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ABSTRACT 

Hilbert-type space-filling curve has attracted much interest thanks to its mathematical importance and extensive 
applications in signal processing. In this paper, we construct the complete six Hilbert-type space-filling curves form a 
matrix point of view. The address matrix for each considered Hilbert-type space-filling curve can be easily generated by a 
recursive manner. Besides the six Hilbert-type space-filling curves, we also construct their corresponding variation 
versions. The merit of the matrix approach is that the iterative algorithm is easy to implement and can be generalized to 
produce any other Hilbert-type space-filling curves and their variation versions.  
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INTRODUCTION  

Thanks to the good filling nature of space-filling curves, they not only show good mathematical features but also can be 
applied widely in many fields, especially in digital image processing, such as image clustering, image encryption, image 
encoding, image storing/retrieving, and pattern recognition [1-3]. A space-filling curve is a continuous mapping from the 
unit interval onto the N-dimensional unit hypercube and passes through each point of the unit hypercube. Italian 
Mathematician G. Peano ingeniously discovered a space-filling curve of traversing points on a two-dimensional   square 
grid exactly once for any nature number   and without crossing the path in 1890. The space-filling curve presented by 
Peano surprised the mathematical world greatly and encouraged many mathematicians to explore the research [4]. Since 
then, many kinds of space-filling curves are discovered and constructed [5]. Among them, the Hilbert space-filling curve, 
another famous space-filling curve presented by Hilbert to traverse points on a two-dimensional  square grid, preserves 
point neighborhoods as much as possible [6]. A mathematical and historical review of Hilbert space-filling curve 
applications can be seen in [5] and the references therein.  

There have been many research works on how to formally construct the Hilbert space-filling curve using either an 
operation model or a functional model since the fundamental work of Hilbert, and various algorithms were presented to 
generate Hilbert space-filling curves, such as the Butz algorithm [7], the Quinqueton algorithm [8] and the Agui algorithm 
[9] etc. However, these algorithms have more or less restrictions on their applications, and this becomes a stumbling block 
to put the algorithms in practice. For example, Butz computed the mapping function by bit operations such as shifting, 
exclusive OR, etc. The algorithm is complex to compute and difficult to implement in hardware. Agui and Quinqueton 
applied the recursive functions to generate the space-filling curve, and their algorithms were also complex and took much 
time to compute the one-to-one mapping correspondence. To improve the scanning efficiency via Hilbert space-filling 
curve, Kamata et al. constructed a simple, non-recursive algorithm for N-dimensional Hilbert space-filling curve using 
lookup tables [10]. The algorithm contributed faster computation and easier implementation than previous ones. Similar 
techniques based on lookup tables are adopted by Zhang et al. [11]. Lin et al. put forward an algorithm to generate Hilbert 
curves by tensor product [12]. The tensor product formulas can be directly translated into computer programs; it is simple 
and easy to manipulate. On the other hand, other Hilbert-type space-filling curves are still designed and studied. Liu 
presented four alternative patterns of the Hilbert curves in [13]. The four patterns proposed, together with Hilbert’s original 
pattern and Moore’s pattern [14], constitute a complete set of the Hilbert space-filling curve. Liu used a parameter called 
resolution to describe the domain granularity of the considered curves, then constructed the Hilbert-type space-filling curve 
patterns via generation of the configuration of considered pattern from resolution k to k+1. The generation of Hilbert space-
filling curves is determined by some affine transformations expressed in complex variables. Liu did not present the 
operable algorithm in [13], frustrating the proposed method in practice as well.  

In this paper, we will explore the generation of Hilbert-type space-filling curves via matrix iterative approach. It is a simple 
address generator for two-dimensional Hilbert-type space-filling curves. Based on an iterative approach instead of 
recursive one, we generate the address matrix for the considered Hilbert-type space-filling curve at any resolution n 
efficiently. We express the Hilbert-type space-filling curve as an algebraic matrix consisting of the position orders for all 
vertices at the consider curve pattern. It is easy to produce the matrix of resolution n by an iterative way and some matrix 
operations: transposition, rotation, flip up and down, flip left and right. These matrix operations and iteration procedure can 
be mapped to constructors of high-level programming languages. Hence, the Hilbert-type space-filling curve formulas can 
be easily translated into a computer program. The program produces the Hilbert-type space-filling curve according to the 
data element orders of the yielded two-dimensional matrix. Matrix iterative algorithm is easy to implement and the 
proposed algorithm in this paper can be generalized to produce other variation versions of Hilbert-type space-filling curves 
even in higher dimensional spaces. Furthermore, the generated matrix can be easily applied to translate the two-
dimensional gray values of digital images into one-dimensional version, so it can be effectively employed for image 
processing, such as image compression and image encryption, etc.  

