
 ISSN 2277-3061

4886 | Page J u l y 1 4 , 2 0 1 4

Pso Optimization algorithm for Task Scheduling on The Cloud
Computing Environment

1Zahraa Tarek, 2Magdy Zakria, 3Fatma A. Omara

1
 Computer Science Department, Mansoura University, Egypt

2
 Computer Science Department, Mansoura University, Egypt

3
 Computer Science Department,Cairo University,Egypt

ABSTRACT

The Cloud computing is a most recent computing paradigm where IT services are provided and delivered over the Internet
on demand. The Scheduling problem for cloud computing environment has a lot of awareness as the applications tasks
could be mapped to the available resources to achieve better results.

One of the main existed algorithms of task scheduling on the available resources on the cloud environment is based on
the Particle Swarm Optimization (PSO). According to this PSO algorithm, the application’s tasks are allocated to the
available resources to minimize the computation cost only.

In this paper, a modified PSO algorithm has been introduced and implemented for solving task scheduling problem in the
cloud. The main idea of the modified PSO is that the tasks are allocated on the available resources to minimize the
execution time in addition to the computation cost. This modified PSO algorithm is called Modified Particle Swarm
Optimization (MPOS).The MPOS evaluations have been illustrated using different time, and cost parameters and their
effects in the performance measures such as utilization, speedup, and efficiency. According to the implementation results,
it is found that the modified MPOS algorithm outperforms the existed PSO.

Indexing terms/Keywords
 Cloud computing;Task scheduling; Particle swarm optimization;Directed a cyclic graph.

Academic Discipline And Sub-Disciplines

Computer Science.

SUBJECT CLASSIFICATION

Distributed Computing Classification.

TYPE (METHOD/APPROACH)

Particle swarm optimization (PSO) algorithm, Task scheduling.

Council for Innovative Research
Peer Review Research Publishing System

Journal: INTERNATION JOURNAL OF COMPUTERS AND TECHNOLOGY

Vol. 13, No. 9

editorijctonline@gmail.com

www.ijctonline.com, www.cirworld.com

mailto:editorijctonline@gmail.com
http://www.ijctonline.com/

 ISSN 2277-3061

4887 | Page J u l y 1 4 , 2 0 1 4

1. INTRODUCTION

The Cloud computing allows the users to use any computational resources and services of data centers (i.e., machines,
network, storage, operating systems, application development environments, application programs) over the network to
deploy and evaluate their applications [1]. This means that the cloud computing provides self-service provisioning, which is
considered an important feature in the cloud computing[2]. On the other hand, the cloud computing services are divided
into three layers; SaaS (Software as a Services), PaaS (Platform as a Services), and IaaS (Infrastructure as a Services)
[3]. The Cloud computing architecture is categorized as layers, service model, and deployment model (types). By this
classification, the users can easily choose the suitable cloud services and types to fit their business according to these
services [1, 3].

Now a day, it is important for services (resources, applications...) to be accessed through the cloud environment because
of the cloud computing benefits, such as saving cost and service availability at any time. On the other hands, Cloud
computing has been emerged as a commercial reality in the field of information technology but the technology is still not
fully developed [4]. There are still some topics that are needed to be focused on, as Resource management and Task
scheduling.

The work in this paper is concerned with the task scheduling problem to minimize the computation cost and the total
execution time of the applications using the provided resources by the Cloud service providers, such as Amazon and
GoGrid3. We have achieved these features by introducing a modified Particle Swarm Optimization (MPSO) algorithm.

Particle Swarm Optimization (PSO) is a swarm-based intelligence algorithm influenced by the social behavior of animals,
which is introduced by Kennedy and Eberhart [5]. Each particle has position and velocity. The position of particle at any
instance of time is influenced by its personal best position (pbest) and the position of the best particle in global problem
space (gbest). The performance of a particle is measured by a fitness value which is based on the problem specification.

