
 ISSN 22773061

2081 | P a g e S e p t 2 5 , 2 0 1 3

Application of Artificial Intelligence methods in Finding Program
Comprehension Differences in Novice Object Oriented Programmers

Marzieh Ahmadzadeh, Elham Mahmoudabadi
School of Computer Engineering & IT, Shiraz University of Technology, Shiraz, Iran

ahmadzadeh@sutech.ac.ir
School of Computer Engineering & IT, Amirkabir University of Technology, Tehran, Iran

mahmoudabadi@aut.ac.ir
ABSTRACT

Program comprehension is the first step required for software maintenance, which accounts for a considerable number of
job opportunities. For this to happen, it seems obvious that improving this ability in the teaching environment is required.
The literature shows, however, that not enough solutions for improving program comprehension are offered as much as
for programming itself.The aim of this research therefore, is to find a pattern of how different students vary in terms of
comprehending a code written in an object-oriented language. For this, we have focused on two concepts including
inheritance and polymorphism, gathered data online and analyzed it qualitatively. To find the right subject for all the
students to study, a data mining technique i.e., the K-means clustering algorithm, was used. Results showed that a slight
difference in programming experience can have a significant impact on program comprehension ability. The methods that
were used by participants who succeeded in the experiment were the same as methods used by experts as mentioned in
earlier research. Inheritance and polymorphism did not play an important role in lack of success in the process of program
comprehension.

Indexing terms/Keywords

Program Comprehension, Experimental Approach, Data Mining, Object-Oriented Programming.

Academic Discipline And Sub-Disciplines

Computer Science Education; Data Mining.

SUBJECT CLASSIFICATION

Programming, Object-Oriented, Clustering.

TYPE (METHOD/APPROACH)

Experimental Method.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 10, No 10

editor@cirworld.com

www.cirworld.com, member.cirworld.com

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

 ISSN 22773061

2082 | P a g e S e p t 2 5 , 2 0 1 3

INTRODUCTION

The majority of jobs in the area of software development are allocated to software maintenance [13]. This has major
implications for universities to help enhance the abilities of students’ program comprehension as potent ial future
employees as the first step toward debugging and maintaining a program [15] as much as they do for programming. To
find a way to help students in this area, one needs to find out what is involved in the process of program comprehension
and how students differ in this ability. The former has received significant attention[15], while the latter has gaps in
research mostly because a new paradigm of programming is being introduced, which requires more research.

Anecdotal evidence shows that students sometimes learn from their peers better than from their lecturers even if their
peers’ explanations are not precise or comprehensive. The reason for that, perhaps, is that the explicator has just recently
passed through the same experience, from not-knowing to grasping the concept. Perhaps the students do not share the
same learning style and a specific lecture works for one but does not work for another and the explicator unconsciously
explains the subject matter in a way that matches his/her peer’s learning style. Whatever the reason, we can take
advantage of this for our teaching purposes. If different methods that different students in the same level take to approach
program comprehension (i.e. successful students in program comprehension vs. unsuccessful students) are explored,
they can be included in the teaching process, one way or another, or even in developing an adaptive tool to improve
students’ program comprehension.

In this research we aimed to find these differences through an experimental approach when students need to understand
a program that has been written in an object-oriented manner in which concepts such as polymorphism and inheritance
have been included. In other words, we needed to explore the differences between the actions that each individual student
or groups of students take in this process. Choosing the right participants for the study, however, was not an easy task.
For example, we could not take the high performing students of a class as one group and low performing students as
another group and compare them since high performance in programming does not necessarily lead to performing better
in program comprehension. We have previously observed that two students with the same ability in programming do not
necessarily have the same ability in debugging [1]. This means that the skills required for programming are not the same
as the skills needed for program comprehension. One solution to this problem was to select the right participants through
an experiment. Since this kind of research is qualitative in nature and requires a lot of time and effort for data analysis, we
decided to use a clustering algorithm (i.e. K-means – elaborated later) to differentiate between groups of students. After
the right subjects were chosen, the main experiment was run and data was analyzed qualitatively.

This paper is organized as follows. In the next section the review of literature and their connection to current research are
explained. The designs of both experiments are elaborated in section three and the results are discussed in the fourth
section. Finally, a conclusion, summary and suggestions are presented in the final section.

Review of Literature

Program comprehension research has received significant attention ranging from exploring cognitive theories to
developing comprehension tools via empirical to experimental approaches during the past few decades [4-6, 8-10, 12, 14].