SIX HILBERT-TYPE SPACE-FILLING CURVE PATTERNS 

Hilbert’s Original Pattern 

We denote the Hilbert-type space-filling curve matrix of order 2k
 by 

2kH at resolution k. Let  90 ,rot A K  to be the 

90K   degree clockwise rotation of matrix A .  fliplr X  returns X  with row preserved and columns flipped in the 

left/right direction.  flipud X  returns X  with columns preserved and rows flipped in the up/down direction. 

TA represents the transpose of A .  

Hilbert’s original pattern starts at one corner of the unit square, for example, (0, 0), and ends up at its adjacent corner, for 
example, (1,0). The matrices of Hilbert’s original patterns are generated iteratively by the following transformation: 

1

2 2

2

2 2

4 2 4
, 1,2,

90( ( ),3) 3 4

k k

k

k k

k k

T k

H H
H k

rot fliplr H H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

Then one can generate
2kH easily, for example,  
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4

6     7    10    11

5     8     9     12

4     3    14    13

1     2    15    16

H

 
 
 
 
 
 

,   
8

22    23    26    27    38    39    42    43

21    24    25    28    37    40    41    44

20    19    30    29    36    35    46    45

17    18    31    32    33    34    47    48

16    13    12    11 
H 

   54    53    52    49

15    14      9    10    55    56    51    50

  2      3      8      7    58    57    62    63

  1      4      5      6    59    60    61    64

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert’s original patterns with any resolutions can be generated by connecting the consecutive integer 

numbers at the yielded matrix by segments. The Hilbert’s original curve patterns for 
2

( 1,2,3,4)kH k  are depicted in 

Figs.1(a)-(d) respectively. 

     

  (a) resolution 1                   (b) resolution 2 

     

(c) resolution 3                   (d) resolution 4 

Fig. 1. Hilbert’s original patterns. 

Moore’s Pattern  

Although the literature have almost exclusively referred to the original pattern discovered by Hilbert, there exist other 
patterns. Moore reported an alternative pattern [14]. The graphical representation of Moore’s pattern of resolution 1 is the 
same as shown in Fig. 1(a), and the representations of resolution 2, 3, 4 and 5 are depicted in Figs. 2(a)-(d). Moore’s 
pattern starts at the midpoint of one side of the unit square, for example (1/2, 0), and ends up at the same point. As a 
matter of fact, Moore’s space-filling curve consists of four half-size Hilbert curves placed end-to-end with appropriate 
orientations. The matrices of Moore’s patterns are generated iteratively by the following transformation: 

1

2 2

2

2 2

90( ,1) 4 90( ,3) 2 4
, 1,2,

90( ,1) 90( ,3) 3 4

k k

k

k k

k k

k

rot H rot H
H k

rot H rot H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

Then one can generate 
2kH easily, for example,  
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4

7     8     9    10

6     5    12    11

3     4    13    14

2     1    16    15

H

 
 
 
 
 
 

,   
8

27    28    29    32    33    36    37    38

26    25    30    31    34    35    40    39

23    24    19    18    47    46    41    42

22    21    20    17    48    45    44    43

11    12    13    16 
H 

   49    52    53    54

10      9    14    15    50    51    56    55

  7      8      3      2    63    62    57    58

  6      5      4      1    64    61    60    59

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert-type space-filling curve for 
2

( 2,3,4,5)kH k  are depicted in Figs.2(a)-(d) respectively. 

     

  (a) resolution 2                   (b) resolution 3 

     

(c) resolution 4                   (d) resolution 5 

Fig. 2. Moore’s patterns. 

Pattern L1 

Suppose the space-filling curve starts at the center of the unit square and ends up at the same point. This yields a new 
space-filling curve whose four patterns for resolution 2 to resolution 5 are shown in Fig. 3. The graphical representation of 
resolution 1 for pattern L1 is the same as shown in Fig. 1(a). The matrices of patterns L1 with any resolutions are 
generated iteratively by the following transformation: 

1

2 2

2

2 2

4 2 4
, 1,2,

90( ,2) 90( ,2) 3 4

k k

k

k k

k k

k

H H
H k

rot H rot H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

Then 
2kH  is generated easily, for example,  
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4

6     7    10    11

5     8      9    12

4     1    16    13

3     2    15    14

H

 
 
 
 
 
 

,   
8

22    23    26    27    38    39    42    43

21    24    25    28    37    40    41    44

20    19    30    29    36    35    46    45

17    18    31    32    33    34    47    48

16    15      2      
H 

1    64    63    50    49

13    14      3      4    61    62    51    52

12      9      8      5    60    57    56    53

11    10      7      6    59    58    55    54

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert-type space-filling curve for 
2

( 2,3,4,5)kH k  are depicted in Figs.3(a)-(d) respectively. 

