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ABSTRACT 

In this paper, we develop a two node tandem communication network model with dynamic bandwidth allocation and 
feedback for the first node. In most of the communication systems, the arrivals of packets follow Non-Homogeneous and 
arrival rate is time dependent. In this model, the transmission rate of each transmitter depends on the number of packets 
in the buffer connected it. The transmission rates at each transmitter are adjusted depending upon the content of the 
buffer connected to it. The packets transmitted through the first transmitter may be forwarded to the buffer connected to 
the second transmitter or returned back to the first buffer with certain probabilities. Using the difference-differential 
equations the performance measures including average number of packets in each buffer, the probability of emptiness of 
the network, the average waiting time in the buffer and in the network, the throughput of the transmitters, and the variance 
of the number of packets in the buffer are calculated. It is observed that the load dependent transmission can reduce the 
delays in the transmission and enhance the channel capacity.  
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1. INTRODUCTION 

Queuing theory was developed to understand and to predict the behavior of various systems. Queuing networks models 
with finite capacity queues and feedback have been introduced and applied as more realistic models of systems with finite 
capacity resources and with population constrains [1, 2]. This is mainly due to their ability to model multiple independent 
resources and the sequential use of these resources by different jobs. Over the years lot of research has been done in 
traffic engineering and communication engineering. However, there are still many important and interesting finite capacity 
queues under various conditions are to be analyzed [3, 4, 5, 6, 7]. 

From the queuing model proposed by A.K. Erlang, lot of work has been reported in literature on queuing models and their 
applications. In practical situations the output from one queuing process serves as input to other i.e., the queues are 
connected in series. These types of queuing systems are called tandem queuing systems. In most of the models in the 
literature they have assumed that there is only one service station. However, in most of the tele/computer communication 
systems, there will be more than one service station connected in tandem model having load dependent transmission. A 
two node communication network with load dependent transmission is proposed in [8].  

Due to the several technological innovations in the recent years, a wide variety of Communication networks are designed 
and analyzed with effective switching techniques. Based on the type of architecture, communication networks are divided 
into three categories – message switching, circuit switching and packet switching. To improve the Quality of Service, 
packet switching gives better utilization over circuit and message switching. According to [9] [10], networks that support 
tele-processing applications are mixed with dynamic engineering skills and statistical multiplexing. To improve the quality 
of service in transmission, several authors have studied the communication networks utilizing tandem queuing analogy 
[11], [12], [13]. The performance evaluation of a two node communication network with dynamic bandwidth allocation and 
modified phase type transmission having bulk arrivals is studied in [14]. In [15] a two node communication network with 
Dynamic Bandwidth Allocation (DBA) having two stage bulk arrivals (BA) is introduced and analyzed. In [16] a Tandem 
Communication Network Model with DBA and modified phase type transmission having Non-Homogeneous Poisson 
(NHP) arrivals for first node and Poisson arrivals for second node is proposed.  

In most of the communication systems, the packet getting transmitted from the first transmitter returned back or forwarded 
to the second buffer connected to the second transmitter with certain probabilities. So, in this paper we develop and 
analyze a load dependent tandem communication network model with two transmitters and feedback for the first 
transmitter. This is very useful in analyzing the performance of many communication networks. Conducting experiments 
with varying load conditions of a communication system in particular with DBA is difficult and complicated. So, 
mathematical models of communication networks are developed to evaluate the performance of the newly proposed 
communication network models under transient conditions. 