Shneiderman and Mayers [12] believed that comprehension takes place in a bottom-up manner in which a programmer
reads code statements and then groups those codes to form a high level understanding of the code. Brooks [4] however,
theorized that a programmer makes a general hypothesis about the given program in the first place and then purifies and
verifies it in a hierarchical manner. The verification of hypothesis depends on how familiar the code feature is. Later,
Soloway and Ehrlich [14] stated that a top-down understanding takes place when the code is familiar. Letovsky [7]
mentions that knowledge of the specific application is an important issue for programmers to form their initial mental
models, which will evolve during program examination. This was later confirmed by Shaft and Vessay . Littman, et.al.,
[8] observed that in order to comprehend a program, programmers either read the code from top to bottom or focused on
the part that is relevant to the problem.

From a different perspective, Pennington’s [9] experiment revealed that the process of program comprehension is affected
by the language that program is written in. For example, programs written in FORTRAN were better understood than the
ones written in COBOL in terms of control-flow understanding. It should be noted however, that the participants in her
experiments were expert programmers who are different from novices.

While all these works have been carried out in the procedural programming area, the research by Karahasanovic, et. al.,
[5] examines program comprehension in object-oriented programming. In this research they ran a controlled experiment to
understand the strategies that participants use to maintain a program in an object oriented language (i.e. Java). The
results showed that their beginner participants applied both the semantic and the as-needed strategy in the program
comprehension process. In their paper, semantic strategy has been defined as a comprehension process by which a
programmer gets as much information as is possible from documentation, source codes, etc. about the program while the
as-needed strategy pointed to situations where the programmer did not go into the details of the program from the
beginning of the process. In terms of object-oriented concepts they observed that participants had problems specifically
in the inherited functionalities of the program.

In an effort to compare novice and expert object-oriented programmers’ program comprehension, LaToza, et.al., [6] found
that programmers used facts that were not in any rate complicated to comprehend a program. Differences found between

novices and experts in their experiment included the fact that experts looked for the root of the problem, visited only the

 ISSN 22773061

2083 | P a g e S e p t 2 5 , 2 0 1 3

necessary methods (not all of them) and applied the modifications faster while novices paid attention to symptoms only,
spent time reading the unnecessary code and were not able to explain the facts.

In this current research the focus is on object-oriented program comprehension, specifically considering inheritance and
polymorphism concepts. We chose an experimental approach for data gathering with participants being novice students.

Design of Experiments

As explained in the introduction of the paper, we were aware that students with high ability in programming, who are better
in comprehending a program, could not be chosen as participants. Therefore, an experiment was required in order to
select the right participants for this study. This was done through a first round of experiments. In the second round of
experiments we were able to work with a lower number of the students who were eligible for the study.

Both experiments were carried out at Shiraz University of Technology. The participants were juniors who had already
finished their first programming course and were in the middle of their second programming course. The language taught
for this course was Java and we used object-last strategy in teaching the programming.

The details of both experiments were explained to the participants prior to running the experiments to give them a choice
to accept or reject participation in the experiments. In the first round we encouraged all of the juniors to participate in the
experiment. Participation was completely voluntary, however, some incentives were considered. Thirty six students signed
up for the experiment. At first the participants were given a questionnaire in which they specified whether or not they had
programmed prior to starting the course and their level of interest in programming. The level of interest ranged between
one (none) and five (high level of interest). They were then given a program specification and an incomplete working
version of the code and asked to complete the program. No time limit was set for this experiment and students were
allowed to spend as much time as they needed. The experiment was finished when a student finished the coding or
resigned from proceeding. We used Camtasia software to record every single action that they took to solve the problem
instead of directly observing their actions. We did this to avoid the Hawthorne effect, which means that we did not want
students to change their behavior just because somebody was watching them. The program specifications and the given
code are found in Appendix A.

Among the 36 students, seven students turned off the recording software. Therefore, we were not able to track their work.
Sixteen students did not make any significant effort to make the program work. To keep the validity of the analysis, these
were excluded from data analysis. Thus, the remaining thirteen students were considered for data analysis. Six out of
thirteen delivered perfectly working code and the other seven completed half. These thirteen students were our main
participants in the second round of the experiment. As mentioned before, we were looking for participants who showed
some ability in program comprehension. Therefore, according to the codes that were delivered, we were able to select
thirteen students.