     

  (a) resolution 2                   (b) resolution 3 

     

(c) resolution 4                   (d) resolution 5 

Fig. 3. Pattern L1. 

Pattern L2 

Suppose the pattern curve starts at the midpoint of one side of the unit square and ends up at the midpoint of the opposite 
side. This yields a new space-filling curve whose four patterns for resolution 2 to resolution 5 are shown in Fig. 4. The 
graphical representation of resolution 1 for pattern L2 is the same as Fig. 1(a). The matrices of patterns L2 are generated 
iteratively by the following transformation: 

1

2 2

2

2 2

90( ,1) 4 90( ,3) 2 4
, 1,2,

( ) ( ) 3 4

k k

k

k k

k k

k

rot H rot H
H k

flipud H flipud H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

We get 
2

( 2,3)kH k  as follows.  
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4

7     8      9    10

6     5    12    11

1     4    13    16

2     3    14    15

H

 
 
 
 
 
 

,   
8

27    28    29    32    33    36    37    38

26    25    30    31    34    35    40    39

23    24    19    18    47    46    41    42

22    21    20    17    48    45    44    43

  1      2    15    1
H 

6    49    50    63    64

  4      3    14    13    52    51    62    61

  5      8      9    12    53    56    57    60

  6      7    10    11    54    55    58    59

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert-type space-filling pattern curve 
2

( 2,3,4,5)kH k  are depicted in Figs.4(a)-(d) respectively. 

     

  (a) resolution 2                   (b) resolution 3 

     

(c) resolution 4                   (d) resolution 5 

Fig. 4. Pattern L2. 

Pattern L3 

If the Hilbert-type space-filling curve starts at the lower left corner of the unit square and ends up at the center of the 
square, we can produce an alternative space-filling curve whose four patterns for resolution 2 to resolution 5 are shown in 
Fig. 5. The pattern of resolution 1 is just the same as Fig. 1(a) for Hilbert’s original curve. The matrices of patterns L3 are 
generated iteratively by  

1

2 2

2

2 2

4 2 4
, 1,2,

90( ( ),3) 90( ,2) 3 4

k k

k

k k

k k

k

H H
H k

rot fliplr H rot H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

The matrices 
2

( 2,3)kH k   are  
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4

6     7    10    11

5     8      9    12

4     3    16    13

1     2    15    14

H

 
 
 
 
 
 

,   
8

22    23    26    27    38    39    42    43

21    24    25    28    37    40    41    44

20    19    30    29    36    35    46    45

17    18    31    32    33    34    47    48

16    13    12    11 
H 

   64    63    50    49

15    14      9    10    61    62    51    52

  2      3      8      7    60    57    56    53

  1      4      5      6    59    58    55    54

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert-type pattern curves for resolutions 1-4 are depicted in Fig.5. 

     

  (a) resolution 2                   (b) resolution 3 

     

(c) resolution 4                   (d) resolution 5 

Fig. 5. Pattern L3. 

Pattern L4 

Let the Hilbert-type space-filling patterns curve starts at the midpoint of one side of the unit square and ends up at the 
midpoint of its adjacent side. One can generate a new space-filling curve whose four patterns for resolution 2 to resolution 
5 are shown in Fig. 6. The matrices of patterns L4 are generated iteratively by the following transformations: 

1

2 2

2

2 2

90( ,1) 4 90( ,3) 2 4
, 1,2,

( ) 90( ,3) 3 4

k k

k

k k

k k

k

rot H rot H
H k

flipud H rot H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

We generate 
2kH easily, for example,  
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4

7     8     9    10

6     5    12    11

1     4    13    14

2     3    16    15

H

 
 
 
 
 
 

,   
8

27    28    29    32    33    36    37    38

26    25    30    31    34    35    40    39

23    24    19    18    47    46    41    42

22    21    20    17    48    45    44    43

  1      2    15    1
H 

6    49    52    53    54

  4      3    14    13    50    51    56    55

  5      8      9    12    63    62    57    58

  6      7    10    11    64    61    60    59

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding Hilbert-type space-filling curves for 
2

( 2,3,4,5)kH k  are depicted in Fig. 6. 