2. COMMUNICATION NETWORK MODEL OF TWO TRANSMITTERS WITH DBA AND 
NHP ARRIVALS WITH FEED BACK AT FIRST TRANSMITTER 

In this section, we consider two nodded connected in Tandem model, where a node consists of a buffer connected to the 
transmitter. In our model Q1, Q2 are buffers connected to transmitters S1, S2 correspondingly. The arrival of packets at the 
first node is assumed to follow a non-homogeneous Poisson process with mean arrival rate as a function of time t.  This is 
of the form λ(t) = λ + αt.  It is assumed that the packet after getting transmitted through first transmitter may join the buffer 
connected to S1 or may be returned back to S1. It is further assumed that the packets are transmitted through the 
transmitter and the mean service rate in the transmitter is linearly dependent on the content of the buffer connected to it. 
Transmission of packets in the buffer follows First-In First-Out (FIFO) order. The packets serviced at the first transmitter 
are forwarded to the second buffer for transmission with probability (1-θ) or returned back to the first transmitter with 
probability (θ). The completion of service in both the transmitters follows Poisson processes with the parameters μ1 and μ2 
for the first and second transmitters respectively. The transmission rate of each packet is adjusted just before transmission 
depending on the content of the buffer connected to the transmitter. A schematic diagram of the proposed model of two 
nodes and feedback for first node with non-homogeneous Poisson arrivals is shown in figure 1. 

 

Figure 1: Communication network model of two nodes with DBA 
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Let n1 and n2 are the number of packets in first and second buffers and let Pn1,n2 be the probability that there are n1 
packets in the first buffer and n2 packets in the second buffer at time t. The difference-differential equations leading the 
above model are as follows: 
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Let P(S1,S2;t) be the joint probability generating function of Pn1,n2 (t). Then multiply the equation 2.1 with Sn1
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After simplifying we get 
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Solving equation 2.3 by Lagrangian’s method, we get the auxiliary equations as, 
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To solve the equations in (2.4) the functional form of λ(t) is required. Let the mean arrival rate of packets is λ(t) = λ + α t, 
where λ > 0, α > 0 are constants.  

Solving first and fourth terms in equation 2.4, we get 
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Solving first and second terms in equation 2.4, we get 
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Where a, b and c are arbitrary constants. 

The probability generating function of the number of packets in the first and second buffers at time t, as P (S1, S2; t) will be 
obtained by solving the equation 2.4. 
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3. PERFORMANCE MEASURES OF THE NETWORK MODEL 

In this section, we derive and analyze the performance measures of the communication network under transient 
conditions. Expanding P (S1, S2; t) of equation of 2.6 and collecting the constant terms, we get the probability that the 
network is empty as 
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By taking S2=1 in equation (2.6), we get the probability generating function of the first buffer size as, 

 
 

  



































t

S
e

S
P

t 









1

1
1

)1(1

1
expt);S(

1

1)1(

11

1
1

1

      (3.2) 

Expanding the P(S1; t) and collecting the constant terms, we get the probability that the first buffer is empty as, 
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By taking S1=1 in equation (2.6), we get the probability generating function of the second buffer size as, 
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Expanding the P(S2; t) and collecting the constant terms, we get the probability that the second buffer is empty as, 
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The mean number of packets in the first buffer is  
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The utilization of the first transmitter is   

 






































te

tPtU

t 









)1(

1
1

)1()1(

1
exp1

)(1)(

1

)1(

11

.01

1

          (3.7) 

The mean number of packets in the second buffer is  
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The utilization of the second transmitter is  
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The variance of the number of packets in the first buffer is  
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The variance of the number of packets in the second buffer is  
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The throughput of the first transmitter is  

))(1( .0
1

tP            (3.12) 

The mean delay in the first buffer is  

))(1(

)(
)(

.01

1

1
tP

tL
tW





        (3.13) 

The throughput of the second transmitter is  

))(1( 0.
2

tP             (3.14) 

The mean delay in the second buffer is  

))(1(

)(
)(

0.2

2
2

tP

tL
tW





        (3.15) 

The mean number of packets in the entire network at time t is 

)()(
21

)( tt LLtL          (3.16) 

The variability of the number of packets in the network is 

)()(
21

)( tt VVtV          (3.17) 

4. PERFORMANCE EVALUATION OF THE NETWORK MODEL 

In this section, we discussed the performance of the proposed network model with numerical illustration. Different values 
of the parameters are taken for bandwidth allocation and arrival of packets. The packet arrival (λ) varies from 2x10

4
 

packets/sec to 7x10
4
 packets/sec, α varies from 0 to 2, probability parameter (θ) varies from 0.1 to 0.9, the transmission 

rate for first transmitter (µ1) varies from 5x10
4
 packets/sec to 9x10

4
 packets/sec and transmission rate for second 

transmitter (µ2) varies from 15x10
4
 packets/sec to 19x10

4
 packets/sec. The two transmitters follow Dynamic Bandwidth 

Allocation strategy. The transmission rate of each packet changes dynamically depend on the number of packets in the 
buffer connected to corresponding transmitter. 