In the second round of the study, similar to the first round, a program specification and an incomplete version of a code
were given to our thirteen participants who were then asked to complete and deliver a working code. The program
specification and the incomplete version of the code can be seen in Appendix B. Once again, no time restriction was set.
Six out of thirteen students delivered a non-working code in which the code transformation was not consistent with what
was asked. These were excluded from the data analysis. Therefore, the data received from seven students during two
experiments was the final data for analysis. The performance of our seven participants is elaborated in the analysis
section.

At the end of the experiments three types of data were inserted into a database. A first table contained program
information consisting of experiment number, student identification, start time, end time and the level of completeness of
the delivered code. The last field ranged from zero to two. Zero meant that the delivered code was complete and worked
perfectly while students who were assigned one, had made some effort but the delivered code did not work perfectly.
Codes that did not work at all, whether no significant code was added to the original code or an erroneous code was
delivered, were assigned number two. The second table contained students’ information consisting of student
identification, midterm mark, final mark, level of interest, and familiarity with programming prior to starting the course. The
third table contained three fields including student identification, experiment number and activity code. Activity code refers
to the action taken by a student. This meant that for one student in an experiment tens or even hundreds of rows were
filled. Rows were added according to time of occurrence, which meant the action inserted in row n+1 happened after the
action inserted in row n

The idea of introducing activity codes comes from Sharp, et. al. [11], where human behavior is studied qualitatively. In fact,
we decided to study human behavior in this research because we were interested in seeing how different students
approached solving such problems. Therefore, defining and using activity codes was an obvious application of this
research. To define activity codes we first used domain knowledge for what was expected to be accomplished. For
example, in order to define a setter method one needs to type public, the name of the method, and then define the input
argument, etc. Each of these actions was assigned an individual code. We then looked at a few programs randomly to
check for any missed activity. If any had been left out, it would have been assigned a code. Of course, our list was not a
complete list of actions that one could take to program instead, it was a limited actions list that was needed to complete
our specific assignment. The designed list of activities, with corresponding codes, can be seen in Appendix C.
Consecutive numbers were chosen for each activity except for the wait activity that was assigned code 1000 for two
reasons. First, we needed a number that was straightforward and required less computation. For example, if somebody
waited for 2 and another for 3 minutes, their corresponding activity was 1002 and 1003 respectively. Second, we were not

 ISSN 22773061

2084 | P a g e S e p t 2 5 , 2 0 1 3

able to predict how many activities we would have, thus, we needed to choose a number which was big enough to create
enough space for future activities to be inserted.

We borrowed our exploratory approach from other researchers [6, 17] who chose two groups of programmers, experts vs.
novices, to investigate their debugging processes. In this research we categorized two groups of novice students into
ones who were successful in debugging the given program and ones who were not. We were then able to find the intra
and inter similarities and differences between the two groups.

Analysis

At the end of data gathering we had 4278 records of data in our third table ready to be analyzed. This data belonged to the
seven students from both experiments, including 2232 records from the first experiment and 2046 records from the second
experiment. To get an understanding of what is involved in comprehending a program, we needed to look at the data that
was received from our experiments. This was not an easy task since the amount of data was too big to be processed
manually. However, a relatively simple way to analyze the data was to cluster students into similar groups and then
investigate the behavior of the groups. To group them we used a clustering technique that is elaborated upon in the next
subsection.

Clustering Algorithms

Data mining is an effort to extract knowledge from massive numbers of available data. One of the techniques introduced in
data mining is clustering. The job of clustering is to separate the available data into groups that have the most similarity. A
number of clustering algorithms have been proposed in literature, from which we used the most suitable one.

Clustering techniques can be divided into two separate groups. The first group creates a hierarchy of clusters in which
each cluster is a subset of another cluster, while the second group of data clustering techniques creates non-overlapping
groups, which have a maximum inter-group and minimum intera-group distance. The latter techniques were exactly what
we were looking for, while the former had no indication. Among the most popular and flexible algorithms is the k-means
algorithm which has acceptable performance and accuracy as reported in Ahmadzadeh, et. al. [2], for our application and
does not have a large number of clusters. Using expert domain we chose to have three clusters since we had only seven
students and the students’ performed over a range of good, moderate or weak).

The k-means algorithm [16] starts with random k data, which indicates the number of clusters. Therefore, the value of k in
our experiment was equal to three. Normally this k data is the first k data in data sets, which are called centroid. The
algorithm then calculates the distance between centroid and other data and assigns each data to a group that has a
minimum distance to its centroid. For the clusters that have already been created, an optimum centroid is computed and
the data is regrouped. These steps repeat until the centroids no longer change.