Scheduling is the method by which threads, processes, tasks or data flows are given access (mapped) to system
resources (e.g. processor time, communications bandwidth, utilization of the system) according to the users requirements
[6]. A good scheduling algorithm is important as the requirement for most modern systems arises to perform multitasking
(execute more than one process at a time) and multiplexing (transmit multiple flows simultaneously). [7, 8]

The rest of the paper is organized as: Section 2 provides conducted studies. task-resource scheduling problem
formulation is discussed in Section 3. The principle of the proposed task scheduling algorithm (MPOS) is discussed in
Section 4. Section 5 provides the contribution of our proposed algorithm. Finally, Section 6,7 represents conclusions and
future propositions.

2. CONDUCTED STUDIES

Yun Yang, Ke Liu, and Jinjun Chen [9] have proposed an Innovative transaction intensive cost-constraint scheduling
algorithm which considers the cost and time. The simulation results have demonstrated that this algorithm can achieve
lower cost than others while meeting the user designated deadline.

Suraj Pandey et al. [10] have proposed a heuristic task scheduling which optimizes the cost of task-resource mapping
based on the solution of using particle swarm optimization (PSO) technique. PSO based mapping algorithm has much
lower cost as compared to another algorithm called BRS (Best Resource Selection) based mapping. Their results show
that PSO can achieve: a) as much as 3 times cost savings as compared to BRS, and b) good distribution of workload onto
resources.

Ke Liu et al. [11] have presented a novel compromised-time-cost (CTC) scheduling algorithm. The CTC algorithm
considers the characteristics of cloud computing to accommodate instance-intensive cost-constrained workflows by
compromising the execution time and cost which are user input enabled on the fly. The simulation results has
demonstrated that the CTC algorithm can achieve lower cost while meeting the user-designated deadline or reducing the
mean execution time within the user- designated execution cost.

Saeed Parsa and Reza Entezari-Maleki [11] have proposed a new task scheduling algorithm called Resource-Aware-
Scheduling algorithm (RASA). It is composed of two traditional scheduling algorithms; Max-min and Min-min. The main
feature of the RASA algorithm is that it amalgamates the advantages of Max-min and Min-min algorithms and alleviates
their disadvantages. Though, the deadline of each task, arriving rate of the tasks, cost of the task execution on each of the
resource, and cost of the communication are not considered .The experimental results show that RASA algorithm
outperforms the existing scheduling algorithms in large scale distributed systems.

J.Huang [12] has proposed workflow task scheduling algorithm based on the genetic algorithms (GA) model in the cloud
computing environment which can fulfill the goals of the workflow task scheduling. They proved that the proposed
algorithm’s performance has improved perfectly analysis from algebra and the population size under the different
settings, improved the efficiency of task scheduling, which can maximum satisfy the QoS (Quality Of Service)
requirements of the users.

Lei Zhang et al. [13] have proposed a PSO algorithm. This proposed algorithm is similar to the genetic algorithms (GA).
The aim of this algorithm is how to improve the efficiency of resource allocation and how to minimize the completion time
simultaneously. It is noted that the performance of PSO usually spent shorter time to accomplish the various scheduling
tasks and specifies better result comparing to the GA algorithm. Also, they have proved that the PSO algorithm can get
better effect for a large scale optimization problem.

 ISSN 2277-3061

4888 | Page J u l y 1 4 , 2 0 1 4

Cui Lin, and Shiyong Lu [14] have proposed an Scalable Heterogeneous Earliest-Finish-Time Algorithm (SHEFT) workflow
scheduling algorithm to schedule a workflow elastically on a Cloud computing environment. The experimental results show
that SHEFT is not only outperform several representative workflow scheduling algorithms in optimizing workflow execution
time, but also enable resources to scale elastically at runtime.

Visalakshi and Sivanandam [15] have presented Hybrid Particle Swarm Optimization (HPSO) method for solving the Task
Assignment Problem (TAP). The algorithm has been developed to dynamically schedule heterogeneous tasks on to
heterogeneous processors in a distributed setup. The HPSO yields a better result than the Normal PSO when applied to
the task assignment problem. The results Of PSO and HPSO is also compared with another popular heuristic optimization
technique namely Genetic Algorithm (GA). The results infer that the PSO performs better than the GA.