The equations 3.7, 3.9, 3.12 and 3.14 are used for computing the utilization and throughput of the transmitters for different 
values of parameters t, λ, α, θ, µ1, µ2 and the results are shown in the Table 1. The graphs showing the relationship 
between utilization and throughput of the transmitters are shown in the Figure 2. 
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Table 1: Values of Utilization and Throughput of the Network model with DBA and 
 Non-Homogeneous Poisson arrivals 

t λ α θ μ1 μ2 U1(t) U2(t) Th1(t) Th2(t) 

0.1 2 1 0.1 5 15 0.1524 0.0248 0.7621 0.3719 

0.3 2 1 0.1 5 15 0.3018 0.0868 1.5092 1.3019 

0.5 2 1 0.1 5 15 0.3716 0.1215 1.8579 1.8232 

0.7 2 1 0.1 5 15 0.4136 0.1423 2.0678 2.1343 

0.9 2 1 0.1 5 15 0.4447 0.1573 2.2233 2.3592 

0.5 3 1 0.1 5 15 0.4849 0.1699 2.4243 2.5488 

0.5 4 1 0.1 5 15 0.5777 0.2156 2.8887 3.2345 

0.5 5 1 0.1 5 15 0.6539 0.2588 3.2693 3.8825 

0.5 6 1 0.1 5 15 0.7163 0.2996 3.5814 4.4947 

0.5 7 1 0.1 5 15 0.7674 0.3382 3.8371 5.0732 

0.5 2 0 0.1 5 15 0.3281 0.1071 1.6403 1.6066 

0.5 2 0.5 0.1 5 15 0.3502 0.1144 1.7509 1.7153 

0.5 2 1 0.1 5 15 0.3716 0.1215 1.8579 1.8232 

0.5 2 1.5 0.1 5 15 0.3923 0.1287 1.9613 1.9302 

0.5 2 2 0.1 5 15 0.4123 0.1358 2.0613 2.0363 

0.5 2 1 0.1 5 15 0.3716 0.1215 1.8579 1.8232 

0.5 2 1 0.3 5 15 0.4216 0.1107 2.1081 1.6601 

0.5 2 1 0.5 5 15 0.4814 0.0942 2.4070 1.4125 

0.5 2 1 0.7 5 15 0.5517 0.0687 2.7586 1.0299 

0.5 2 1 0.9 5 15 0.6321 0.0285 3.1606 0.4272 

0.5 2 1 0.1 5 15 0.3716 0.1215 1.8579 1.8232 

0.5 2 1 0.1 6 15 0.3337 0.1282 2.0025 1.9232 

0.5 2 1 0.1 7 15 0.3017 0.1329 2.1119 1.9938 

0.5 2 1 0.1 8 15 0.2745 0.1363 2.1959 2.0442 

0.5 2 1 0.1 9 15 0.2513 0.1387 2.2613 2.0808 

0.5 2 1 0.1 5 15 0.3716 0.1215 1.8579 1.8232 

0.5 2 1 0.1 5 16 0.3716 0.1150 1.8579 1.8401 

0.5 2 1 0.1 5 17 0.3716 0.1091 1.8579 1.8550 

0.5 2 1 0.1 5 18 0.3716 0.1038 1.8579 1.8682 

0.5 2 1 0.1 5 19 0.3716 0.0989 1.8579 1.8800 
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Figure 2: The relationship between Utilization and Throughput with other parameters 