We used Weka software [3] to do the job of clustering for us. As mentioned above, we chose to have three clusters, data
from third table plus duration (end time – start time), and completeness of the delivered code as a data set for clustering.
We will call the level of completeness of the code code status from this point forward for the simplicity of explanation. It
should be noted that participants with code status equal to 2 were excluded from the analysis. The results achieved from
this clustering are discussed next.

Results

Since we did not expect the results of clustering for both experiments to match 100%, we chose students who were placed
in the same clusters in two experiments and compared their problem-solving patterns. Therefore, in section 2.1 we
explained how these students were chosen and in section 2.2 reviewed their code.

First analysis phase

For simplicity of explanation we identified our students with numbers 11, 12, 14, 19, 23, 25 and 34. We clustered the data
into two stages to ensure that the clusters were reliable. The first clustering was done in the first experiment and the
second clustering was done in the second experiment and so on. Table 1 shows the results of the first clustering. Prior
familiarity with programming, their level of interest and their marks out of 40 have also been added to this table.

All of the members of the first cluster finished their codes completely, had previous familiarity and high interest in
programming. This group had spent minimal time in programming, on average, compared to the other groups. For the
second group the story was different, as expected. None of the members of the second group had previous familiarity with
programming but were not similar in the other two fields. The maximum time spent in programming, on average, belonged
to this group. The only member of the third group who did not finish the code, had no prior familiarity in programming and
less interest than the other participants. No significant differences in exam marks were seen between participants. In fact,
all of the students belonged to the groups of students who received good marks. This showed us that their inability in
completing the code was not due to lack of programming ability but, instead, in program comprehension. The number of
activities that belonged to clusters 1 to 3 were 862, 1085 and 285 respectively, which accounted for 39%, 49% and 13% of
all records accordingly. This shows that more records (i.e. more effort) to solve the problem belonged, on average, to
cluster 2.

 ISSN 22773061

2085 | P a g e S e p t 2 5 , 2 0 1 3

Table 1: Results of the first clustering

 Student ID Duration Code Status Familiarity Interest Mark /40

C. 1

39%

25 60 0 1 5 37.5

23 80 0 1 5 35.5

14 90 0 1 5 30.5

C. 2

49%

19 155 0 0 4 29.5

12 135 1 0 4 30.25

11 135 1 0 5 33

C. 3

13%
34 135 1 0 3 36

Through this clustering we found students who had conducted similar activities in one assignment. To validate our finding,
we replicated the experiment by clustering the same information achieved (i.e. code activities, duration, code status) from
the second programming task plus prior familiarity and interest. Again we asked for three clusters and the results, as
shown in Table 2, indicate that the grouping of students changed in this programming task. Clusters (1 to 3) allocated
1199, 503 and 344 activities respectively, which meants that, on average, cluster 3 had conducted less and cluster 2
conducted more activities in order to solve the problem.

One interesting result achieved, when comparing both tables, shows that students numbered 11 and 12 were placed in the
same cluster in each of the experiments. Neither finished the programs given to them in either experiment. The same
applied to students numbered 23 and 25 who were in the same cluster in both experiments. These two students were able
to complete the given tasks in both experiments. Therefore, we can consider students numbered 23 and 25 as
representative of students who comprehend the program well against students numbered 11 and 12 who did not possess
the same ability. It seems reasonable to find the pattern of problem -solving for the first group of students (numbered 11
and 12) and carry out the same effort for the other two students and see how different/similar the found patterns are. In the
next section these comparisons will be explained.

Table 2: Results of the first clustering

 Student ID Duration Code Status

C. 1

59%

34 75 0

23 125 0

19 85 0

25 45 0

C. 2

25%
14 130 1

C. 3

17%

12 55 1

11 75 1

Analysis of pattern

In this section we explain inter similarity and differences between the first group (i.e. numbered 23 and 25) and the second
group (i.e. numbered 11 and 12).

Both of the members of the first group created a project in Eclipse, copied all the given classes, ran the code and switched
to the class that contained the main method without even having a single look at other classes. They started tracing the
code from the main method up to the line where error occurred. At this point they had definitely found the reason behind

the error because they switched to the other class to define a constructor in order to correct the error. In this process
there were slight differences between the two members. Number 23 accomplished the process of reading from input and
creating an object out of the input without any problems but number 25 did not do it in as straight forward a fashion. Next,
they had a quick glance at other classes and methods and came back to the main class where they had to output the data,
write the related code and execute it to see the result. In this process they needed to call methods from other classes.
Each time they called a method they switched to the class that contained the method, corrected the method and added
another when it was needed. During this process, they ran the program to see the results several times. This action was
performed by number 25 more than number 23. After being satisfied with the results they both tried to make the code
neater by deleting blank lines, correcting the indentation and presenting the output neater. They ran the program for the
last time and then submitted the code.