 S.Selvarani, and G.Sudha Sadhasivam [16] have proposed an improved cost-based scheduling algorithm for making
efficient mapping of tasks to available resources in the cloud. The improvisation of traditional activity based costing is
proposed by new task scheduling strategy for cloud environment where there may be no relation between the overhead
application base and the way that different tasks cause overhead cost of resources in the cloud. This scheduling algorithm
divides all user tasks depending on priority of each task into three different lists. This scheduling algorithm measures both
resource cost and computation performance, it also Improves the computation/communication ratio.

Yang et al. [17] have highlighted the issue of job scheduling in cloud computing. They argued that there is no well-defined
job scheduling algorithm for the cloud that considers the system state in the future .The existing job scheduling algorithms
under utility computing paradigm do not take hardware/software failure and recovery in the cloud into account. To tackle
this issue, they have proposed a Reinforcement Learning (RL)based algorithm that helps the scheduler to define
scheduling decision with fault tolerable while maximizing utilities attained in the long term.

3. TASK-RESOURCE SCHEDULING PROBLEM FORMULATION

According to the task scheduling problem, the application is represented as a Directed Acyclic Graph (DAG) where nodes
(or tasks) represent the needed computation and edges represent the communication between tasks. For each node in
the DAG, a weight is assigned corresponding to computation cost, and weights for edges are assigned corresponding to
communication cost between nodes [18].

A Directed Acyclic Graph (DAG) is represented by G= (V, E), where V = {T1, ...,Tn} is the set of tasks, and E represents
the data dependencies between these tasks, whereFj,k =(Tj, Tk) ∈ E means thatthe data produced by Tj and consumed

by Tk (see Fig. 1(a)) [10].

By considering a set of storage sites S = {1..., i}, a set of compute sites PC = {1, ..., j}, and a set of tasks T = {1, ..., k}. The
‘average’ computation time of a task Tk on a compute resource PCj for a certain size of input is considered known. Then,
the cost of computation of a task on a compute host is inversely proportional to the time it takes for computation on that
resource. Also, it is assumed that the cost of unit data access di,j from a resource i to a resource j is known. The access
cost is fixed by the service provider (e.g. Amazon CloudFront). The transfer cost can be calculated according to the
bandwidth between the sender and receiver sites. However, the cost for transferring unit data between sites, per second is
one of task scheduling issues which will be considered. These costs are non-negative, symmetric, and satisfy the triangle
inequality; that is, di,j = dj,i for all i, j ∈ N, and di,j + dj,k≥di,k for all i, j, k ∈ N (see Fig. 1 (b))[10].

By considering an application DAG with a set of tasks T = {1, ..., k}, a set of storage sites S = {1, ..., i}, and a set of
compute sites PC = {1, ..., j}, the problem can be stated as: “Find a task-resource mapping instance M, such that
estimating the total cost and the total time for each compute resource PCj, the highest cost and also highest time among
all the compute resources is minimized and load balance is achieved.”[10].

(a) (b)

 Fig.1: DAG of an application’s Tasks and Computing Resources

 ISSN 2277-3061

4889 | Page J u l y 1 4 , 2 0 1 4

Cost Minimization Problem

The goal is to assign the tasks to the available compute resources to minimizing the total cost of computation and total
time of completion of an application. The cost is minimized such that it completes within the time (deadline) a user
specifies. The cost is determined using the following equations [10]:

Cexe(M)j= ………

Ctx(M)j= ...

Ctotal(M)j= Cexe(M)j + Ctx(M)j………………….

Cost(M)= max(Ctotal(M)j) ………...

Minimize (Cost(M)) …………………….

 (1)

 (2)

 (3)

(4)

(5)

Cexe(M)j denoted to the total cost of all the tasks assigned to a compute resource PC j(Eq. 1). This value is computed by
adding all the node weights (the cost of execution of a task k on compute resource j) of all tasks assigned to each
resource in the mapping M.