When the time (t) and λ increases, the utilization of the transmitters is increasing for the fixed value of other parameters θ, 
µ1, µ2. As the arrivals at buffers is non-homogenous Poisson in nature, it is observed from the Table 1, when α increase 
the through put of the first and second transmitters is increasing for the fixed values of other parameters. As the probability 
parameter θ increases from 0.1 to 0.9, the utilization of first transmitter increases and utilization of the second transmitter 
decreases, this is due to the number of packets arriving at the second transmitter are decreasing as some of the packets 
are going back to the first transmitter in feedback. As the transmission rate of the first transmitter (µ1) increases from 5 to 
9, the utilization of the first transmitter decreases and the utilization of the second transmitter increases by keeping the 
other parameters as constant. As the transmission rate of the second transmitter (µ2) increases from 15 to 19, the 
utilization of the first transmitter is constant and the utilization of the second transmitter decreases. 

It is also observed that, when the time (t) increases, the throughput of first and second transmitters is increasing for the 
fixed values of other parameters. When the parameter λ increases from 3x10

4
 packets/sec to 7x10

4
 packets/sec, the 

throughput of both transmitters is increasing. When the parameter α changes from 0 to 2, the throughput of both 
transmitters increases. As the θ value increases from 0.1 to 0.9, the probability of packets returns back to the first 
transmitter increases. So, the throughput of the first transmitter increase and the throughput of the second transmitter is 
decrease due to feedback to first transmitter. As the transmission rate of the first transmitter (µ1) increases from 5x10

4
 

packets/sec to 9x10
4
 packets/sec, the throughput of the first and second transmitters is increasing. The transmission rate 

of the second transmitter (µ2) increases from 15x10
4
 packets/sec to 19x10

4
 packets/sec and the throughput of the first 

transmitter is constant and the throughput of the second transmitter is increasing. 

Using equations 3.6, 3.8, 3.16 and 3.13, 3.15 the mean no. of packets in the buffers and in the network, mean delay in 
transmission of the two transmitters are calculated for different values of  t, λ, α, θ, µ1, µ2 and the results are presented in 
the Table 2. The graphs showing the relationship between parameters and performance measures are shown in the 
Figure 3. 

As the time (t) varies from 0.1 to 0.9 seconds, the mean number of packets in the two buffers and in the network is 
increasing when other parameters are kept constant. When the λ varies from 3x10

4
 packets/second to 7x10

4
 packets/ 

second the mean number of packets in the first, second buffers and in the network are increasing. As the parameter α 
increases from 0 to 2 the mean number of packets in the both transmitters is increasing. When the parameter θ varies 
from 0.1 to 0.9, the mean number packets in the first buffer increases and decreases in the second buffer due to feedback 
for the first buffer. 

When the transmission rate of the first transmitter (µ1) varies from 5x10
4
 packets/second to 9x10

4
 packets/ second, the 

mean number of packets in the first buffer decreases, in the second buffer increases and in the network decreases. When 
the transmission rate of the second transmitter (µ2) varies from 15x10

4
 packets/second to 19x10

4
 packets/second, the 

mean number of packets in the first buffer remains constant and decreases in the second buffer and in the network.  

It is also observed that with time (t) and λ, the mean delay in the two buffers are increasing for fixed values of other 
parameters. As the parameter α increases from 0 to 2, the mean delay in the two buffers are increasing. When the 
parameter θ varies the mean delay in the first buffer increases and decreases in the second buffer due to feedback for the 
first buffer. As the transmission rate of the first transmitter (µ1) varies, the mean delay of the first buffer decreases, in the 
second buffer increases. When the transmission rate of the second transmitter (µ2) varies, the mean delay of the first 
buffer remains constant and decreases for the second buffer.  