 ISSN 22773061

2086 | P a g e S e p t 2 5 , 2 0 1 3

There were no significant differences between these two members except that number 25 found out the problems mostly
by repeatedly running the code and following the variables values by inserting a print statement. Number 23, on the other
hand, had a lot of wait-time which meant he/she was busy reading the code and thinking about the logic.

Both members of the second group ran the code and started to read a class that did not contain the main method but each
of them selected a different class to read (i.e. number 11 chose class employee while number 12 started with class
temporary). This group did not pay attention to the generated error (i.e. they did not wait enough to convince us that they
were reading the error but, instead, immediately clicked on the code area and the classes that were mentioned before).
They both traced the code line by line from the point they had started. They both knew that they had to define a
constructor but they did it in the wrong class. This confirmed the idea that they did not pay enough attention to the error.
After several trial and error attempts, they finally placed the constructor in the right place. To continue, they both had some
problems that were obvious from a lot of meaningless switching from one class to another and moving the cursor up and
down. They were similar in these unsuccessful actions, however, number 12 made more useless effort, which did not lead
to a proper result. Number 11, after many useless actions, including looking at method signature, finally got the point and
corrected the error while number 12 gave up. They both wanted to output the data but were still not oriented enough to do
it in a straight forward manner. Rather, they called several unnecessary and unrelated methods. Number 11 gave up at
this stage but number 12 succeeded in doing part of the job. There were some actions in between that we did not
understand because they were not related to the actual problem and the bugs. The members then repeatedly wrote a
code, deleted it, ran it and finally submitted the uncompleted code.

The difference between these two members was the order in which they solved the problem: number 11 defined the first
constructor, inputted data and then wrote the code to output the data; number 12 defined both constructors and then the
related code for outputting the data.

What can be said in summary about these two groups is that the first group did not pay attention to any class or method
that was not related to the problem, did the programming more smoothly than the other group, and ran the program when
they thought the correction was done. They seemed to know what the next step should be. This does not however mean
that they had a comprehensive understanding of the code because there were many parts in the program that they did not
refer to. The second group read almost all of the code but did not focus on the problem itself. They used a trial and error
strategy and conducted many unnecessary actions.

These results were achieved from observing the first program. With this impression, when we glanced at their second
program we could confirm that the same pattern happened in that program.

Discussion

What was found in the current research, to some extent matches the results achieved by Karahasanovic, et.al. [5]. If the
first group - who had a better program comprehension ability - is considered, one of the subjects used an as-needed
strategy solely to solve the problem while the other used both an as-needed and a semantic strategy.

Our result is slightly different from LaToza, et.al. [6], in terms of our participants. Although all of our participants were
novices we still observed the same as that observed in experts in LaToza’s research for our first group of participants.
Despite the fact that the first group had prior programming experience, they were not expert programmers. On the other
hand, for the second group the results matched perfectly with their research since our participants did not have any prior
programming experience. We predict that if we run the same experiment next semester, the second group will show the
same behaviour as was observed for the first group in the current experiment. This shows that program comprehension,
similar to programming, is a skill that is achieved by doing. Therefore, it might be a good idea if we include some
debugging assignments in our teaching, i.e. students get to debug their peers’ programs or a program given by the
lecturer. The process of debugging, in a way that helps program comprehension, can also be taught explicitly. It should
be noted that in our experiment the first group succeeded in the process of program comprehension but with different
speeds. The participant who completed the process faster used a strategy such as printing the variable value or
commenting some part of the code, while the other just read the code to get the meaning out of that. These are all issues
that can be explicitly included in teaching.

In this research we did not find any evidence that shows that students lacked the ability of program comprehension due to
having problems in object-oriented concepts such as polymorphism or inheritance. Rather, the main problem involves the
lack of ability in finding the root of the problem. The difference between our two groups of novices, one with some prior
experience and one without, was mostly on how they approached comprehending the program.

Overall, our results suggest that as with programming, program comprehension needs attention in the teaching process
because the differences between our two groups in program comprehension were the same as differences between
experts and novices mentioned in previous research. However, these two groups did not have significant differences in
terms of experience.