Ctx(M)j is considered as the total access cost (including transfer cost) between tasks assigned to a compute resource PCj
and those that are not assigned to that resource in the mapping M (Eq. 2). This value is the product of the output file size

(given by the edge weightek1,k2) from a task k1 k to task k2 k and the cost of communication from the resource where

k1 is mapped (M(k1)) to another resource where k2 is mapped (M(k2)).The average cost of communication of unit data
between two resources is given by dM(k1),M(k2). The cost of communication is applicable only when two tasks have file
dependency between them, that is when ek1, k2> 0. For two or more tasks executing on the same resource, the
communication cost is zero.

For a given assignment M, the total cost Ctotal(M)j for a compute resource PCj is the sum of execution cost and transfer
cost (Eq. 3). Then, the total cost for all the assignments will be dominated by the highest cost of a compute resource (Eq.
4) ensures that all the tasks are not mapped to a single compute resource. Hence, the goal of the assignment is to
minimize this cost (Eq. 5).

Time Minimization Problem

According to our modified MPOS algorithm, the total time of task execution will be introduced as another parameter should
be minimized beside the cost. The goal of this modification is to assign the tasks to the compute resources such that the
time of computation is minimized. The time is determined using the following equation [19]:

Completion time of (pu) }……………… (6)} m ݉ ≥u≥ F(x) = max 1

T(ti, pu) ti€I min =(pu) Where completion time

 Where I is the set of tasks assigned to Pu

Equation (6) is interpreted in our modified algorithm by the following equations:

 Cdata(M)j= ... +CFT(M)j

 CST(M)j = max (Cdata(M)j, CFT(M)j)……………

 CFT(M)j = Cst (M)j+ Cexe(M)j…………………...

 Time(M)=max(CFT(M)j) ………...

 Minimize (Time(M))…………………...

 (7)

 (8)

 (9)

 (10)

 (11)

 ISSN 2277-3061

4890 | Page J u l y 1 4 , 2 0 1 4

According to equations (7-11), the dependency between each task and previous tasks is checked. If there is dependency
between the tasks, so the cost of communication of unit data between two resources is given by dM(k1),M(k2) which is
applicable only when two tasks have file dependency between them, that is when ek1, k2> 0. For two or more tasks
executing on the same resource, the communication cost is zero. The value from the product of communication cost and
files dependency is calculated then this result value is added to finish time of previous tasks in resource j to get Cdata(M)j
(Eq. 7).

CST(M)j is the start time of all tasks on resource j which is calculated as the max between Cdata(M)j and finish time of the
previous tasks in the same resource j (Eq. 8).

CFT(M)j is the finish time of tasks on resource j which is calculated as the addition between Cexe(M)j in (Eq. 1) and Cst(M)j.
(Eq. 9) and this is the total time.

Then, the total time for all the assignments will be dominated by the highest time of a compute resource (Eq. 10) ensures
that all the tasks are not mapped to a single compute resource. Hence, the goal of the assignment is to minimize this time
(Eq. 11).

4. THE MODIFIED PARTICLE SWARM OPTIMIZATION SCHEDULING ALGORITHM

According to PSO, the population is set of particles in a problem space. Particles are initialized randomly; each particle will
have a fitness value, this value evaluated by a fitness function to be optimized in each generation. Each particle knows its
best position pbest and the best position so far among the entire group of particles gbest, the pbest of a particle is the best
result (fitness value) so far reached by the particle, whereas gbest is the best particle in terms of fitness in an the all
population. The evaluation is carried out in a loop until the results converge or until number of iterations (user specified
stopping criteria) [13, 20].

The particle will have velocity, which directs the flying of the particle. Each iteration, the velocity and the position of
particles will be updated as follows [20]:

Vi
k+1

= W Vi
k
 + c1 rand1*(pbest

k
i-Xi

k
)+c2 rand2*(gbest

k
-Xi

k
)

Xi
k+1

= Xi
k
+ Vi

k+1

 (12)

 (13)

As W, c1 and c2, are positive constants which represent the weight of previous velocity, the weight of the acceleration
terms that pull each particle toward Pbest and gbest, respectively [20].