From the above analysis, it is clear that the dynamic bandwidth allocation strategy has an important control on all 
performance measures of the network. We also observed that the performance measures are highly sensitive towards 
smaller values of time. Hence, it is optimal to consider dynamic bandwidth allocation and evaluate the performance under 
transient conditions. It is also to be observed that the congestion in buffers and delays in transmission can be reduced to a 
minimum level by adopting dynamic bandwidth allocation. 
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Table 2: Values of mean number of packets and mean delay of the network model with DBA and  
Non Homogeneous arrivals 

t λ  θ  2 L1(t) L2(t) L(t) W1(t) W2(t) 

0.1 2 1 0.1 5 15 0.1654 0.0251 0.1905 0.2170 0.0675 

0.3 2 1 0.1 5 15 0.3593 0.0908 0.4501 0.2381 0.0697 

0.5 2 1 0.1 5 15 0.4645 0.1296 0.5941 0.2500 0.0711 

0.7 2 1 0.1 5 15 0.5337 0.1535 0.6872 0.2581 0.0719 

0.9 2 1 0.1 5 15 0.5882 0.1711 0.7593 0.2646 0.0725 

0.5 3 1 0.1 5 15 0.6633 0.1862 0.8496 0.2736 0.0731 

0.5 4 1 0.1 5 15 0.8621 0.2429 1.1050 0.2985 0.0751 

0.5 5 1 0.1 5 15 1.0609 0.2995 1.3605 0.3245 0.0771 

0.5 6 1 0.1 5 15 1.2597 0.3562 1.6159 0.3517 0.0792 

0.5 7 1 0.1 5 15 1.4585 0.4128 1.8713 0.3801 0.0814 

0.5 2 0 0.1 5 15 0.3976 0.1133 0.5109 0.2424 0.0705 

0.5 2 0.5 0.1 5 15 0.4311 0.1214 0.5525 0.2462 0.0708 

0.5 2 1 0.1 5 15 0.4645 0.1296 0.5941 0.2500 0.0711 

0.5 2 1.5 0.1 5 15 0.4980 0.1377 0.6357 0.2539 0.0714 

0.5 2 2 0.1 5 15 0.5315 0.1459 0.6774 0.2578 0.0716 

0.5 2 1 0.1 5 15 0.4645 0.1296 0.5941 0.2500 0.0711 

0.5 2 1 0.3 5 15 0.5475 0.1173 0.6648 0.2597 0.0707 

0.5 2 1 0.5 5 15 0.6566 0.0989 0.7555 0.2728 0.0700 

0.5 2 1 0.7 5 15 0.8023 0.0711 0.8735 0.2908 0.0691 

0.5 2 1 0.9 5 15 1.0000 0.0289 1.0289 0.3164 0.0676 

0.5 2 1 0.1 5 15 0.4645 0.1296 0.5941 0.2500 0.0711 

0.5 2 1 0.1 6 15 0.4061 0.1372 0.5433 0.2028 0.0713 

0.5 2 1 0.1 7 15 0.3591 0.1426 0.5017 0.1700 0.0715 

0.5 2 1 0.1 8 15 0.3209 0.1465 0.4674 0.1461 0.0717 

0.5 2 1 0.1 9 15 0.2894 0.1493 0.4387 0.1280 0.0718 

0.5 2 1 0.1 5 15 0.4645 0.1296 0.5941 0.2500 0.0711 

0.5 2 1 0.1 5 16 0.4645 0.1222 0.5867 0.2500 0.0664 

0.5 2 1 0.1 5 17 0.4645 0.1155 0.5801 0.2500 0.0623 

0.5 2 1 0.1 5 18 0.4645 0.1096 0.5741 0.2500 0.0587 

0.5 2 1 0.1 5 19 0.4645 0.1042 0.5687 0.2500 0.0554 
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Figure 3: The relationship between mean no. of packets, mean delay with various parameters 

5. SENSITIVITY ANALYSIS 

Sensitivity analysis of the proposed non-homogenous model is performed with respect to the effect of changes in the 
parameters t, λ, α, θ, μ1, μ2 on the mean number of packets, the utilization of transmitters, the mean delay and the 
throughput of the first and second nodes. The data considered for the sensitivity analysis, t = 0.5 sec, λ=2x10

4 

packets/sec, α = 1, θ = 0.1, μ1=5x10
4
 packets/sec and μ2=15x10

4
 packets/sec.  The mean number of packets, the 
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utilization of nodes, the mean delay, and the throughput of both the transmitters are computed with variation of (-15)%,     
(-10)%, (-5)%, 0%, +5%, +10%,+15% on the model and are presented in Table 3. 

