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ABSTRACT 

Edge detection and feature extraction are widely used in image processing and computer vision applications. Most of the 
traditional methods for edge detection are based on the first and second order derivatives of gray levels of the pixels of the 
original image utilizing 2D spatial convolution masks to approximate  the derivative. In this paper we present an algorithm 
for edge detection in gray level images. The main objective is to solve the previous problem of traditional methods with 
generate suitable quality of edge detection. Our new algorithm is based on two definitions of entropy: Shannon’s classical 
concept and a variation called Tsallis entropy. The  novel approach utilizing Subextensive Tsallis entropy rather than the 
evaluation of derivatives of the image in detecting edges in gray level images has been proposed. Here, we have used a 
suitable threshold value to segment the image and achieve the binary image. The effectiveness is demonstrated by using 
many different kinds of test images from the real-world and synthetic images. The results of this study were quite 
promising. 
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1. INTRODUCTION  

Edge detection is a crucial step in edge extraction and object delineation in image processing. An effective edge detector 
reduces a large amount of data but still keeps most of the important feature of the image. As one of the first-use methods, 
edge detection is widely used in imagery data processing such as remote sensing data processing. For example, for an 
aerial image, a high quality edge detector not only obtains a good understanding of the image but also provides a simple 
but significant input for the process of extracting edges of some specific objects. So, edge detection has received much 
attention during the past two decade because of its significant importance in many research areas [2,14]. The detection 
results benefit applications such as image enhancement, recognition, morphing, compression, retrieval, watermarking, 
hiding, restoration and registration etc. Edge detection concerns localization of abrupt changes in the gray level of an 
image. Edge detection can be defined as the boundary between two regions separated by two relatively distinct gray level 
properties. The causes of the region dissimilarity may be due to some factors such as the geometry of the scene, the radio 
metric characteristics of the surface, the illumination and so on [10].  

Most of the classical methods for edge detection based on the derivative of the pixels of the original image are Gradient 
operators, Laplacian and Laplacian of Gaussian operators [13]. Gradient based edge detection methods, such as Roberts, 
Sobel and Prewitts, have used two 2-D linear filters to process vertical edges and horizontal edges separately to 
approximate first-order derivative of pixel values of the image. The Laplacian edge detection method has used a 2-D linear 
filter to approximate second-order derivative of pixel values of the image [15]. Major drawback of second-order derivative 
approach is that the response at and around the isolated pixel is much stronger.  The Laplacian generally is not used in its 
original form for edge detection for several reasons: As a second-order derivative, the Laplacian typically is unacceptably 
sensitive to noise. The magnitude of the Laplacian produces double edges, an undesirable effect because it complicates 
segmentation. For these reasons, the Laplacian is combined with smoothing as a precursor to finding edges via zero-
crossings. Marr and Hildreth achieved this by using the Laplacian of a Gaussian (LOG) function as a filter [6]. The paper 
[7] classified and comparative study of edge detection algorithms are presented. Experimental results prove that Boie-Cox, 
Shen- Castan and Canny operators are better than Laplacian of Gaussian (LOG), while LOG is better than Prewitt and 
Sobel in case of noisy image.  

To solve these problems, the study proposed a novel approach based on information theory. Tsallis entropy is the most 
important among several measures of information. Edges can be extracted by the detection of all pixels on the borders 
between different homogenous areas. Entropy measures the randomness of intensity distribution [3]. According to this 
property of entropy, the value of entropy is low for homogenous areas and is high where the diversity of gray level of pixels 
is large [11]. The proposed method is decrease the computation time. 

This paper is organized as follows: in Section 2 presents some fundamental concepts of the mathematical setting of the 
threshold selection and Tsallis entropy. Section 3, we describe the newly proposed method of edge detection in gray level 
images using a Tsallis entropy. In Section 4, we report the effectiveness of our method when applied to some real-world 
and synthetic images. In Section 5, we present some concluding remarks about our method. 