     

  (a) resolution 2                   (b) resolution 3 

     

(c) resolution 4                   (d) resolution 5 

Fig. 6. Pattern L4. 

SOME VARIATION VERSIONS OF HILBERT-TYPE SPACE-FILLING CURVE 

Variation of Hilbert’s Original Pattern 

As mention above, Hilbert’s original pattern starts at one corner of the unit square, for example (0, 0), and ends up at one 
of its adjacent corners, (1,0) for example. To get a variation version,  we change the end point to be (1,1), that is, the 
space-filling curve is from one corner of the unit to the opposite corner instead of the adjacent corner. We can also get a 
space-filling curve and the matrices are derived by 

1

2 2

2

2 2

4 90( ,1) 3 4
, 1,2,

( 90( ,1)) ( ) 2 4

k k

k

k k

k k

k

H rot H
H k

fliplr rot H flipud H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

Then we can also generate 
2kH easily, for example,  



ISSN  2277-3061 

6289 | P a g e                                                         A u g u s t  1 8 , 2 0 1 5  

4

6     7    15    16

5     8    14    13

4     3      9    12

1     2    10    11

H

 
 
 
 
 
 

,   
8

22    23    26    27    59    60    61    64

21    24    25    28    58    57    62    63

20    19    30    29    55    56    51    50

17    18    31    32    54    53    52    49

16    13    12    11 
H 

   33    34    47    48

15    14      9    10    36    35    46    45

 2       3      8      7    37    40    41    44

 1       4      5      6    38    39    42    43

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding patterns 
2

( 4,5)kH k  are depicted in Figs.7(a)-(b) respectively. 

     

  (a) resolution 4                   (b) resolution 5 

Fig. 7. Variation of Hilbert’s original patterns. 

Variation of Moore’s Pattern  

Let the space-filling curve starts at the midpoint of one side of the unit square, for example (1/2, 0), and ends at the same 
point. Meanwhile, the curve passes through center of the unit square two times from which the Moore’s pattern is different. 
We can also get a space-filling curve. The matrices are derived by 

1

2 2

2

2 2

( 90( ,1)) 2 4 ( 90( ,1)) 4
, 1,2,

90( ,1) 90( ,3) 3 4

k k

k

k k

k k

k

flipud rot H fliplr rot H
H k

rot H rot H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

And one can generate 
2kH easily, for example,  

4

10      9     8      7

11    12     5      6

 3      4    13    14

 2      1    16    15

H

 
 
 
 
 
 

,   
8

38    37    36    33    32    29    28    27

39    40    35    34    31    30    25    26

42    41    46    47    18    19    24    23

43    44    45    48    17    20    21    22

11    12    13    16 
H 

   49    52    53    54

10      9    14    15    50    51    56    55

  7      8      3      2    63    62    57    58

  6      5      4      1    64    61    60    59

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding space-filling curves for 
2

( 4,5)kH k  are depicted in Fig. 8. 
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  (a) resolution 4                   (b) resolution 5 

Fig. 8. Variation of Moore’s patterns. 

Variation of Pattern L1 

Suppose the space-filling curve starts at the center of the unit square and ends at the same point. However the curve is 
different from pattern L1. We can also get a space-filling curve and the matrices are derived by 

1

2 2

2

2 2

4 ( ) 3 4
, 1,2,

90( ,2) ( ) 2 4

k k

k

k k

k k

k

H fliplr H
H k

rot H flipud H


   
  

   

  , 2

2 3

1 4
H

 
  
 

. 

Then we can generate 
2kH easily, for example,  

4

6     7    15    14

5     8    16    13

4     1      9    12

3     2    10    11

H

 
 
 
 
 
 

,   
8

22    23    26    27    59    58    55    54

21    24    25    28    60    57    56    53

20    19    30    29    61    62    51    52

17    18    31    32    64    63    50    49

16    15      2      
H 

1    33    34    47    48

13    14      3      4    36    35    46    45

12      9      8      5    37    40    41    44

11    10      7      6    38    39    42    43

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding space-filling curves for 
2

( 4,5)kH k  are depicted in Fig. 9.  

     

  (a) resolution 4                   (b) resolution 5 

Fig. 9. Variation of Pattern L1. 
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Variation of Pattern L2 

Suppose the curve starts at the midpoint of one side of the unit square and end up at the midpoint of the opposite side and 
the curve pass through the center two times. This yields a new space-filling curve whose four patterns for resolution 4 and 
resolution 5 are shown in Fig. 10. We can get a variation version of pattern L2. The matrices are derived by 

1

2 2

2

2 2

90( ,1) 3 4 4
, 1,2,

90( ,1) 90( ,2) 2 4

k k

k

k k

k k

k

rot H H
H k

rot H rot H


   
  

   

  , 
2

2 3

1 4
H

 
  
 

. 

