an efficient algorithm to compute e (P1 , P2) for all P1, P2 G1.

 GrpSetup(): A group manager uses this procedure to generate parameters for a new group. This procedure first

randomly selects sA
R

 Zp
*
 as group’s private key and sE

R

 Zp
*
 as secret key for encryption and decryption, and

then computes the group public key PA = sAP. The group manager can then register this new group to the CSSP with
PA and grpinfo where grpinfo is the group description. The CSSP will record PA and grpinfo in its database.

 Join(PU , usrinfo, grpinfo): A user uses this procedure to join a group where PU is user’s public key and usrinfo is the

user description. Before calling this procedure, the user selects sU
R

 Zp
*
 as private key, and computes PU = sUP in

advance. If the manager agrees the request, he will compute a certificate Cert sAH1(grpinfo || PU || T) for the user,
where T is a time period for this certificate. The manager will then record PU, usrinfo, Cert and T to database and send
back Cert, T, PA and sE to the user.

 ReqPermit(PA , PU, T, Cert, xiP , xiPU 1 < i < k): A user (group member) users this procedure to request k one-time

signing permits from the group manager. The user first selects x1, x2, . . . , xk
R

 Zp
*
, and then computes x1P ,

x2P , . . . , xkP and x1PU , x2PU , . . . , xkPU. When the manager receives the request, he first exams the certificate by

checking e(Cert, P)
 ?
e(H1(grpinfo || PU || T), PA), and tests the k pairs by checking e(P, xiPU)

 ?
e(xiP, PU), i = 1, . . . , k.

The manager rejects the request if any of these tests fails. Otherwise the manager computes Si sAH1(grpinfo
|| xiPU || T), i = 1, . . . , k, records to database these xiPU, xiP and Si corresponding to PU, and sends back Si to the

requester. A user may call this procedure whenever he needs a permit.

 Enc(sE, B): Executed by a user to encrypt a data block B with the secret key sE.

 Dec(sE, C): Executed by a user to decrypt an encrypted data block C with the secret key sE.

 Sign(xisU , xiPU , Si , B, T): Executed by a user to sign a data block B with a signing permit Si and the corresponding xi

sU and xiPU. The procedure computes

SB xi sU H1(B), SG SB + Si .

The signature is (SG , xiPU , T).

 ISSN 2277-3061

4629 | P a g e M a y 2 2 , 2 0 1 4

 Verify(, H1(B), PA , grpinfo): Executed by an entity to verify a signature. Let = (SG , Px , T). Accept if

e(SG , P) = e(H1(B), Px)．e(H1(grpinfo || Px || T), PA),

and reject otherwise.

 Open(, B): Executed by the group manager to trace a data block B from its signature to a signer. Let = (SG , Px ,

T). The group manager first verifies the signature. Then looks up the database to find the item which satisfies xiPU =
Px . This suffices to identify the user.

 Aggregate(j , H1(Bj) i1 < j < im , PA , grpinfo): The CSSP calls this procedure to combine multiple signatures into one

aggregate signature, where i1, . . . , im {1, . . . , n} and i1 < . . . < im. Let j = (SGj , Pxj , Tj). The procedure first verifies

each signature, then computes

S
m

j G j
S

1
, SH) || || (

1 1 j

m

j x TPgrpinfoH
j

,

and then returns (S , SH , Pxj , H1(Bj) i1 < j < im , PA).

 AggVerify(S , SH , Pxj , H1(Bj) i1 < j < im , PA): A user or a TPA uses this procedure to verify an aggregate signature.

Accept if

e(S , P) =
m

j xj j
PBHe

1 1)),((．e(SH , PA),

and reject otherwise.

 SigGen(sE , xisU , xiPU , Si 1 < i < n , F): A user utilizes this procedure to generate verification metadata for a file F = B1 ,

B2 , . . . , Bn . Here we assume that the file is pre-processed with Reed-Solomon code and divided into n blocks. The

procedure first executes Enc(sE , Bj) to encrypt each file block Bj to Bj′, then obtains j = Sign(xi sU , xiPU , Si , Bj′) with a

randomly chosen signing permit. Note that each signing permit should be used only once, and here we assume k > n.