2. SELECTION OF THRESHOLD VALUE 

Entropy is a concept in information theory. Entropy is used to measure the amount of information [8]. Entropy is defined in 
terms of the probabilistic behavior of a source of information. In accordance with this definition, a random event E that 
occurs with probability P(E) is said to contain   I(E) = log( 1/ P(E) ) = - log( P(E) ) units of information. The amount I(E) is 
called the self-information of event E or information content of E. The amount of self information of the event is inversely 
related to its probability. If P(E)=1, then I(E) = 0 and no information is attributed to it. In this case, uncertainty associated 
with the event is zero. Thus, if the event always occurs, then no information would be transferred by communicating that 
the event has occurred. If P(E) = 0.8, then some information would be transferred by communicating that the event has 

occurred [10]. The base of the logarithm determines the unit which is used to measure the information. If the base of the 
logarithm is 2, then unit of information is bit. If P(E)= ½, then I(E)= -log2(½) = 1 bit. That is, 1 bit is the amount of 
information conveyed when one of two possible equally likely events occurs. A simple example of such a situation is 
flipping a coin and communicating the result (Head or Tail).  

The set Z of source symbols is referred to as the source alphabet,  Z= {s1, s2, s3, ..., sk }.  The set of all source symbol 

probabilities is denoted by  P,  P= {p1, p2, p3, ..., pk }.  This set of probabilities must satisfy the condition 
k

i

ip
1

1, 

10 ip . The average information per source output, denoted S(Z) [5], is: 
k

i

ii plnpZS
1

)()( , being k the total 

number of states.  

If we consider that a system can be decomposed in two statistical independent subsystems A and B, the Shannon entropy 

has the extensive property  ).()()( BSASBAS  This formalism has been shown to be restricted to the Boltzmann-

Gibbs-Shannon (BGS) statistics.  

However, for non-extensive systems, some kind of extension appears to become necessary. Tsallis [12] has proposed a 
generalization of the BGS statistics which is useful for describing the thermo statistical properties of non-extensive 
systems. It is based on a generalized entropic form, 
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where the real number q is a entropic index that characterizes the degree of non-extensivity. This expression recovers to 
BGS entropy in the limit 1q .Tsallis entropy has a non-extensive property for statistical independent systems, defined 

by the following rule [1] :  

).(.)(.)1()()()( BSASqBSASBAS qqqqq
 (2) 

Let ),( yxf  be the gray value of the pixel located at the point ),( yx . In a digital image 

NyMxyxf ,...,,,,...,,|),( { of size M×N, let the histogram be h(a) for 255,...,,,0a  with f 

as the amplitude (brightness) of the image at the real coordinate position ),( yx . For the sake of convenience, we denote 

the set of all gray levels 255,...,,,0 as G. Global threshold selection methods usually use the gray level histogram 

of the image. The optimal threshold t* is determined by optimizing a suitable criterion function obtained from the gray level 
distribution of the image and some other features of the image. 

Let t be a threshold value and . } ,{ 10 bbB  be a pair of  binary gray levels with . } ,{ 10 Gbb Typically 0b  and 1b  are 

taken to be 0 and 1, respectively. The result of thresholding an image function ),( yxf  at gray level t is a binary function 

),( yxf t such that 
0),( byxf t

 if tyxf t ),(  otherwise, 
1),( byxf t
. In general, a thresholding method 

determines the value 
*t of t based on a certain criterion function. If 

*t is determined solely from the gray level of each 

pixel, the thresholding method is point dependent [9]. 

Let pi = p1, p2, . . . , pk be the probability distribution for an image with k gray-levels. From this distribution, we derive two 
probability distributions, one for the object (class A) and the other for the background (class B), given by: 
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The Tsallis entropy of order q for each distribution is defined as: 
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The Tsallis entropy )(tSq  is parametrically dependent upon the threshold value t for the foreground and background. It is 

formulated as the sum each entropy, allowing the pseudo -additive property, defined in equation (2). We try to maximize 

the information measure between the two classes (object and background). When )(tSq is maximized, the luminance 

level t  that maximizes the function is considered to be the optimum threshold value [4]. 

