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ABSTRACT  

This paper proposes a new hybrid swarm intelligence algorithm that encompasses the feature of three major swarm 
algorithms. It combines the fast convergence of the Cuckoo Search (CS), the dynamic root change of the Firefly Algorithm 
(FA), and the continuous position update of the Particle Swarm Optimization (PSO). The Compound Swarm Intelligence 
Algorithm (CSIA) will be used to solve a set of standard benchmark functions. The research study compares the 
performance of CSIA with that of CS, FA, and PSO, using the same set of benchmark functions. The comparison aims to 
test if the performance of CSIA is Competitive to that of the CS, FA, and PSO algorithms denoting the solution results of 
the benchmark functions. 
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 1. INTRODUCTION 

Global optimization is an important task in most scientific and engineering problems. In global optimization problem, it is 
difficult to obtain an optimal solution due to time complexity. Accordingly Metaheuristics became important in such 
situations for their independence on a specific problem. Metaheuristics are optimization approaches which make use of 
the best solution improved iteratively to the next search. For example, finding optimal solutions for nonlinear, non-
differentiable fractional objective functions is very difficult to deal with. The complexity of these problems makes it 
impossible to search for all possible optimal exact solutions. So is the search for any solution near the optimal solution. 
The metaheuristic optimization is the best for finding near optimal. Recently growing popularity the hybridization of 
different algorithmic concepts has been to obtain better performing systems that exploit and combine the advantages of 

the individual pure strategies, that is, hybrids are believed to benefit from synergy. In fact, choosing an adequate 
combination of multiple algorithmic concepts is often the key to achieving top performance in solving many hard 
optimization problems. [6] combined two nature inspired algorithms and introduced the CS/PSO algorithm. Cuckoo birds 
are aware of each other positions and make use of swarm intelligence in PSO in order to reach for better solutions. [15] 
combined the differential evolution (DE) and cuckoo search (CS) algorithm to solve the uninhabited combat air vehicle 
UCAV path planning problem. DE is applied to optimize the process of selecting cuckoo of the CS model during the 
process of cuckoo in nest updating. [14] proposed hybrid optimization algorithm of PSO and CS. By CS-PSO, the search 
area of PSO was extended, and the defect of PSO is easily fall into point of local extremum that was improved. [13] 
proposed a hybrid algorithm which combines the merits of Ant Colony Optimization (ACO) and Cuckoo Search for Job 
scheduling. The major problem in the ACO is that, the ant will walk through the path where the chemical substances called 
pheromone is deposited. This acts as if it lures the artificial ants. Cuckoo search can perform the local search more 
efficiently and there is only a single parameter apart from the population size. It minimizes the makespan and the 
scheduling can be used in scientific computing and high power computing. [7] introduced a modify firefly algorithm and use 
this algorithm with cellular learning automata. [1] combines the standard Firefly Algorithm (FA) with the evolutionary 
operations of Differential Evolution (DE) method to improve the searching accuracy and information sharing among the 
fireflies. [3]  proposed ant colony optimization (ACO) and firefly algorithm (FFA) algorithm for constrained optimization 
problems, The methodology of the proposed algorithm is introduced based on a parallel mechanism of ACO and FFA for 
updating the solutions of ACO-FFA. [4] presents the evolutionary hybrid genetic-firefly algorithm for the optimization of 
complex problems and to search global solution more precisely.  

The purpose of this paper is to encompound the search features of three different metaheuristic algorithms, cuckoo search 
(CS), firefly algorithm (FA) and Particle Swarm Optimization (PSO). Where the cuckoo birds experience new places 
(random walk) utilizing firefly algorithm strategy instead of Lévy flight. In the proposed algorithm cuckoo birds will also be 
aware of each other positions utilizing PSO swarm communication technique to search for a better solution. 

The remainder of this paper is organized as follows.  Section 2; introduce the standard cuckoo search.  The standard 
firefly algorithm is reviewed in section 3. In Section 4, introduces the standard particle swarm optimization. A Compound 
Swarm Intelligence Algorithm (CSIA) is presented in Section 5. In section 6, Benchmark functions with discussion are 
introduced. Finally, Section 7 is the concluding part of the paper. 

2. CUCKOO SEARCH ALGORITHM (CS) [5, 9, 10, 17] 

The Cuckoo search algorithm is a Meta heuristic search algorithm which has been proposed recently by Yang and Deb 
(2009) and it was based on the following idealized rules:  

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. 

