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ABSTRACT 

The Indian Ocean Dipole (IOD) event of 1997 had significant impacts on regional climate variability as it produced large 
Sea Surface Temperature (SST) anomalies in the Indian Ocean (IO). This dipole mode accounted for about 12% of the 
sea surface temperature variability in the Indian Ocean—and, in its active years, also causes severe rainfall in eastern 
Africa and droughts in Indonesia. There have been speculations that the El-nino and Intra-Seasonal Oscillations (ISOs) 
act as stochastic forcing to reinvigorate the natural damped mode and hence contribute to the development of the IOD.  In 
the present paper we have statistically investigated whether the formation of the dipole was an anomalous phenomenon 
with respect to the time series generated by the deterministic laws of the system governing the IO SST or was this event a 
consequence of the dynamics of the system itself. For this, we have used the a global prediction algorithm i.e. linear 
regression. Prediction errors of global prediction algorithms such as the regression and Artificial Neural Network (ANN) 
models at various points in time contain important information regarding the statistical nature of the data. On the basis of 
the error analysis it is found that the occurrence of the IOD is a consequence of the state of the SST system as a whole 
together with the evolution laws. The role of ISO in providing external forcing to the dipole is investigated by analyzing the 
prediction errors of the global prediction algorithms for processes at intra-seasonal time scales. It is concluded that the 
Intra-Seasonal Oscillations may provide the stochastic forcing to the IOD.  
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1 INTRODUCTION  

Study of sea surface temperature (SST) variations is important for accurate weather prediction as it is the main 
variable of interest for atmospheric forcing. A successful prediction of the seasonal mean rainfall and circulation is based 
on the premise that the monsoon is dynamically a stable system and its seasonal mean rainfall and circulation and their 
interannual variability are largely governed by slowly varying boundary conditions such as SST, snow cover, soil moisture, 
etc. [1], [2]. Studies have shown that it affects the local as well as global monsoon [3] including Indian monsoon rainfall [4]. 
Prediction of SST over the Indian Ocean (IO) region contributes to the forecast of the monsoon in the Indian subcontinent 
[5] and the El-Nino and la-Nina onset [6]. Since comparison of various statistical methods has always been a curiosity 
among the researchers [7], therefore apart from dynamical modeling, ANN and linear regression [8] have been recently 
used for SST forecast in the IO.  

Despite an investigative history of more than a century, the role of the IO in regional monsoon variability is yet to 
be fully understood and remains an active area of diagnostic and modeling research. Hence, state of the art forecasting 
systems have attained only a limited success. Anomalous events in the IO during 1994 and 1997 have generated much 
renewed interest in all aspects of the coupled climate system. Several studies have been done to investigate the origin of 
the Indian Ocean Dipole (IOD) and its impact on the Asian monsoon [9]. The role of Intraseasonal oscillations and El-nino 
has been recenty investigated and it has been found that the ISO may act as stochastic forcing to reinvigorate the natural 
damped mode and that the El Niño influences the IODM mainly through the change of intensity of the Indian monsoon 
[10].   

IOD being an anomalous phenomenon because of the large deviation from the trend, may be a state of the 
dynamical system governing the SST time series of the IO or it may be a consequence of some local process which need 
not be governed by the deterministic system in question.  Hence, it is not a priori obvious that any model will or will not be 
able to simulate this event.  

Is IOD a part of the dynamical system governing the SST time series of the IO? Or is it a consequence of some 
local process which need not be governed by the deterministic system in question? What is the role of Intra-Seasonal 
Oscillations (ISOs) (frequencies from 15 days to 60 days)? Do the global prediction algorithms give a conclusive answer to 
these questions? These are the basic questions that are explored in this study.  

These questions can be addressed by analyzing the errors in prediction of SST time series using a global 
prediction algorithm. Global Satistical models used in meteorology and oceanography are the regression model [11], 
principal component analysis [12] and the canonical correlation analysis [13]. Recent studies have shown that ANN has 
better prediction and classification capabilities than statistical models [14].  

It is well settled that ANN models can better tolerate chaotic components than the traditional models such as the 
regression. It is thus pertinent to explore how various global prediction algorithms are suited for forecasting anomalous 
phenomena. It is not possible to answer the above question in all entirety without actually exploring the models. However, 
as a first step we have investigated the case using the linear regression model. Regarding prediction by the ANN model, if 
the phenomenon under question is a random phenomenon and bears no connection with the underlying dynamics of the 
system then there will be a sudden rise in the prediction error at the point of occurance of the rare phenomenon. This is 
because global prediction algorithm such as the ANN essentially model the underlying derterministic function and ignores 
the noise factors (i.e. the impact of local processes on the state of the dynamical system in question). Any anomalous 
event is a major deviation from the deterministic function and as such the prediction errors at these points will increase 
sharply. The linear regression model under discussion is not an ideal model for modeling chaotic time series. Hence the 
prediction errors may or may not rise abruptly during such anomalous occurance. This point needs investigation.  

