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ABSTRACT 

In 2013 ,  a new subclass of cyclic Goppa code with Goppa polynomial of degree 2 is presented by 

Bezzateev and Shekhunova. They proved that this subclass contains all cyclic codes of considered 

length. In the present work we consider a Goppa polynomial of degree three and proved that the 

subclass generated by this polynomial represent a cyclic, reversible and separable Goppa code. 
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INTRODUCTION  

The Russian mathematician N.V. Goppa [2] proposed an extended class of BCH code that is known 

as Goppa code. This class contains BCH codes as a special case and also meets the Gilbert bound 

for long n. After the existence of these codes, it is possible to design an error processor modeled on 

Peterson’s BCH error processor. The Sugiyama, Hirasawa and Namakwa error processor, derived 

from Euclid’s algorithm was actually designed for these classical Goppa codes, after that Goppa 

extending his definition by means of algebraic curves over a field. This new geometric class of code 

contains many explicit codes that exceed the Gilbert bound. These codes have an efficient 

decoding algorithm and also useful for applications in cryptography.  

THE GOOPA CODE: 

Let   be the finite field, let g(z) be a polynomial over  field E  and let  P= {   be the 

set of elements  with the condition that none of  is root of g(z) . then the Goppa code is defined as 

the set of codewords  such that  

                                                                 S(z) = .     [2] 

Definition 1:  A code C is called reversible if for any codeword d= (  )  the code also 

contains the codeword = (  )  [1]. 

Definiation2: A Goppa code is called separable if the Goppa polynomial g(x) does not have multiple 

roots [1]. 

Bezzateev and Shekhunova [4] presented a subclass of Goppa code and proved that all reversible 

cyclic codes, defined by a polynomial g(x) = with the roots    where  

are separable Goppa codes.  However the subclass of code with g(x) of degree greater than 3 

remains an open problem. In this paper, we proposed a subclass of Goppa code by extending the 

degree of g(x) = +1 with the roots   and location set L= { }.  We 

prove that this subclass is a cyclic, reversible and separable Goppa code. 
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2: EXTENDED SUBCLASS OF CYCLIC REVERSIBLE SEPARABLE GOPPA CODES 

We consider a location set P and Goppa polynomial G(x) of degree 3. Any codeword (x1 , x2…….xn)            

of code (P,G) Code satisfies the  condition  without having to add additional rows and 

columns to the parity check   matrix. 

The (P,G) code is given by the following 

G(x) = +1                         (2.1) 

         =   where B Є GF (qm) \{0} and location set L= { } 

contains in GF(q3m)\ (q2m)\ GF (qm) \{1} ,  ,   also 

G(  

The Goppa polynomial (1) can be written as  

G(x) =   

Such that           (2.2) 

Given that B Є GF (q3m) it is apparent that +  

Then , therefore  

                       (2.3) 

                    (2.4) 

                    (2.5) 

Theorem 1: The redundancy of (P,G) Code defined by (2.1) does not exceed 3m+1 and the parity 

check matrix of this code has a row of 1’s . 

Proof: we proof our result by using the proposed technique I n [4] .the parity check matrix of the 

code is  

                                   H=         

      The linear combination of the first , second and third rows of the matrix gives a row of 1’s 

 

 

 

=  
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Thus we discover that the parity check matrix of the code (1) can be represented by three rows 

 

 

One of which is a row of 1’s and therefore the redundancy of the code is 3m+1. 

Corollary1: The (P, G, ) Code , corresponding to the separable code (2.1) has a row of 1’s 

in its parity-check matrix. 

Theorem2:  The proposed code (2.1) (P, G) code is a reversible code. 

Proof: It is sufficient to raise every element of the matrix H to the power of  

  

 

 

 

Hence the code (1) is reversible. 

Corollary2: The (P, G, ) Code corresponding to the separable code (1) is reversible if  

 . 

 

 

Theorem3: The separable Code (1) with Goppa polynomial G(x) == is a 

cyclic, reversible Goppa code. 

Proof: The reversibility of the code was proven in theorem 2.  

Now for the proof of cyclicity of code (2.1) we will use the approach proposed in [4]  

The parity check matrix of the code is 
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H=   

=  

=             (3.1) 

Obviously      ,          and  

 Now let us consider three possible cases (3), (4) and (5) for the Goppa polynomial G(x) 

Case1:                    

      First for   

=  

                    =  

                    =  

This implies    for all i= 1,2…n. 

Let we assume that   it is obvious that the number of different elements  distinct from 

the unit is equal to  and  

Then for  

=  

                         =  

                          =  
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     for all i= 1,2…n 

And in addition   = =  

Finally for   

=                   

=1, for all i= 1,2…n 

And in addition =  

The parity check matrix of the reversible separable Goppa code of the length n=  and 

generator polynomial g(x) with  g(  , I = 0,1 &2 ,  ,  is  represented as   

 

H=        (3.2) 

                                                        

 

Case2:     since the polynomial G(x) should not have roots among the elements of the 

location set  GF (q3m)\ (q2m)\ GF (qm) {1,2},   

First for          

                          

 =    

=     

 Let us we assume that  

Then for   

=  

=  

=   
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=  

 Finally for  

Proceed like above we get  

=  

Therefore the parity check matrix of reversible cyclic code of length n=  and generator 

polynomial g(x) with g (  , I = 0, 1 &-2 ,  ,  ,  is   represented as                                                                 

H=                       (3.3) 

Case3:  in this case, the code length n=   , since the polynomial G(x) should not 

have roots among the elements of the location set  GF (q3m)\ (q2m)\ GF (qm) {1},   

 Let us now examine the elements of a parity check matrix of such a code: 

=  

                      =   

Let   , for i= 1,2…n 

And same as in the previous case for  and  

We get      and . The parity check matrix (6) of such a 

reversible separable (L, G) Code is: 

H=                          (3.4) 

This the required matrix of a reversible cyclic code of length n=    and generator polynomial 

g(x) with  , I = 0, 1 &-2 ,  , .                                                                                              

Hence we are done. 

Theorem4:  The   Code (P , G, , )   whose gernator polynomial G(x)= 

 and location set P == { ,  with condition  

and none of  is  root of G(x) is a  cyclic Goppa code. 

Proof:  The   Code (P, G, , )   has the parity check matrix H  is expressed as 
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H=               

 

 

 

=  

Taking in to account of theorem 3 , the parity check matrix of the (P , G, , ) can be 

represented in three cases as: 

(a) For the case                   
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= = HRC                           (4.1) 

 

 

where    and   t = max. (t1  ,t2 ,t3)   for  

 

 

the parity check matrix (9) represented the reversible cyclic code of length n=  and  

 

 

Generator polynomial g(x) with g(  , I = 0,1 &2 ,  ,  

                       

(b) For the case  

H  

 

Where , The parity check matrix of reversible cyclic code of length n=  and 

generator polynomial g(x) with g (  , I = 0, 1 &-2 ,  ,  . 

 

 

(c)   For the case  

Similarly the parity check matrix in this case is  

H      where   , for i= 1,2…n. 

Hence we are done. 
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3. Conclusion: 

The present search will give birth to some other interesting subclasses of Goppa codes .In 

the next paper we will work on Goppa polynomial of degree 4 and also try to find the 

conditions for  the existence of nonreversible cyclic separable Goppa code of degree 3 and 

more. 
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