 ISSN 22773061

2087 | P a g e S e p t 2 5 , 2 0 1 3

Acknowledgement

This research was funded by Shiraz University of Technology grant number 90-EE-1.

References

[1] M. Ahmadzadeh, D. Elliman, and C. Higgins, "An Analysis of Patterns of Debugging Among Novice Computer
Science Students," in ITiCSE '05: ACM SIGCSE Annual Conference on Innovation and Technology in Computer
Science Education. . Lisbon, Portugal, 2005.

[2] M. Ahmadzadeh and E. Mahmoudabadi, "A Feasibility Study on How Clustering Algorithm Helps in Program
Comprehension Research," presented at submitted for 20th IEEE International Conference on Program
Comprehension (under review), Passau, Germany, 2012.

[3] R. R. Bouckaert, E. Frank, M. A. Hall, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.Witten, "WEKA—
Experiences with a Java Open-Source Project," Journal of Machine Learning Research, vol. 11, pp. 2533-2541,
2010.

[4] R. Brooks, "Towards a Theory of the Comprehension of Computer Programs," International Journal of Machine
Studies, vol. 18, pp. 543-554, 1983.

[5] A. Karahasanovic, A. Levine, and R. Thomas, "Comprehension strategies and difficulties in maintaining object-
oriented systems: an exploratory study," Journal of Systems and Software, vol. 80, pp. 1541–1559, 2007.

[6] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, "Program Comprehension as Fact Finding," in
Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. Dubrovnik, Croatia: ACM, 2007, pp. 361-370.

[7] S. Letovsky, " Cognitive processes in program comprehension," Empirical Studies of Programmers, pp. 58–79,
1986.

[8] D. Littman, J. Pinto, S. Letovsky, and E. Soloway, "Mental Models and Software Maintenance " Empirical Studies
of Programmers, pp. 80–98, 1986.

[9] N. Pennington, "Stimulus Structures and Mental Representations in Expert Comprehension of Computer
Progreams," Cognitive Psychology, vol. 19, pp. 295-341, 1987.

[10] T. Shaft and I. Vessey, " The Relevance of Application Domain Knowledge: the Case of Computer Program
Comprehension," Information Systems Research vol. 6, pp. 286–299, 1995.

[11] H. Sharp, Y. Rogers, and J. Preece, Interaction Design: Beyond Human Computer Interaction, 2nd ed: Wiley,
John & Sons, Incorporated, 2007.

[12] B. Shneiderman and R. Mayer, "Syntactic/Semantic Interactions in Programmer Behavior: A Model and
Experimental Results," International Journal of Computer and Informtion Sciences, vol. 8, pp. 219-238, 1979.

[13] H. M. Sneed, "Offering Software Maintenance as an Offshore Service," presented at 24th IEEE International
Conference on Software Maintenance Beijing, China 2008.

[14] E. Soloway and K. Ehrlich, "Emprical Studies of Programming Knowledge," IEEE Transaction on Software
Engineering, vol. 10, pp. 595-609, 1984.

[15] M.-A. Storey, "Theories, Methods and Tools in Program Comprehension: Past, Present and Future," presented at
13th International Workshop on Program Comprehension, St. Louis, MO, USA, 2005.

[16] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining: Addison-Wesley, 2006.

[17] I. Vessey, "Expertise in Debugging Computer Programs: An Analysis of the Content of Verbal Protocols," IEEE
Transactions on Systems, Man and Cybernetics, vol. 16, pp. 621 - 637, 1986.

 ISSN 22773061

2088 | P a g e S e p t 2 5 , 2 0 1 3

Author’s Biography

Marzieh Ahmadzadeh is an Assistant Professor of Computer Science and head
of school of Computer Engineering and IT at Shiraz University of Technology. She received
her PhD in Computer Science and MSc in Information Technology from the University of
Nottingham, UK and her BSc in Software Engineering from Isfahan University, Iran. She
teaches a variety of postgraduate and undergraduate courses and her research interest
includes Data Mining, Business Intelligence, Data Security, Computer Science Education and
Human Computer Interaction.

Elham Mahmoudabadi has a MSc in Computer Network received from Amirkabir University of
Technology and a BSc in Information Technology Engineering from Shiraz University of Tech-
nology. Her research interest includes Programming, Data Mining and Computer Network.