From the Table 3 it is clear that the performance measures are highly effected by the small changes in the parameters t, λ, 
α, and θ. When the time parameter (t) changes from -15% to +15%, the average number packets in the two buffers are 
increases along with utilization, throughput and average delay. As the parameter λ increases from -15% to +15%, the 
average number packets in the two buffers are increases along with utilization, throughput and average delay. Similarly, 
when the parameter α varies from -15% to +15%, the average number packets in the two buffers are increases along with 
utilization, throughput and average delay. As the probability parameter (θ) increases from -15% to +15% the average 
number of packets in the first buffer increase along with the utilization, throughput and the average delay in buffers of the 
node. But average number of packets in the second buffer decrease along with the utilization, throughput and the average 
delay in buffers of the node due to feedback for the first node. 

Table 3: Sensitivity analysis of the proposed network model 

Para
meter 

Performance 
Measure 

% change in Parameter 

-15 -10 -5 0 +5 +10 +15 

t=0.5 

L1(t) 0.431151 0.442916 0.454020 0.464534 0.474520 0.484034 0.493128 

L2(t) 0.117492 0.121791 0.125815 0.129593 0.133148 0.136505 0.139684 

U1(t) 0.350239 0.357839 0.364930 0.371572 0.377816 0.383708 0.389287 

U2(t) 0.110853 0.114666 0.118222 0.121547 0.124665 0.127598 0.130367 

Th1(t) 1.751197 1.789194 1.824650 1.857859 1.889081 1.918540 1.946434 

Th2(t) 1.662790 1.719994 1.773330 1.823201 1.869974 1.913975 1.955501 

W1(t) 0.246204 0.247551 0.248826 0.250037 0.251191 0.252293 0.253349 

W2(t) 0.070660 0.070809 0.070948 0.071080 0.071203 0.071320 0.071431 

λ 

L1(t) 0.404894 0.424774 0.444654 0.464534 0.484414 0.504294 0.524174 

L2(t) 0.112599 0.118264 0.123928 0.129593 0.135257 0.140921 0.146586 

U1(t) 0.332952 0.346082 0.358954 0.371572 0.383942 0.396068 0.407956 

U2(t) 0.106491 0.111538 0.116557 0.121547 0.126509 0.131442 0.136348 

Th1(t) 1.664761 1.730411 1.794769 1.857859 1.919708 1.980340 2.039778 

Th2(t) 1.597370 1.673074 1.748350 1.823201 1.897629 1.971637 2.045227 

W1(t) 0.243214 0.245476 0.247750 0.250037 0.252337 0.254650 0.256976 

W2(t) 0.070490 0.070686 0.070883 0.071080 0.071277 0.071474 0.071672 

=1 

L1(t) 0.454494 0.457840 0.461187 0.464534 0.467880 0.471227 0.474574 

L2(t) 0.127147 0.127962 0.128777 0.129593 0.130408 0.131223 0.132038 

U1(t) 0.365231 0.367352 0.369465 0.371572 0.373672 0.375764 0.377850 

U2(t) 0.119396 0.120113 0.120830 0.121547 0.122263 0.122978 0.123692 

Th1(t) 1.826153 1.836758 1.847326 1.857859 1.868358 1.878821 1.889249 

Th2(t) 1.790937 1.801701 1.812455 1.823201 1.833938 1.844667 1.855386 

W1(t) 0.248880 0.249266 0.249651 0.250037 0.250423 0.250810 0.251197 

W2(t) 0.070995 0.071023 0.071051 0.071080 0.071108 0.071136 0.071165 

=0.1 

L1(t) 0.459141 0.460927 0.462725 0.464534 0.466354 0.468187 0.470031 

L2(t) 0.130334 0.130089 0.129842 0.129593 0.129341 0.129086 0.128829 

U1(t) 0.368174 0.369301 0.370434 0.371572 0.372715 0.373863 0.375017 

U2(t) 0.122198 0.121983 0.121766 0.121547 0.121325 0.121102 0.120876 

Th1(t) 1.840870 1.846507 1.852170 1.857859 1.863575 1.869317 1.875085 

Th2(t) 1.832965 1.829743 1.826489 1.823201 1.819881 1.816527 1.813139 

W1(t) 0.249415 0.249621 0.249828 0.250037 0.250247 0.250459 0.250672 

W2(t) 0.071105 0.071097 0.071088 0.071080 0.071071 0.071062 0.071053 
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6. COMPARATIVE STUDY 