• The best nests with high quality of eggs (solutions) will carry over to the next generations. 

• The number of available host nests is fixed, and a host can discover an alien egg with a probability 0,1ap     . In this 

case, the host bird can either throw the egg away or abandon the nest so as to build a completely new nest in a new 
location. 

Cuckoo search algorithm  

Begin 

Objective function 1 2( ), ( , ,..., ) ;T
df x x x x x  

 Initial a population of n host nests ( 1,2,..., )ix i d  

while (t < MaxGeneration) or (stop criterion); 

    Get a cuckoo (say i) randomly 

                and generate a new solution by Lévy flights; 

           Evaluate its quality/fitness; Fi 

     Choose a nest among n (say j ) randomly;  

if (Fi > Fj), 
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        Replace j by the new solution; 

end 

 Abandon a fraction (Pa) of worse nests 

       [and build new ones at new locations via Lévy  flights]; 

   Keep the best solutions (or nests with quality solutions); 

  Rank the solutions and find the current best; 

 end while 

 Post process results and visualization; 

End 

when generating new solutions ( 1)ix t  for the ith cuckoo, the following Lévy flight is performed 

( 1) ( )
vy( )

t t
i i

x x Le 
                                                                                                                                                    (2) 

where 0  is the step size, which should be related to the scale of the problem of interest. The product  means entry-

wise multiplications. In this research work, we consider a Lévy flight in which the step-lengths are distributed according to 
the following probability distribution 

vy ,1 3Le u t      

which has an infinite variance. Here the consecutive jumps/steps of a cuckoo essentially form a random walk process 
which obeys a power-law step length distribution with a heavy tail. 

 3. FIREFLY ALGORITHM (FA)  [11, 17, 16] 

The Firefly Algorithm was developed by Yang (2008) and it was based on the following idealized behavior of the flashing 
characteristics of fireflies: 

• All fireflies are unisex so that one firefly is attracted to other fireflies regardless of their sex; 

• Attractiveness is proportional to their brightness, thus for any two flashing fireflies, the less bright one will move towards 
the brighter one. The attractiveness is proportional to the brightness and they both decrease as their distance increases. If 
no one is brighter than a particular firefly, it moves randomly; 

• The brightness or the light intensity of a firefly is affected or determined by the landscape of the objective function to be 
optimized. 

The operation of the Firefly Algorithm is as follows: 

Step 1: Define Objective function 1 2( ), ( , ,..., ) ;T
df x x x x x  and Generate initial population of fireflies placed at random 

positions within the n-dimensional search space, xi. Define the light absorption coefficient  . 

Step 2: Define the Light Intensity of each firefly, Li, as the value of the cost function for xi . 

Step 3: For each firefly, xi, the light Intensity, Li, is compared for every firefly xj  {1,2,..., }j d  

Step 4: If Li is less than Lj, then move firefly xi towards xj in n-dimensions. The value of attractiveness between flies varies 

relatively the distance r between them: 

2
1 ( )ijrt t t t t

i i j i i
x x e x x


 

                                                                                                                                          (3) 

where  is the attractiveness at r=0 the second term is due to the attraction, while the third term is randomization with the 

vector of random variables εi being drawn from a Gaussian distribution. 0,1    . The distance between any two fireflies i 

and j at i jx and x  can be regarded as the Cartesian distance 
2

ij i jr x x  . 

Step 5: Calculate the new values of the cost function for each fly, xi , and update the Light Intensity, Li. 

Step 6: Rank the fireflies and determine the current ‘best’. 

Step 7: Repeat Steps 2 to 6 until definite termination conditions are met, such as a pre-defined number of iterations or a 

failure to make progress for a fixed number of iterations. 
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4. PARTICLE SWARM OPTIMIZATION (PSO) [2, 8, 11, 12] 

Particle swarm optimization is a population based stochastic optimization technique developed by Eberhart and Kennedy 
in 1995, inspired by social behavior of bird flocking or fish schooling. 

The characteristics of PSO can be represented as follows:   

k
ix The current position of the particle i at iteration k;         k

iv The current velocity of the particle i at iteration k; 

k
iy  The personal best position of the particle i at iteration k; k

iy  The neighborhood best position of the particle.  