Appendix A

We have an organization with two types of staff, permanent and temporary. Permanent staffs receive their salary monthly
as was said in their contract. Temporary staffs however receive their wages according to the hours that they have worked
and the rate per hour. In this program you have several staffs that you see their information in a file called ‘input’. You are

about to read information from this file and print a pay slip for every given input. A source code, which is not complete, is
given and your job is to complete it according to specification..

The output format is as follow:

Employee: Name is ………… (rate is …….. and hours are……….)

Pay: …….

Employee: Name is ………… (salary is ………….)

Pay: …….

public class Permanent extends Employee{

 double salary;

 public Permanent(String name,double salary){

 super(name);

 }

 public double getSalary(){

 return salary;

 }

 public double pay(){

 return salary;

 }

}

import java.io.File;

import java.io.IOException;

 ISSN 22773061

2089 | P a g e S e p t 2 5 , 2 0 1 3

import java.util.Scanner;

import java.util.Vector;

public class MainClass{

 public static void main(String[] args){

 String name, rate;

 Scanner sc_file = null;

 Vector <Object> vec = new Vector <Object> ();

 try{

 sc_file = new Scanner(new File("input.txt"));

 while (sc_file.hasNext()){

 for(int i = 0; i < 3; i++){

 name = sc_file.next();

 rate = sc_file.next();

 Double r = Double.parseDouble(rate);

 Employee emp = new temporary(name, r);

 vec.addElement(emp);

 }

 }

 }

 catch (IOException e){

 System.out.println("No such file exist.\n"+ e);

 }finally{

 sc_file.close();

 }

 }

}

public class temporary extends Employee{

 private double rate;

 private double hours;

 private double pay;

 public temporary (String name, double rate){

 super(name);

 setRate(rate);

 }

 public void setRate(double rate){

 this.rate = rate;

 }

 public double getRate(){

 return rate;

 }

 public double getHour(){

 ISSN 22773061

2090 | P a g e S e p t 2 5 , 2 0 1 3

 return hours;

 }

 public double pay(){

 return pay;

 }

 }

abstract public class Employee{

 abstract public double pay();

 private String name;

 public Employee(String name){

 setName(name);

 }

 public String getName(){

 return new String(name);

 }

 private void setName(String name){

 this.name = new String(name);

 }

 public String toString(){

 return "name is " + name;

 }

}

Appendix B

We have a company that offers products and services. Two types of customers are available, one who buys products only
and another who not only buys products but also uses the available services. When it comes to discount, the company
has two different approaches. Both the customers receive 15% on their purchase and second type of customers receive
20% discount on their received services. Your job is to manipulate the customer entries and to print the final payment of
each customer. The output format should look like this:

Special Customers:

Name: ……….. ID: ………. Payment: …….

Regular Customers:

Name: ……….. ID: ………. Payment: …….

 public class SpecialCustomer extends Customer{

 double Payment;

 public SpecialCustomer(String _name, int _ID, double _PurchaseAmount){

 super(_name, _ID);

 super.setPurchaseAmount(_PurchaseAmount);

 }

 public void setServiceAmount(double _Samut){

 Samut = _Samut;

 }

 public double Payment(){

 ISSN 22773061

2091 | P a g e S e p t 2 5 , 2 0 1 3

 return Payment;

 }

}

public class RegularCustomer extends Customer{

 double Payment;

 public RegularCustomer(String _name, int _ID){

 super(_name, _ID);

 }

 public double getRegularCustomer(){

 return Pamut;

 }

}

public class Customer {

 double Pamut, Samut;

 String name;

 int ID;

 public Customer(String _name, int _ID) {

 name = _name;

 ID = _ID;

 }

 public void setPurchaseAmount(double _Pamut){

 Pamut = _Pamut;

 }

 public double getPurchaseAmount(){

 return Pamut;

 }

 public String getName(){

 return name;

 }

 public int getID(){

 return ID;

 }

}

import java.util.Vector;

public class Test {

 static Vector <String[]> vec = new Vector <String[]> ();

 static Vector <Object> My_vec = new Vector <Object> ();

 public static void main(String[] args){

 ISSN 22773061

2092 | P a g e S e p t 2 5 , 2 0 1 3

 Test ts = new Test();

 Customer cm ;

 String name;

 double PurchaseAmount, ServiceAmount ;

 for(int i = 0; i < 7; i++){

 name = ts.vec.elementAt(i)[0];