On the other hand, if the phenomenon in question is governed by the deterministic dynamical laws of the system, 
the prediction error at this instance will not differ much with the prediction error at other temporal instances. The reason 
being the anomalous point is generated from the dynamical law governing the system and hence will be identified by the 
global algorithm. Again, the question that remains to be explored is whether predictions by ANN and linear regression 
essentially give the same results? If the results by most of the global prediction algorithms are similar, it may safely be 
concluded that the anomalous point under question is a point on the trajectory of the dynamical system.  

In the present study linear regression model is used to analyze the predictability of the SST over the two regions 
of the IOD: positive pole [(0o-5o) N and (60o - 65o) E] and negative pole [(5o -10o) S and (95o - 100o) E] formed in the 
year 1997 [15]. The prediction errors are analysed at different time scales of prediction to study the statistical nature of the 
event.   

 2 METHODOLOGY 

2.1 Data 

The extended reconstructed sea surface temperature called ERSST version 2 (ERSST.v2) (Smith and Reynolds, 
2003; Smith and Reynolds, 2004) from January 1871 to May 2004 for the IO region (in the neighborhood of IOD) has been 
used for the present analysis. The ERSST was constructed using the most recently available International Comprehensive 
Ocean -Atmosphere Data Set (ICOADS) SST data and improved statistical methods that allow stable reconstruction using 
sparse data. This monthly analysis begins from January 1854, but because of sparse data the analyzed signal is heavily 
damped before 1880. Afterwards the strength of the signal is more consistent over time. The ERSST analysis is updated 
continuously as new data become available. ERSST.v2 is an improved extended reconstruction. In the reconstruction the 

http://www.cdc.noaa.gov/coads/
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high-frequency SST anomalies are reconstructed by fitting to a set of spatial modes. Compared to the earlier 
reconstruction, version 1 (v1), the improved reconstruction better resolves variations in weak-variance regions. It also uses 
sea-ice concentrations to improve the high-latitude SST analysis, a modified historical bias correction for the 1939 -1941 
period, and it includes an improved error estimate.   

2.2 Preprocessing (Fourier analysis for the removal of dominant modes) 

Figure 1 shows the difference in anomalies of the two regions. The ERSST time series for the plus and minus 
regions have been analyzed using discrete Fourier analysis for identifying the dominant cycles. The power spectrum of the 
ERSST series after discrete Fourier transform (dft) analysis is shown in Figure 2(a). The dft for the series is same for both 
the Plus and Minus regions. It can be seen that there are three dominant harmonics viz. the harmonic numbers 133, 266 
and 399. These correspond to the period of 1596/133, 1596/266 and 1596/399 months, which approximately corresponds 
to 12, 6 and 4 months respectively.  

 

 

 

 

 

 

 

 

 

 

 

Importance of the ISO is now widely recognised. Both during summer and winter seasons, convection associated 
with ISO (ISOs), typically with a time scale of 30-50 days, originate over the equatorial IO [16]. Although the ISOs are 
inherent to the atmosphere, both observational and coupled modeling studies demonstrate that IO SST plays a crucial role 
in the organization, intensification, and propagation of the convection and circulation associated with the ISOs [17]. In the 
context of the IOD, it is established that there is high negative correlation between the IOD and ISO activity over the 
southeastern IO [18].  

From the frequency domain representation of the time series we can look into the strength of the ISOs. The 
relative strength of the ISO will be visible if we remove the three dominant cycles, which are essentially the variations at 
the seasonal times-cales. This is shown in Figure 2(b). It can be seen that after the removal of the three very strong 
components the 35th harmonic (corresponding to a cycle of 45 days or Madden-Julian Oscillation) is the most dominating. 
Other dominating harmonics also belong to the intraseasonal timescalse and are covered by the circle in the figure. Thus, 
any simulation of the SST variations without the annual, semi-annual and quad-annual cycles is, to a significant 
acceptance, the simulations of the ISOs.  

To be able to look into the aspect of the IOD being sustained by the ISOs, we need to observe the prediction 
errors of global prediction algorithms (in this case linear regression) after removing the three dominant cycles so that the 
residues are essentially the observed and simulated ISOs. In the present study we have not looked into the aspects of 
sustainability of the IOD by the ISOs. The errors are analyzed for the following observations: 

(1) If the prediction errors rise abruptly during the formation of the dipole, then dipole formation is not a 
consequence of the underlying deterministic mechanism which governs the SST time series in the respective 
regions. The ‗abrupt rise‘ is quantified as ‗the error outside the mean+2*sd range‘ where sd is the standard 
deviation of the prediction errors while predicting the anomalies with the dominant cycles present.  