Where

Vi
k

Vi
k+1

W

cj

randi

Xi
k

pbesti

gbest

Xi
k+1

velocity of particle i at iteration k

velocity of particle i at iteration k + 1

inertia weight between 0.9 to 0.1

positive acceleration coefficients; j = 1, 2

random number between 0 and 1; i = 1, 2

current position of particle i at iteration k

best position of particle i

position of best particle in a population

position of the particle i at iteration k + 1

The existed PSO task scheduling algorithm provides a mapping of all tasks to a set of given resources based on the
model described in the following two algorithms [10].

Algorithm 1: Scheduling heuristic.
1. Calculate average computation cost of all tasks to all resources
2. Calculate average access cost (communication cost/ data size)
3. Compute PSO algorithm
4. For all ready tasks do
5. Assign tasks to resources according to PSO
6. If resource(processor) exceed limit determined for number of tasks
7. Map task to next resource with minimum cost
8. End if
9. End for

10. Update ready tasks list
11. Update communication cost between resources according to current network load
12. Compute PSO
13. Until there are unscheduled tasks

 ISSN 2277-3061

4891 | Page J u l y 1 4 , 2 0 1 4

Algorithm 2: PSO algorithm.

1.Set particle dimension as equal to the size of ready tasksin {ti} # T

2. Initialize particles position randomly from PC =1, ..., j and velocity vi randomly.

3. For each particle, calculate its fitness value with respect to Cost Minimization presented by eqn. 5.

4. If the fitness value is better than the previous best pbest,set the current fitness value as the new pbest.

5. After Steps 3 and 4 for all particles, select the best particle as gbest.

6. For all particles, calculate velocity using Equation 12and update their positions using Equation 13.

7. If the stopping criteria or maximum iteration is not satisfied, repeat from Step3.

The existed PSO algorithm is modified by using two fitness functions instead of one. The first fitness function is to
minimize the cost (as in the existed algorithm by equ.5), the other one is to minimize the compilation time which is
presented by equ.11. Actually, these two fitness functions are implemented using different combinations (i.e., AND,
sequence, and Best-To-Best operations in algorithm 2 of the existed PSO scheduling algorithm). This has been
implemented by replacing step 3 in algorithm 2 using one of the following five combinations:

(a) For each particle, calculate its fitness value with respect to Cost Minimization presented using eqn. 5 THEN
Time Minimization presented using eqn.11.

(b) For each particle, calculate its fitness value with respect to Time Minimization presented using eqn.11 THEN
Cost Minimization presented using eqn. 5.

(c) For each particle, calculate its fitness value with respect to Cost Minimization presented by eqn. 5 AND Time
Minimization presented by eqn.11.

(d) For each particle, calculate its fitness value with respect to Best Cost Minimization presented by eqn.5 TO
Best Time Minimization presented by eqn.11.

(e) For each particle, calculate its fitness value with respect to Best Time Minimization presented by eqn.11 TO
Best Cost Minimization presented by eqn. 5.

These combinations have been implemented one after another to justify which combination will produce good results.

5. SIMULATION AND ANALYSIS OF RESULTS

In this section, the metric of the experiment setup, comparison, and results are presented.

5.1 Experimental Environment

The modified task scheduling algorithm has been written by java programming language using eclipse program in Intel(R)
Core(TM)2 Duo CPU in 1.60GHZ of processor and 2.50 GB of RAM . The experimental setup of the PSO algorithm
considers that the iterations =20, and the number of execution = 30.

5.2 Experimental Results

Three matrices are used to store the results for:

 a) Average computation cost of each task on each resource (TP-matrix),

b) Average communication cost per unit data between compute resources (PP-matrix), and

c) Input input/ output Data Size of each task (DS-matrix).