Finally, the procedure constructs the MHT from these Bj′ and then computes the signature RF of the MHT root RF.

When this procedure is finished, the user sends CSSP the file description fileinfo, the encrypted file F′ = Bi′ , the set of

signatures Φ = i , and the signed MHT root RF corresponding to the file. The user doesn’t need to keep the file and

its signature, thus he can delete them from his local storage. Note that one file needs only one execution of this
procedure.

 ReqProof(fileinfo, chal): A user or a TPA sends a request to the CSSP for the verification of a file F by calling this

procedure. The parameter chal contains a set of block indices I = (i1, . . . , im) which indicates the CSSP to generate a
proof for this verification, where ij is randomly selected from {1, . . . , n} and we assume i1 < . . . < im.

 GenProof(F′, Φ, PA , grpinfo, chal): The CSSP generates a proof V for the verification of a file F via this procedure.

The procedure first retrieves the file blocks and their signatures from F′ and Φ according to the set of block indices I =

(i1, . . . , im) contained in chal, and calls Aggregate(j , H1(Bj) i1 < j < im , PA , grpinfo) to obtain an aggregated signature

(S , SH , Pxj , H1(Bj) i1 < j < im , PA). Then it computes some auxiliary authentication information (AAI) Aj i1 < j < im based
on I and the MHT of the file where Aj is the set of node siblings on the path from the leaf H1(Bj′) to the root RF. Finally,

the procedure returns V = (S , SH , Pxj , H1(Bj′), Aj i1 < j < im , PA , grpinfo, RF) where RF is the signature of RF.

After the procedure is complete, the CSSP sends V to the verifier for verification.

 ChkProof(V): A user or a TPA uses this procedure to validate the proof V. The procedure first verifies the aggregated

signature with AggVerify. Then it obtains the MHT root RF′ with H1(Bj′), Aj i1 < j < im , and checks whether RF is a valid

signature of RF′. The procedure accepts the proof if all these checks are successful, otherwise rejects the proof.

 ReqUpdate(fileinfo, inst): A user updates a file with this procedure. The parameter inst consists of an instruction

(modify, insert, or delete), a block index, a new block and its signature (optional) for the update. Data appending can
be accomplished by insertion.

 ExecUpdate(F′, Φ, inst): The CSSP utilizes this procedure to accomplish the update of the file F according to the

parameter inst. The operation includes storing the new file block and its signature (modify and insert) or removing the
designate block and its signature (delete), and then adjusting the MHT of the file accordingly. We adapt the method in

[19] to perform this adjustment. After the update is complete, the procedure returns a proof V = (H1(Bi′), Ai , RF′ , RF)

which will then passes to the requester, where i is the index of the updated block, Bi′ is the original block, RF′ is the
signature of the MHT root before update, and RF is the MHT root after update.

 ChkUpdate(inst, V): A user uses this procedure to check whether the CSSP has updated a file correctly according to

inst or not. The procedure first obtains the original MHT root RF′ with the AAI H1(Bi′) and Ai , and then checks whether

RF′ is a valid signature of RF′. The objective of this check is to authenticate the AAI. If the check fails, the procedure
terminates and returns FALSE. Otherwise, it proceeds to check whether the CSSP has updated the file as required or
not. It computes the updated MHT root with the new block (included in inst) and compares the new root with RF. If they
are the same, then the procedure returns TRUE, or returns FALSE otherwise. The user will sign the new root and send
its signature to the CSSP when this procedure returns TRUE.

 ISSN 2277-3061

4630 | P a g e M a y 2 2 , 2 0 1 4

Theorem 1 The aggregate signature in the proposed scheme is well defined.

Proof: For a legal signature = (SG , xiPU , T) of a data block B, assuming the related group public key is PA, then

e(SG , P) = e(SB + Si , P)

= e(xi xU H1(B), P)．e(sAH1(grpinfo || xiPU || T) , P)

= e(H1(B), Px)．e(H1(grpinfo || Px || T), PA).