(2) If the prediction errors do not rise abruptly during the formation of the dipole but does so during the step (ii) 
of the experiments (i.e. the error goes beyond 2 * sd ) then formation of the dipole is related to the processes 
going on at longer time scales and ISO has no important role in sustaining the state.  
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2.3 Input Data (Predictors) 

For deciding the predictors, the lag correlations were calculated for lags starting from 12 months to 24 months. The best 
correlated lag series having a correlation coefficient of 0.5 or more were taken as predictors. The series‘ with 12, 13 and 
14 months lag was found to give the best correlation coefficient for the analysis of the Plus region. For the analysis of the 
Minus region, the series with 12, 14 and 21 months lag had the best correlation coefficient. Hence, we used the following 
as the inputs to the regression model: Plus region - three inputs corresponding to the series‘ with 12, 13 and 14 months‘ 
lag and Minus region - three inputs corresponding to the series‘ with 12, 14, 21 months‘ lag. 

2.4 Partitioning 

We have partitioned the data in two sets viz. training and test. The entire data set of 133 years (1596 months) is 
partitioned with the last 7 years (1997 to 2003) forming the ‗test set‘ and the remaining forming the ‗training set‘.  

3 RESULTS AND DISCUSSION 

The training was done with 1294 points for the plus region and 1287 points for the minus region. The multiple 
regression line fitted the training data for the plus region with a correlation coefficient of 0.81 and a root mean square error 
(rmse) of 0.36. The multiple regression line fitted the training data for the minus region with a correlation coefficient of 0.61 
and a root mean square error (rmse) of 0.59. This is within acceptable limits.  

The performaces of the multiple regression models for the test cases are shown in Figure 3 (a) for the plus region 
and in Figure 3(b) for the minus region. The RMS error for the plus region is 0.42 and the correlation coefficient was 0.76. 
The standard deviation of the observed data for this region was 0.58. Hence the prediction is better than the mean 
prediction. The correlation coefficient between the observed and predicted anomaly for the test case of minus region is 
0.56. The RMS error (0.62) is smaller than the standard deviation of the observed data (0.72) showing that the model 
prediction is better than the mean prediction. Further, since the training and test errors are of the same order it can be 
concluded that the sampling was proper.   

 

Figure 2 (a): Power spectra of the ERSST data showing all the cycles in the frequencey 
domain representation of the time series (b) Same as in (a) except that the three strong 

harmonics have not been shown 
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We see that for both the test cases we get a significantly high correlation coefficient and small RMS errors 
(comparable to the corresponding training cases and smaller than the corresponding standard deviations). Thus the model 
gives acceptable performance on the test data sets.  

Figure 4 shows the prediction errors for the test cases at various time steps for (a) the Plus region and (b) Minus 
region. It can be seen that there is an abrupt rise in the prediction errors for the plus region during the formation of the 
dipole (marked in the figure). The mean prediction error for the plus region is 0.18 and the standard deviation (SD) is 0.27. 
It can be seen that during the formation of the dipole, the error is well above the (Mean+2*SD). This shows a steep rise in 
error. For the minus region, the rise in error is not as steep as for the plus region during the formation of the dipole but a 
clear rise is visible. It is of the order of (Mean + 2*SD, = 0.38 +0.55*2 ≈ 1.48). Hence it is observed for both the regions 
that the prediction errors rise abruptly during the formation of the dipole. We have calculated the correlation of the 
prediction errors with the difference in SST anomalies in the two regions values for both the regions. These were found to 
be 0.24 and 0.32 respectively.  

 

 

 

 

 

 

 

 

 

 

 

The abrupt rise in the prediction errors for both regions shows that the anomalous point was not on the trajectory 
of the dynamical system governing the SST anomalies. This observation pertains to the capability of linear multiple 
regression model to model the time series under discussion. The moderate correlation between the prediction errors and 
the difference in the anomalies of the two regions suggests that the model may be biased for certain regions of prediction. 
This result weakens the claim that the extreme weather phenomenon under discussion was not a part of the dynamical 
system and was an anomalous phenomenon caused by some local effects. For ideal models the errors must be 
independent of the region of prediction in temporal domain.  

In order to conclusively establish or refute the above claim the study must be carried out using other global 
prediction models such as the ANN. Further, the role of ISOs for sustaining the IOD needs to be investigated in this light.  

4 CONCLUSION  

The question of whether or not the IOD of 1997 was part of the dynamical system governing the Indian ocean 
SST was attempted to be explored using the global prediction algorithm i.e. linear multiple regression. The applicability of 
global prediction algorithms as for such an investigation is important as it may lead to better predictability of anomalous 
phenomenon. A multiple linear regression model was constructed for the simulation of IO SST anomalies in the region of 
the 1997 dipole. The results show that the IOD event cannot be predicted to a reasonably good accuracy. The analyses of 
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regression prediction errors for both the regions reveal that the predictability declines during the formation of the dipole. It 
can thus be concluded that the formation of the dipole is not a consequence of the underlying deterministic system 
governing the evolution of SST in the IO.  However, it may be too early to reach to a conclusion. For this, other global 
prediction algorithms such as the ANN, which have better modeling capability of modeling a chaotic time series, are 
required to be investigated.  
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