The values for PP-matrix resemble the cost of unit data transfer between resources given by Amazon Cloud Front [21] .It
is assumed that PC1 to be in US, PC2 in Hong Kong (HK) and PC3 in Japan (JP), respectively. The PP-matrix’s values
could be proposed randomly for every repeated experiment, but these values are kept constant during our MPSO task
scheduling implementation. While, the values for TP-matrix are given by the Amazon EC2’s pricing policy for different
classes of virtual machine instances is used [22]. Each task has its own Data Size matrix (DS). The sum of all the values
in the DS matrix varies according to the size of data (e.g., 64-1024 MB). According to Figure 1(a), if x is the output data
size of task T1, then tasks T2, T3, and T4 receive x data as input and produce x data as output. Finally, task T 5
consumes 3x data and produces 6x data. These matrices are depicted in Table 1 [10].

 ISSN 2277-3061

4892 | Page J u l y 1 4 , 2 0 1 4

Fig.2: Results when cost first then time

‘

Table 1: TP, PP, and DS matrices and their values

Figures (2-6) represent the experimental results of our MPOS algorithm by considering five combinations of the time and
cost fitness functions which are defined from (a) to (e).

By applying the time and cost fitness functions according to combination (a) for our MPOS algorithms, the results are
depicted in Figure 2, and the performance parameters are presented in Table 2.

[5 3]

TP [i, j] = Cost of execution of Ti at PCj

(EC2 price of resources for High CPU instance)

(Example matrix values are in the range $1.1 − $1.28/hr)

 PP [3]=

PP[i, j] = Cost of communication between PCi &PCj

(Values in $/MB/second)

DST2,T3,T4[2]=

 DST5 [2] =

row1 = i/p file sizes, row2 = o/p file sizes

i/p
o/p

PC1 PC2 PC3

T1
T2

T3
T4

T5

 PC1 PC2 PC3

 PC1
PC2
PC3

PC3

f1 f2
i/p

o/p

 ISSN 2277-3061

4893 | Page J u l y 1 4 , 2 0 1 4

Fig.3: Results when time first then cost

Table2.performance parameters for each data size

According to the results in Figure 2, it is found that by applying the cost fitness function then time fitness function, the
average cost=14.86 and the average time=10.82.

By applying the time function and then cost fitness function according to combination (b) for our MPOS algorithm, the
results are depicted in Figure3, and the performance parameters are presented in Table 3.

Table3. performance parameters for each data size

According to the results in Figure 3, it is found that by applying the cost fitness function then time fitness function, the
average cost= 12.05 and average time= 9.76.

By applying the time and cost fitness functions according to combination (c) for our MPOS algorithms, the results are
depicted in Figure 4, and the performance parameters are presented in Table 4.

Data size

Measure
64 128 256 512 1024

utilization 0.418838 0.423256 0.433781 0.407002 0.436762

speedup 0.64505 0.599928 0.502294 0.343816 0.370005

efficiency 0.215017 0.199976 0.167431 0.114605 0.123335

 Data size

Measure
64 128 256 512 1024

utilization 0.442999 0.449285 0.419856 0.41489 0.398963

speedup 0.675007 0.61589 0.54939 0.486035 0.360473

efficiency 0.225002 0.205297 0.18313 0.162012 0.120158

Fig. 4: Results of both cost and time

 ISSN 2277-3061

4894 | Page J u l y 1 4 , 2 0 1 4

Table4. performance parameters for each data size

According to the results in Figure 4, it is found that by applying the cost and time fitness functions, the average cost = 6.20
and average time = 7.04.

By applying the time and cost fitness functions according to combination (d) for our MPOS algorithms, the results are
depicted in Figure 5, and the performance parameters are presented in Table 5.

 Table5. performance parameters for each data size

According to the results in Figure 5, it is found that by applying the best cost fitness function then the best time fitness
function, the average cost = 6.15 and average time = 7.25.

By applying the time and cost fitness functions according to combination (e) for our MPOS algorithms, the results are
depicted in Figure 6, and the performance parameters are presented in Table 6.