So the Verify procedure can successfully verify the signature. Furthermore, for an aggregate signature (S , SH , Pxj ,

H1(Bj) i1 < j < im , PA).

e(S , P) = e(
m

j G j
S

1
, P)

= e(
m

j B j
S

1
, P)．e(

m

j i j
S

1
, P)

= e(
m

j jiU BHxs
jj1 1)(, P)．e() || || (

1 1 j

m

j xA TPgrpinfoHs
j

, P)

=
m

j xj j
PBHe

1 1)),((．e(SH , PA).

Thus the AggVerify procedure can also successfully verify the aggregate signature.

SECURITY ANALYSIS

The security of the proposed scheme is mainly based on the hardness of the elliptic curve discrete logarithm problem and
some related problems on elliptic curves.

Elliptic curve discrete logarithm problem (ECDLP): Given two points P and Q in a rational point group on an

elliptic curve, find an integer k such that kP = Q. k is called the discrete logarithm of Q to the base P.

Computation Diffie-Hellman problem (CDHP): Let G1 be a cyclic rational point group of order p on an elliptic curve,

P be a generator of G1. Given aP and bP, a, b Zp
*
, compute abP.

Decisional Diffie-Hellman problem (DDHP): Let G1 be a cyclic rational point group of order p on an elliptic curve, P be a

generator of G1. Given aP, bP and cP, a, b, c Zp
*
, decide whether c ab mod p is satisfied or not.

If the DDHP in G1 can be solved in polynomial time, but the ECDLP and CDHP cannot be solved in polynomial time, G1 is
called a gap Diffie-Hellman group. Our scheme is based on such a group.

The proposed scheme may suffer from several types of attack. The first type of attack is to obtain the private key of a
group or a group member. The second type of attack is to forge the data stored in cloud storage. The attacker may be an
external attacker, the CSSP itself, an individual within the group, or some colluded members within the group. The third
type of attack is to steal the data stored in cloud storage. The fourth type of attack is to destroy the integrity of the data
stored in cloud storage.

Type I attack: obtain a private key

1. Obtain the private key of a group. There are two ways to obtain the private key of a group. The first way is to

compute the private key sA from the group public key PA = sAP. However, this is equivalent to solve the eclipse curve
discrete logarithm problem. The second way is that a member of the group can try to compute sA from his certificate
Cert = sAH(grpinfo || PU || T) or from an one-time signing permit Si = sAH(grpinfo || xiPU || T). However, this is also
equivalent to solve the eclipse curve discrete logarithm problem.

2. Obtain the private key of a group member. There are two ways to obtain the private key of a group member.

The first way is to compute the private key sU from his public key PU = sUP. However, this is equivalent to solve the

eclipse curve discrete logarithm problem. Another possible way is to solve the private key from a signature i = (SG ,
xiPU , T) signed by the member where SG = xi sU H(B) + sAH(grpinfo || xiPU || T). Since every signature uses a distinct
xi, solving this equation is equivalent to solve the eclipse curve discrete logarithm problem. It is no exception even the
group manager knows sA.

Type II attack: forge the data stored in cloud storage

An adversary may fake a data block, and then forge the signature of this data block. To successfully fake a data block,

a legal signature must be forged. Suppose the signature of a faked data block is i = (SG , xiPU , T). this signature must

pass the following examination

e(SG , P) = e(H(B), xiPU)．e(H(grpinfo || xiPU || T), PA) (1)

 ISSN 2277-3061

4631 | P a g e M a y 2 2 , 2 0 1 4

Assuming an adversary randomly chooses an xi, an sUi, and sets up a time period T. The adversary then computes PU =
sUP, xiPU, and H(grpinfo || xiPU || T). Since the adversary does not know sA, he cannot obtain a valid SG which satisfies (1).
However, if the adversary is the group manager, he can forge a signature that does not belong to any member.
Nevertheless, because only the group manager has this ability, in this case, we know that the group manager is the
adversary.

Type III attack: steal the data stored in cloud storage

An adversary may steal the data stored in cloud storage. But because he does not know the correct decryption key, the
confidentiality of the data is still preserved.