2
( 2,3)kH k  are shown as follows.  

4

15    16     6      7

14    13     5      8

  3     4    12      9

  2     1    11    10

H

 
 
 
 
 
 

,   
8

59    60    61    64    22    23    26    27

58    57    62    63    21    24    25    28

55    56    51    50    20    19    30    29

54    53    52    49    17    18    31    32

11    12    13    16 
H 

   48    47    34    33

10      9    14    15    45    46    35    36

  7      8      3      2    44    41    40    37

  6      5      4      1    43    42    39    38

 
 
 
 
 
 
 
 
 
 
 
  

 . 

The corresponding space-filling curves for 
2

( 4,5)kH k  are depicted in Fig.10. 

     

  (a) resolution 4                   (b) resolution 5 

Fig. 10. Variation of pattern L2. 

 

Variation of Pattern L3 

Suppose the curve starts at the lower left corner of the unit square and ends up at the center of the square, but this time 
the curve passes through alternative way different from L3. This yields a new space-filling curve whose two patterns for 
resolution 4 and resolution 5 are shown in Fig. 11. The matrices of this pattern are generated iteratively by  

1

2 2

2

2 2

4 ( ) 3 4
, 1,2,

( 90( ,1)) ( ) 2 4

k k

k

k k

k k

k

H fliplr H
H k

fliplr rot H flipud H


   
  

   

  , 2

2 3

1 4
H

 
  
 

, 
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4

6     7    15    14

5     8    16    13

4     3      9    12

1     2    10    11

H

 
 
 
 
 
 

,   
8

22    23    26    27    59    58    55    54

21    24    25    28    60    57    56    53

20    19    30    29    61    62    51    52

17    18    31    32    64    63    50    49

16    13    12    11 
H 

   33    34    47    48

15    14      9    10    36    35    46    45

  2      3      8      7    37    40    41    44

  1      4      5      6    38    39    42    43

 
 
 
 
 
 
 
 
 
 
 
  

 . 

     

  (a) resolution 4                   (b) resolution 5 

Fig. 11. Variation of pattern L3. 

Variation of Pattern L4 

Suppose the curve starts at the midpoint of one side of the unit square and ends up at the midpoint of its adjacent side. 
But it passes the center two times from which pattern L4 is different. This yields a new space-filling curve whose two 
patterns for resolution 4 and resolution 5 are shown in Fig. 12. The matrices of variation of patterns L4 are generated 
iteratively by the following transformations: 

1

2 2

2

2 2

( 90( ,1)) 2 4 ( 90( ,1)) 4
, 1,2,

90( ,1) ( ) 3 4

k k

k

k k

k k

k

flipud rot H fliplr rot H
H k

rot H flipud H


   
  

   

  , 2

2 3

1 4
H

 
  
 

, 

4

10      9     8     7

11    12     5     6

 3     4    13    16

 2     1    14    15

H

 
 
 
 
 
 

,   
8

38    37    36    33    32    29    28    27

39    40    35    34    31    30    25    26

42    41    46    47    18    19    24    23

43    44    45    48    17    20    21    22

11    12    13    16 
H 

   49    50    63    64

10      9    14    15    52    51    62    61

  7     8      3      2    53    56    57    60

  6     5      4      1    54    55    58    59

 
 
 
 
 
 
 
 
 
 
 
  

 . 
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  (a) resolution 4                   (b) resolution 5 

Fig. 12. Pattern L4. 

CONCLUSIONS 

Hilbert-type space-filling curve has attracted much interest thanks to its mathematical importance and extensive 
applications in signal processing, such as encoding, image clustering, encryption, image storing/retrieving, and pattern 
recognition, etc. Besides the original one discovered by Hilbert himself, there exist other patterns, including the Moore 
pattern presented in 1900 and four alternative ones explored by Liu in 2004. In this paper, we construct the six patterns 
from a matrix iterative point of view. The address matrix for the considered pattern can be easily generated by an iterative 
manner. It is then easy to produce the corresponding pattern. The generated address matrices can be regarded as  
ergodic matrices and therefore can be directly applied to image processing, especially in image encryption, image 
watermarking preprocessing, image hiding. Besides the six Hilbert-type space-filling patterns, we also construct their 
corresponding variation versions thoroughly in this paper as well.  
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