 Data size

Measure
64 128 256 512 1024

utilization 0.433987 0.536272 0.488025 0.440362 0.481839

speedup 0.662486 0.801496 0.715649 0.647612 0.745342

efficiency 0.220829 0.267165 0.23855 0.215871 0.248447

 Data size

Measure
64 128 256 512 1024

utilization 0.468638 0.454404 0.448058 0.46963 0.497977

speedup 0.680457 0.672616 0.672917 0.701033 0.722404

efficiency 0.226819 0.224205 0.224306 0.233678 0.240801

Fig.5: Results when best time lead to best cost

 ISSN 2277-3061

4895 | Page J u l y 1 4 , 2 0 1 4

Table6. performance parameters for each data size

According to the results in Figure 6, it is found that by applying the best cost fitness function then the best time fitness
function, the average cost= 6.15 and average time= 6.98.

According to the experiments results (see Figures (2-6)) using five combinations of the time and cost fitness functions
which are defined from (a) to (e), we note that the average cost and average time are reduced and performance measures
(i.e., utilization, speedup, efficiency) is increased in each experiment. So, by applying combination (e) for our MPOS
algorithm would produce good results with respect to the total cost and total computation time minimization.

The implementation results of our modified MPSO using the five combinations (a-e) with respect to the existed PSO
algorithm are presented in Figure 7.

Data size

Measure
64 128 256 512 1024

utilization 0.562646 0.463143 0.44587 0.456203 0.486767

speedup 0.856996 0.680025 0.675311 0.68899 0.709757

efficiency 0.285665 0.226675 0.225104 0.229663 0.236586

Fig.6: Results when best cost to best time

 Fig.7: Average cost of each combination of MPSO and existed PSO Algorithms

 ISSN 2277-3061

4896 | Page J u l y 1 4 , 2 0 1 4

With respect to combination (a):

Cost reduction of our MPSO algorithm relative to the existed PSO algorithm =

14.86/46.176* 100 = 32%

With respect to combination (b):

Cost reduction of our MPSO algorithm relative to the existed PSO algorithm =

(12.05/ 46.176)*100 =26%

With respect to combination (c):

Cost reduction of our MPSO algorithm relative to the existed PSO algorithm =

(6.2/46.176)*100= 13.4%

With respect to combination (d):

Cost reduction of our MPSO algorithm relative to the existed PSO algorithm =

(6.15/46.176) *100=13.3%

With respect to combination (e):

Cost reduction of our MPSO algorithm relative to the existed PSO algorithm =

 (6.15/46.176) *100=13.3%

According to the results in Fig. 7 and the computed cost reduction, we note that our modified MPSO algorithm is always
outperformed the existed PSO algorithm.

Generally, by considering the computation time of tasks besides the cost for allocating tasks to the available resources
produces better results than that considering the cost only.

6. CONCLUSION

In this paper, a modified task scheduling heuristic based on Particle Swarm Optimization (PSO) is introduced and
implemented. This modified algorithm is called MPSO. The aim of the modified PSO is to minimize the total cost and time
of execution of application workflows on Cloud computing environments, where the total cost of execution is obtained by
varying the communication cost between resources and the execution time of compute resources. The main principle of
our MPSO algorithm is that two fitness functions, cost and time, are introduced. According to the comparative results, it is
found that our MPSO algorithm outperforms the existed PSO algorithm.

7. FUTURE PROPOSITIONS

As part of our future work, we would like to integrate PSO based heuristic into our workflow management system to
schedule workflows of real applications like LCC for HSP problem [23].

References

1. A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath, "Deploying Database Appliances in
the Cloud.," IEEE Data Eng. Bull., vol. 32, No. 1, pp. 13-20, 2009.

2. A.jangra, and T.Saini. "Scheduling Optimization in Cloud Computing." International Journal of Advanced Research in
Computer Science and Software Engineering,IJARCSSE 3 (April 2013): 62-65.

3. C. Computing. (2010). Handbook of Cloud Computing. [online]. Available:
http://www.springerlink.com/index/10.1007/978-1-4419-6524-0

4. Cui Lin, Shiyong Lu,” Scheduling ScientificWorkflows Elastically for Cloud Computing” in IEEE 4th International
Conference on Cloud Computing, 2011.