Type IV attack: destroy the integrity of the data stored in cloud storage

An adversary may deliberately undermine the integrity of the data stored in cloud storage. Even the CSSP itself may also
damage the integrity of user’s data intentionally or unintentionally. No matter in which situation, the constructed MHT root
node will not match the original root node signed by the user. Therefore, when a user or a TPA verifies the data, he can
find out the error. When an error is found, the user can further examine each data block to find out which data block is
destroyed, and then corrects the error.

DISCUSSIONS AND CONCLUSIONS

Cloud computing and cloud data storage have become important applications on the Internet. Technology giants such as
Microsoft, Amazon, Google, IBM, Cisco, and Dell have invested in developing cloud computing and data storage
technologies and services. In such a development, group collaboration is an important trend since it is a great inducement
for an entity to use a cloud service, especially for an international enterprise. In this paper we propose a cloud data
storage scheme with some protocols to support group collaboration. A group of users can operate on a set of data
collaboratively with dynamic data appending, insertion, modification, and deletion operations. Every member of the group
can access, update and verify the data independently. The verification can also be authorized to a TPA for convenience.
The TPA cannot learn information about the data and the user. However, the group manager can find out which member
lastly updated a file block.

The security of our scheme is based on the hardness of the ECDLP and the CDHP on finite fields. In order to provide
sufficient security (approximately the same as the standard 1024-bit RSA signature), we can use elliptic curves over finite
field Fq with embedding degree 6 where q is approximately 170 bits long. G1 of prime order p is a subgroup of E(Fq) where
p is also of length approximately 170 bits. Therefore, the ECDLP in G1 is as hard as the DLP in finite field of length

approximately 1020 bits. For a data block, the signature is of size about 350 bits, or 44 bytes. For a 1GB file with data
block of size 8KB, there are totally 131,073 signatures (plus the one for the MHT root), resulting about 5.5MB overhead to
be stored in the cloud storage for this file. Signing a file block needs one hash operation, one elliptic curve multiplicative
operation, and one elliptic curve additive operation. Verifying a file block costs two hash operations, three pairing
operations, and one finite field multiplicative operation. The size of an aggregate signature is linear to the number of data
blocks requested. To aggregate m signatures it takes m hash operations and totally m – 1 elliptic curve additive operations.
Verifying an aggregate signature with m signatures aggregated spends m + 2 pairing operations and 2m – 1 finite field
multiplicative operations, and it brings around 132 + 88m bytes communication throughput for this verification. Overall

speaking, our scheme is pretty efficient.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. 2007. Provable Data
Possession at Untrusted Stores. Proc. of CCS ’07, pp. 598–609, 2007.

[2] G. Ateniese, S. Kamara, and J. Katz. 2009. Proofs of Storage from Homomorphic Identification Protocols.
ASIACRYPT 2009, pp. 319-333.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. 2008. Scalable and Efficient Provable Data Possession. Proc.
of SecureComm ’08, pp. 1-10, 2008.

[4] K. D. Bowers, A. Juels, and A. Oprea. 2008. Proofs of Retrievability: Theory and Implementation. Cryptology ePrint
Archive, available at http://eprint.iacr.org/2008/175.

[5] K. D. Bowers, A. Juels, and A. Oprea. 2008. HAIL: A High-Availability and Integrity Layer for Cloud Storage.
Cryptology ePrint Archive, available at http://eprint.iacr.org/2008/489.

[6] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. 2008. MR-PDP: Multiple-Replica Provable Data Possession. Proc.
of ICDCS ’08, pp. 411–420, 2008.

[7] Y. Dodis, S. Vadhan, and D. Wichs. 2009. Proofs of retrievability via hardness amplification. Theory of Cryptography
Conference, LNCS 5444, pp. 109-127, Springer-Verlag, 2009.

[8] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia. 2008. Dynamic provable data possession. Cryptology ePrint
Archive, available at http://eprint.iacr.org/2008/432.

[9] E. Esiner1, A. Kachkeev1, S. Braunfeld, A. Küpçü, and Ö. Özkasap. 2013. FlexDPDP: FlexList-based Optimized
Dynamic Provable Data Possession. Cryptology ePrint Archive, available at http://eprint.iacr.org/2013/645.