 PurchaseAmount

 =Double.parseDouble(ts.vec.elementAt(i)[2]);

 if(i < 3){

 ServiceAmount=

 Double.parseDouble(ts.vec.elementAt(i)[3]);

 cm = new SpecialCustomer(name, PurchaseAmount,
ServiceAmount);

 }

 else

 cm= new RegularCustomer(name, ID, PurchaseAmount);

 ts.My_vec.add(cm);

 }

 }

 public static void getInformation(){

 //Customer1

 String[] spec = new String[4];

 spec[0] = "G.A.";

 spec[1] = "1000";

 spec[2] = "75.0";

 spec[3] = "28.0";

 vec.insertElementAt(spec, 0);

 //Customer2

 spec = new String[4];

 spec[0] = "W.M.";

 spec[1] = "1001";

 spec[2] = "85.0";

 spec[3] = "30.0";

 vec.insertElementAt(spec, 1);

 //Customer3

 spec = new String[4];

 spec[0] = "T.S.";

 spec[1] = "1002";

 spec[2] = "65.0";

 spec[3] = "18.0";

 vec.insertElementAt(spec, 2);

 //Customer4

 spec = new String[4];

 ISSN 22773061

2093 | P a g e S e p t 2 5 , 2 0 1 3

 spec[0] = "D.A.";

 spec[1] = "1003";

 spec[2] = "125.0";

 vec.insertElementAt(spec, 3);

 //Customer5

 spec = new String[4];

 spec[0] = "J.F.";

 spec[1] = "1004";

 spec[2] = "150.0";

 vec.insertElementAt(spec, 4);

 //Customer6

 spec = new String[4];

 spec[0] = "J.J.";

 spec[1] = "1005";

 spec[2] = "300.0";

 vec.insertElementAt(spec, 5);

 //Customer7

 spec = new String[4];

 spec[0] = "S.T.";

 spec[1] = "1006";

 spec[2] = "200.0";

 vec.insertElementAt(spec, 6);

 }

 }

Appendix C

Code Activity Description Code Activity Description

1 Mouse movement without any purpose 44 Declaring a double constructor argument

2 purposeful Mouse movement 45 Super keyword

3 Delete a code 46 this keyword

4 Reading error and returning to source code 47 Defining an array

5 Correcting an error 48 try keyword

6 Save 49 catch keyword

7 Executing the program 50 instanceOf keyword

8 New Line 51 Inserting an if

9 else keyword 52 Casting String to double

10 Comment 53 Casting to Object

11 Removing a comment 54
Three consecutive switches from one class to
another

12 void keyword 55 break keyword

13 static keyword 56 continue keyword

14 Inserting an int return type 57 Surfing the net for help

 ISSN 22773061

2094 | P a g e S e p t 2 5 , 2 0 1 3

15 Inserting a String return type 58 Initializing an int variable

16 Inserting an double return type 59 Initializing a String variable

17 Inserting public access modifier (field) 60 Initializing an double variable

18 Inserting private access modifier (field) 61 Defining an object

19 Inserting public access modifier (method) 62 System.out (real)

20 Inserting private access modifier (method) 63 System.out (for debug purpose)

21 Inserting public access modifier (setter method) 64 return keyword

22 Inserting private access modifier (setter method) 65 Inserting a for-loop

23 Inserting public access modifier (getter method) 66 Checking output in console

24 Inserting private access modifier (getter method) 67 Receive help from Editor’s list of methods

25 Inserting public access modifier (constructor) 68 Declaring an object reference variable

26 Inserting private access modifier (constructor) 69 Declaring a Vector reference variable

27 Declaring an int field 70 Inserting data to a vector

28 Declaring a String field 71 Invoking a method

29 Declaring a double field 72 Declaring a boolean variable

30 Declaring an int variable 73 abstract keyword

31 Declaring a String variable 74 Inserting protected access modifier (field)

32 Declaring a double variable 75 Declaring a Scanner

33 Declaring an int method argument 76 Inserting a while-loop

34 Declaring a String method argument 77 Instantiating a vector

35 Declaring a double method argument 78 Switch keyword

36 Declaring an int setter method argument 79 case keyword

37 Declaring a String setter method argument 80 Default keyword

38 Declaring a double setter method argument 81 Inserting a breakpoint

39 Declaring an int getter method argument 82 Opening debug page

40 Declaring a String getter method argument 83 Removing breakpoint

41 Declaring a double getter method argument 84 Move to source code

42 Declaring an int constructor argument 85 Declaring an Object constructor argument

43 Declaring a String constructor argument 1000 Wait