 The velocity update step is specified for each dimension j ∈ 1,…,Nd, hence, vi,j represents the jth element of the velocity 
vector of the ith particle. Thus, the velocity of particle i is updated using the following equation: 

1 1 2 2( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))k k
i i i i i iv t wv t c r t y t x t c r t y t x t                                                                                                                (4) 

  where w is weighting function, 1,2c  are weighting coefficients,  ,2ir t  are random numbers between 0 and 1.  The 

current position (searching point in the solution space) can be modified by the following equation: 

 1 1k k k
i i ix x v                                                                                                                                                                   (5) 

The detailed operation of particle swarm optimization is given below: 

Step 1: Initialize parameters and population. 

Step 2: Initialization. Randomly set the position and velocity of all particles, within pre-defined ranges. And on D 

dimensions in the feasible space (i.e.it satisfies all the constraints) 

Step 3: Velocity Updating. At each iteration, velocities of all particles are updated according to equation (4). After 

updating, k
iv should be checked and maintained within a pre-specified range to avoid aggressive random walking. 

Step 4: Position Updating. Assuming a unit time interval between successive iterations, the positions of all particles are 

updated according to equation (5). After updating, k
ix  should be checked and limited within the allowed range. 

Step 5: Memory updating. Update k
iy  and k

iy  when condition is met. 

   

   

( ) ( 1) ( )
( 1)

( 1) ( 1) ( )

k k k
i i i

k
i

k k k
i i i

y t if f x t f y t
y t

x t if f x t f y t

  


  
   


                                                                                                                                  (6) 

where f(x) is the objective function subject to maximization. 

Step 6: Termination Checking. Repeat Steps 2 to 4 until definite termination conditions are met, such as a pre-defined 

number of iterations or a failure to make progress for a fixed number of iterations. 

5. THE PROPOSED ALGORITHM 

In this proposed algorithm, cuckoo bird will be able to perform stochastic behaviour (random walk) using the strategy of 
firefly algorithm according to equation (3) instead of using Lévy Flight movement.  Also the cuckoo birds will be able to 
communicate them to inform each other from their position and help each other to emigrate to a better place. Each cuckoo 
bird will record the best personal experience as pbest during its own life. In addition, the best pbest among all the birds is 
called gbest. The cuckoo birds’ communication is established through the pbest and gbest. They update their position 
using these parameters along with the velocity of each swarm member. The update rule for cuckoo (i’s) position is carried 
out according to equations (4,5). 
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Fig. (1). Flowchart of The Compound Swarm Intelligence Algorithm (CSIA). 
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The pseudo-code of the CSIA is presented as bellow: 

Begin 

Objective function 1 2( ), ( , ,..., ) ;T
df x x x x x  

 Initial a population of n host nests ( 1,2,..., )ix i d  

while (t < MaxGeneration) or (stop criterion); 

    Get a cuckoo (say i) randomly 

                and generate a new solution by equation (3)in firefly algorithm; 

           Evaluate its quality/fitness; Fi 

     Choose a nest among n (say j ) randomly;  

if (Fi > Fj), 

        Replace j by the new solution; 

end 

Move cuckoo birds using equation (4) and (5); 

Abandon a fraction (Pa) of worse nests 

       [and build new ones at new locations via equation (3)in firefly algorithm; 

   Keep the best solutions (or nests with quality solutions); 

  Rank the solutions and find the current best; 

 end while 

 Post process results and visualization; 

End 

6. ILLUSTRATIVE TEST FUNCTIONS WITH DISCUSSION  

The following ten benchmark functions which are shown in table (1) were collected from literature to demonstrate the 
efficiency and robustness of the proposed algorithms. The numerical results of the proposed algorithms are compared with 
the traditional cuckoo search algorithm, firefly algorithm, and particle swarm optimization illustrated in Tables (2). The 
simulation parameter settings results of CS,FA,and PSO which are the same used for CSAI algorithm are as follows: 

CS number of nests n=50,  Discovery rate of alien eggs/solutions pa=0. 25; 

FA population size : 50, α (randomness): 0.25, minimum value of β: 0.20, γ (absorption): 1.0 

PSO 
population size of 50, the inertia weight was set to change from 0.9 (wmax) to 0.4 (warming) over 
the iterations.  Set c1 :0.12 and c2 :1.2. 

The algorithms have been implemented by MATLAB R2011 on core (TM) i3 to 2.27 GHz processor. 