 ISSN 2277-3061

4632 | P a g e M a y 2 2 , 2 0 1 4

[10] D. L. G. Filho and P. S. L. M. Barret. 2006. Demonstrating Data Possession and Uncheatable Data Transfer.
Cryptology ePrint Archive, available at http://eprint.iacr.org/2006/150.

[11] S. Han, S. Liu, K. Chen, and D. Gu. 2013. Proofs of Data Possession and Retrievability Based on MRD Codes.
Cryptology ePrint Archive, available at http://eprint.iacr.org/2013/789.

[12] W. Itani, A. Kayssi, A. Chehab. 2009. Privacy as a service: privacy-aware data storage and processing in cloud
computing architectures. Proceedings of the 2009 International Conference on Dependable, Autonomic and Secure
Computing (DASC 2009), pp. 711-16, 2009.

[13] A. Juels and J. Burton S. Kaliski. 2007. PORs: Proofs of Retrievability for Large Files. Proc. of CCS ’07, pp. 584–597,
2007.

[14] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. 2003. A Cooperative Internet Backup Scheme. Proc. of
the 2003 USENIX Annual Technical Conference (General Track), pp. 29–41, 2003.

[15] R. C. Merkle. 1980. Protocols for public key cryptosystems. Proc. of IEEE Symposium on Security and Privacy’80, pp.
122–133, 1980.

[16] S. Mitra and S. Shalini. 2011. Top 10 Cloud Computing Trends for the Decade. available at
http://anatango.wordpress.com/2011/08/17/top-10-cloud- computing- trends-for-the-decade.

[17] H. Shacham and B. Waters. 2008. Compact Proofs of Retrievability. Proc. of Asiacrypt ’08, Dec. 2008.

[18] S.-H. Wang, S.-Q. Chang, D.-W. Chen, and Z.-W. Wang. 2012. Public Auditing for Ensuring Cloud Data Storage
Security With Zero Knowledge Privacy. Cryptology ePrint Archive, available at http://eprint.iacr.org/2012/365.

[19] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. 2009. Enabling public verifiability and data dynamics for storage
security in cloud computing. In Proc. of ESORICS’09, Saint Malo, France, Sep. 2009.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou. 2009. Ensuring data storage security in cloud computing. Proc. of
IWQoS’09, Charleston, South Carolina, USA, 2009.

[21] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-Preserving Public Auditing for Data Storage Security in Cloud
Computing,” INFOCOM 2010, pp. 525-533.

[22] D. Yao and R. Tamassia. 2006. Cascaded Authorization with Anonymous-Signer Aggregate Signatures. In
Information Assurance Workshop, 2006 IEEE, pp. 84-91, June 2006.

[23] Z. Zhou and D. Huang.2011. Efficient and Secure Data Storage Operations for Mobile Cloud Computing, Cryptology
ePrint Archive, available at http://eprint.iacr.org/2011/185.

Author’ biography with Photo

Jyh-Shyan Lin was born in Kaohsiung, Taiwan, 1968. He received the M.S. degrees in Computer Science

and Information Engineering from the National Chung Cheng University, Chiayi, Taiwan, in 1999. He
received his Ph.D. degree in Computer Science and Information Engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2007. He is currently an Assistant Professor of the Department of Information
Management, Yuanpei University, Hsinchu, Taiwan. His research is mainly in the field of cryptography,
coding theory, algorithms, cloud computing, and bioinformatics.

Kuo-Hsiung Liao is an assistant professor of the Department of Information Management at the Yuanpei

University, HsingChu, Taiwan,R.O.C. He received the M.S. degree in computer science from the New York
Institute of Technology, in1992. He has published papers in the fields of e-government, and medical
information management. His research interests include neural networks, computer security, programming
language, artificial intelligent, medical information management and pattern recognition.

Chao-Hsing Hsu is a lecture of the General Education Center at the Yuanpei University, HsingChu,

Taiwan,R.O.C. He received the M.S. degree in Mathematics from the Fu Jen Catholic University, in1987. He
has published papers in the fields of applied mathematics, biostatistics, and medical information
management. His research interests include calculus, applied mathematics, biostatistics.