5. http://tracer.uc3m.es/tws/pso/basics.html

6. http://aws.amazon.com/ec2

7. http://aws.amazon.com/cloudfront/

8. J. Kennedy and R. Eberhart. Particle swarm optimization.In IEEE International Conference on Neural Networks,
volume4, pages 1942–1948, 1995.

9. J.Huang. "The Workflow Task Scheduling Algorithm Based on the GA Model in the Cloud Computing Environment."
Journal of Software 9, No 4 (Apr 2014): 873-880.

10. K.SUNITHA, MRS. P V SUDHA. "AN EFFICIENT TASK SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS
BY IMPROVED GENETIC ALGORITHM." International Journal of Communication Network Security, Volume-2, Issue-
2, 2013.

http://www.springerlink.com/index/10.1007/978-1-4419-6524-0
http://aws.amazon.com/ec2
http://aws.amazon.com/cloudfront/

 ISSN 2277-3061

4897 | Page J u l y 1 4 , 2 0 1 4

11. L. C. Qi Zhang, Raouf Boutaba, "Cloud computing: state-of-the-art and research challenges " Journal of Internet
Services and Applications, vol. 1, No. 1, pp. 7-18, May 2010.

12. Lei Zhang, et al. "A Task Scheduling Algorithm Based on PSO for Grid Computing." International Journal of
Computational Intelligence Research 4,No.1 (2008): 37–43.

13. Mrs.S.Selvarani1; Dr.G.Sudha Sadhasivam, improved cost-based algorithm for task scheduling in Cloud computing
,IEEE 2010.

14. Mell, P., Grance, T., ―The NIST Definition Cloud Computing‖, Version 15, 10-7-09. National Institute of Standard and
Technology, Information technology Laboratory 2009.

15. Radulescu & v.Gemund," Fast and effective task scheduling in heterogeneous systems," In: 9th Heterogeneous
computing, Workshop, 2000, p. 299–238.

16. Rong-Jiang Ma, Nan-Yang Yu and Jun-Yi Hu. Application of Particle Swarm Optimization Algorithm in the Heating
System Planning Problem, The Scientific World Journal
Volume 2013 (2013), 11 pages.

17. Suraj Pandey, Linlin Wu, Siddeswara Guru, and Rajkumar Buyya. "A Particle Swarm Optimization (PSO)-based
Heuristic for Scheduling Workflow Applications in Cloud Computing Environments." Proceedings of the 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA), Perth, Australia. April 20-23,

2010.

18. Saeed Parsa and Reza Entezari-Maleki,” RASA: A New Task Scheduling Algorithm in Grid Environment” in World
Applied Sciences Journal 7 (Special Issue of Computer & IT): 152-160, 2009.

19. Ucar Bora et al."Task assignment in heterogeneous computing systems,"J Parallel Distrib Comput, 2005, 66, 32–46.

20. Visalakshi, and Sivanandam. "Dynamic Task Scheduling with Load Balancing using Hybrid Particle Swarm
Optimization." International Journal of Open Problems in Computer Science and Mathematics, ICSRS Publication 2–
No. 3 (Sep 2009).

21. Y. Yang, et al. An Algorithm in SwinDeW-C for Scheduling Transaction- Intensive Cost-Constrained Cloud Workflows,
Proc. of 4th IEEE International Conference on e-Science, 374-375, Indianapolis, USA, December 2008.

22. Yang, et al. An utility- based job scheduling algorithm for cloud computing considering reliability factor. Proceedings of
the 2011 International Conference on Cloud and Service Computing, Dec. 12-14, IEEE Xplore Press, Hong Kong, pp:
95-102.

23. Zhao Rizos Henan, Sakellariou Rizos, "An investigation into rank function of the heterogeneous earliest finish time
(HEFT) algorithm," University of Manchester, UK: Department of ComputerScience;2003.

http://www.hindawi.com/24635476/
http://www.hindawi.com/79268375/
http://www.hindawi.com/13056929/