Table (1). The Benchmark functions 

Function Formulation Dimention fmin Range 

F1 
(Styblinski–

Tang 
function) 

 

4 2

1

16 5

2



 
n

i i i

i

x x x

 
30 -39.16599D [-5,5]

D 

F2(Powell 
function) 

   

   

22
4 3 4 2 4 1 4

1

4 4
4 2 4 1 4 3 4

10 5

10 10

n
k

i i i i

i

i i i i

x x x x

x x x x

  



  

  

   

  24 0 [-4,5]
D 
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F3(Schaffer 
function N:2) 

  
  

2 2
1 2

2
2 2
1 2

sin sin 0.5
0.5

1 0.001

x x

x x

 



 

 2 0 [-100,100] 

F4(Schaffer 
function N:4) 

 
  

2 2
1 2

2
2 2
1 2

cos sin 0.5
0.5

1 0.001

x x

x x

 



 

 2 0.292579 [-100,100] 

F5(Drop-
wave  

function)  

2 2
1 2

2 2
1 2

1 cos 12

2 0.5

x x

x x

 
  

 

 
 2 -1 [-5.12,5.12] 

F6(De-Jong 
function N:5) 

   

25

6 6
1 1 1 2 2

1
0.002

32 16 0 16 32 32...16 32

32 32 32 32 16...32 32

i i ii x a x a

a



 
 
     

   
  

     


 2 1 [-65.536,65.536] 

F7(Gear  
function) 

1 2

3 4

1

6.931

x x

x x

        
       

 4 2.7E-012 [12,60]
D 

F8(Pathologic
al  function) 

 

2 2 2
1 1

4
1 1

sin 0.5

0.001 0.5

n i i

i i i

x x

x x

 

 

 
  

 

 
  

2 

20 
-1.9960079 [-100,100]

D 

F9(SineEnvel
ope  function) 

  

2 2 2
1 1

2
2 21

1

sin 0.5

0.5

0.001 1

n i i

i
i i

x x

x x

 




  
   

   
 

   

  
2 

20 
0 [-100,100]

D 

F10(Shekel 
function)  

4
21

1

1
m

i
i j ji

j

c x a



 




 4 

m=10 
-10.5364 [10,10]

D 

 

Table (2).  Result comparisons on 10 test functions. 

 

Function  CS FA PSO CSAI 

F1 (Styblinski–
Tang function) 

Best 

Mean 

StdDev. 

Time(s) 

-1.14E+003 

-1.1E+003 

37.66E+00 

63 

-1.161E+003 

-1.085E+003 

45.68E+00 

59.9 

-1.050E+003 

-9.82E+002 

35.24E+002 

5.4 

-1.168E+003 

-1.129E+003 

26.02E+002 

66.9 

F2(Powell 
function) 

Best 

Mean 

StdDev. 

Time(s) 

3.99E-013 

2.44E-011 

3.47E-011 

112 

5.27E-013 

2.98E-010 

5.40E-010 

83.3 

1.74E-010 

4.9E-008 

6.36E-008 

61.2 

1.67E-013  

2.27E-011 

2.758E-011 

129 

F3(Schaffer 
function N:2) 

Best 

Mean 

StdDev. 

Time(s) 

0.00E+00 

1.42E-011 

3.06E-011 

116 

6.25E-013 

5.27E-011 

8.81E-011 

243 

2.68E-012 

5.33E-011 

5.19E-011 

24 

0.00E+00 

0.00E+00 

0.00E+00 

143 
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F4(Schaffer 
function N:4) 

Best 

Mean 

StdDev. 

Time(s) 

0.5000009 

0.500037 

3.29E-005 

126 

0.500001 

0.500044 

3.26E-005 

201 

0. 500E+00 

0.500011 

2.82E-005 

111 

0. 500E+00 

0.500E+00 

0.00E+00 

155 

F5(Drop-Wave  
function) 

Best 

Mean 

StdDev. 

Time(s) 

-1.00E+00 

-0.99999992 

1.9E-007 

100 

-0.999999999 

-0.99999997 

2.19E-008 

118 

-0.9999995 

-0.99997 

3.02E-005 

23 

-1.00E+00 

-1.00E+00 

0.00E+00 

158 

F6(De-Jong  
function N:5) 

Best 

Mean 

StdDev. 

Time(s) 

0.998003838 

1.044446848 

1.1E-002 

96 

0.9980038378 

1.143360007 

3.3E-002 

136 

12.6705058 

12.6705058 

2.22E-011 

19 

0.9980038378 

0.998003838 

4.3E-010 

130 

F7(Gear  
function) 

Best 

Mean 

StdDev. 