A comparative study between the performance measures of the network model with non homogeneous Poisson arrivals 
and Poisson arrivals is performed. The Table 4 presents the performance measures of both models with fixed values of 
the parameters t, λ, α, θ, μ1, μ2 and different value of time t = 0.1, 0.3 and 0.5 seconds. From the Table 4 it can be 
observed that as time increases from 0.1 seconds to 0.5 seconds, the percentage of variation of the performance 
measures between the two network models also increases. The network model with non-homogeneous Poisson arrivals 
and dynamic bandwidth allocation has higher utilization than the network model with homogeneous compound Poisson 
arrivals. It can also be observed that non-homogenous Poisson arrivals have a significant influence on all the performance 
measures of the network model. 

Table 4: Comparative study of the network model  
with non homogeneous and homogeneous Poisson arrivals 

t Parameters Measured  = 1   0 Difference % of variation 

0.1 

  

  

  

  

  

  

  

L1(t) 0.16538 0.16105 0.0043 2.6869 

L2(t) 0.02511 0.02463 0.0005 1.9373 

U1(t) 0.15243 0.14875 0.0037 2.4710 

U2(t) 0.02480 0.02433 0.0005 1.9131 

Th1(t) 0.76215 0.74377 0.0184 2.4710 

Th2(t) 0.37193 0.36495 0.0070 1.9131 

W1(t) 0.21699 0.21654 0.0005 0.2107 

W2(t) 0.06751 0.06749 0.0000 0.0238 

0.3 

  

  

  

  

  

  

  

L1(t) 0.35931 0.32923 0.0301 9.1384 

L2(t) 0.09080 0.08459 0.0062 7.3368 

U1(t) 0.30184 0.28052 0.0213 7.6015 

U2(t) 0.08680 0.08111 0.0057 7.0091 

Th1(t) 1.50922 1.40260 0.1066 7.6015 

Th2(t) 1.30193 1.21665 0.0853 7.0091 

W1(t) 0.23808 0.23473 0.0034 1.4283 

W2(t) 0.06974 0.06953 0.0002 0.3062 

0.5 

  

  

  

  

  

  

  

L1(t) 0.46453 0.39760 0.0669 16.8343 

L2(t) 0.12959 0.11329 0.0163 14.3913 

U1(t) 0.37157 0.32807 0.0435 13.2601 

U2(t) 0.12155 0.10711 0.0144 13.4813 

Th1(t) 1.85786 1.64035 0.2175 13.2601 

Th2(t) 1.82320 1.60661 0.2166 13.4813 

W1(t) 0.25004 0.24239 0.0076 3.1557 

W2(t) 0.07108 0.07051 0.0006 0.8019 

 

7. CONCLUSION 

In this paper a two node tandem communication network model is developed and analyzed. The paper focuses the 
network model with dynamic bandwidth allocation having non-homogeneous Poisson arrivals and feedback for the first 
transmitter. It is assumed that a packet after getting transmitted from the first transmitter may join in the buffer connected 
to the second transmitter or returned back to the buffer connected to the first transmitter for retransmission. The dynamic 
bandwidth allocation is adapted by immediate adjustment of packet service time by utilizing idle bandwidth in the 
transmitter. The transient analysis of the model is capable of capturing the changes in the performance measures of the 
network like average content of the buffers, mean delays, throughput of the transmitters, idleness of the transmitters etc. A 
comparative study of the developed model with a model using homogeneous compound Poisson arrivals revealed that 
time has a significant effect on system performance measures and the performance measures can be predicted more 
accurately and realistically. The numerical study exposed that the proposed communication network model is capable of 
evaluating and predicting the performance of communication networks.  
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