Time(s) 

2.7E-012 

1.04E-010 

2.7E-010 

65 

2.7E-012 

1.2E-010 

3.02E-010 

137 

2.3E-011 

1.12E-009 

9.31E-010 

30 

2.7E-012 

2.7E-012 

0.00E+00 

95 

F8(Pathological  
function) 

Best 

Mean 

StdDev. 

Time(s) 

-6.01E+00 

-5.77E+00 

2.2E-001 

154 

-7.2E-001 

-1.33E-001 

3.24E-001 

137 

-1.4E-003 

-3.633E-004 

7.21E-004 

28 

-6.02E+00 

-5.89E+00 

7.06E-002 

199 

F9(SineEnvelop
e  function) 

Best 

Mean 

StdDev. 

Time(s) 

0.00E+00 

1.41E-004 

2.54E-004 

5 

0.00E+00 

3.78E-004 

3.99E-004 

8 

0.00E+00 

5.57E-004 

3.65E-004 

3.5 

0.00E+00 

1.65E-004 

3.12E-004 

10 

F10(Shekel 
function) 

Best 

Mean 

StdDev. 

Time(s) 

--10.5364098 

-10.536322 

1.77E-004 

124 

-10.53640 

-10.5363872 

9.27E-002 

60 

-10.53429 

-10.530721 

4.08E-005 

64 

-10.5364E+00 

-10.5364E+00 

0.00E-00 

95 
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Comparison of simulation results of CSAI, CS,FA, and PSO in The Drop-Wave function
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Comparison of simulation results of CSAI, CS,FA, and PSO in The DE JONG FUNCTION N. 5
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Comparison of simulation results of CSAI, CS,FA, and PSO in Pathological Function

 

 

CSAI

CS

FA

PSO

h

 

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

-3

Function Evaluation

F
it
n
e
s
s
 V

a
lu

e

Comparison of simulation results of

 CSAI, CS,FA, and PSO in SineEnvelope Function

 

 

CSAI

CS

FA

PSO

i

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

-10.54

-10.535

-10.53

-10.525

-10.52

-10.515

-10.51

-10.505

-10.5

Function Evaluation

F
it
n
e
s
s
 V

a
lu

e

Comparison of simulation results of 

CSAI, CS,FA, and PSO in Shekel Function

 

 

CSAI

CS

FA

PSO

j

 

Fig.(2) Convergence performance on the 10 test functions. (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7, (h) f8, (i) f9, (j) f10. 
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Fig.(3) Memory usage indicator 

The detailed accuracy performance concerning the solution of CSAI, CS, FA, and PSO listed in Table (2), is measured in 
terms of the best, mean, and standard deviation values of the solutions obtained by 20 independent runs. A comparative 
study was carried out between the three scoped swarm intelligence algorithms along with the proposed CSAI algorithm. 
The comparison is based on three different measures; the obtained optimization value, the convergence time and the 
amount addressed memory resources. First refereeing to the obtained optimization value the proposed CSAI algorithm 
managed to explore new solution areas that benchmark problem results using metaheuristic algorithm couldn’t reach that 
could be clearly noticed from f8 in table(2) when an optimal value of -6.02 was reached while all other metaheuristic 
technique in table(1) gave an optimal of -1.99. The optimization value results for the rest functions indicates a better 
achievement for CSAI algorithm. Boldface figures in the table indicates the best result(s) among the algorithms. 

Unfortunately, the convergence time of the CSAI was not such an achievement since it could be noticed from table (2) that 
it take a longer time to converge compared to the three rest algorithms. This may be  referred to the time consumed in the 
communication between swarm member using the PSO technique. 

Finally, comparing the four algorithms according to memory usage reveals that the three algorithms CS,FA, and CSAI 
almost utilizes the same memory amount of  498-499 as shown in fig(3) while PSO algorithm takes an amount of 615 as 
shown in the same fig. That is to say that the modifications in the proposed algorithm did not affect memory utilization.  

7. CONCLUSIONS 

A new hybrid algorithm combining the search feature of CS,FA, and PSO algorithms was implementation and tested. The 
proposed CSAI algorithm proved the capability of exploring new solution area. Using a set of ten benchmark functions that 
could be solved mathematically.The CSAI algorithm gave the best and closest solutions match when compared to CS, FA, 
and PSO algorithms. The proposed algorithm utilized more time to converge compared to CS, FA, PSO algorithms but still 
have the same level of memory usage. The algorithm features and capabilities will evidently become clearer when 
handling large scale problems having irregular solution space.  
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