)].().().1()()([max)(* tStSqtStSArgqt B

q
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Gt

 (4) 

Considering 0qS  in the pseudo-additive formalism of Eq. (4), three different entropies can be defined with regard to 

different values of q. For q<1, the Tsallis entropy becomes a "subextensive entropy" where 

)()()( BSASBAS qqq
; for q = 1, the Tsallis entropy reduces to an standard "extensive entropy" where 

)()()( BSASBAS qqq ; for q > 1, the Tsallis entropy becomes a "superextensive entropy" where 

)()()( BSASBAS qqq . 

In the proposed scheme, first create a binary image by choosing a suitable threshold value using Tsallis entropy. The 

technique consists of treating each pixel of the original image and creating a new image, such that 0),( yxf t  if 

)(),( * qtyxf t  otherwise, 1),( yxf t  for every Mx ,...,, , Ny ,...,, . 

Theorem 1: The threshold value equals to the same value found by Shannon’s method when q→1.  

Proof: The limiting case of the proposed extension is Shannon’s method. To see this, compute the limiting value of  

)(tS A

q  and )(tS B

q   as q → 1. Hence, 
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Hence, when q → 1, the threshold value in Equation (1), equals to the same value found by Shannon’s method. Thus this 
proposed method includes Shannon’s method as a special case. The following expression can be used as a criterion 
function to obtain the optimal threshold at q → 1. 

)].()([max)1(* tStSArgt BA

Gt

 (5) 

The TsallisThreshold procedure to select suitable threshold value 
*t and q can now be described as follows: 

Procedure TsallisThreshold, 

   Input: A  digital grayscale image A of size M × N. 

   Output: The suitable threshold value 
*t  of A, for q≥0. 

    Begin 

1. Let ),( yxf be the original gray value of the pixel at the point NyMxyx ..1,..1),,( . 

2. Calculate pi  and P be the probability distribution,  i = 0, 1,…, 255 . 

3. For all }255,...,1,0{t ,  

i. Calculate 
t

i

iA p  P
1

, and 
255

1ti

iB p  P ,  then calculate  pA and  pB . 

ii. If  q ≠ 1 Then   )].().().1()()([max)(* tStSqtStSArgqt B

q

A

q

B

q

A

q
Gt
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EndIf. 

Endfor   End. 

3. The Edge Detection: 

We will use the usual masks for detecting the edges. A spatial filter mask may be defined as a matrix w of size m×n.  
Assume that m=2α+1 and n=2β+1, where α, β are nonzero positive integers. For this purpose, smallest meaningful size of 
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the mask is 3×3. Such mask coefficients, showing coordinate arrangement as Figure 1.a .  Image region under the above 
mask is shown as Figure 1.b .   

w(-1,-1) w(-1,0) w(-1,1)  f(x-1, y-1) f(x-1,y) f(x-1, y+1)  1 1 1 

w(0,-1) w(0,0) w(0,1)  f(x, y-1) f(x, y) f(x, y+1)  1 × 1 

w(1,-1) w(1,0) w(1,1)  f(x+1, y-1) f(x+1,y) f(x+1, y+1)  1 1 1 

Figure 1.a  Figure 1.b  Figure 1.c 

In order to edge detection, firstly classification of all pixels that satisfy the criterion of homogeneousness, and  detection of 
all pixels on the borders between different homogeneous areas. In the proposed scheme, first create a binary image by 
choosing a suitable threshold value using Tsallis entropy. Window is applied on the binary image. Set all window 
coefficients equal to 1 except centre, centre equal to × as shown in Figure 1.c. 

Move the window on the whole binary image and find the probability of each central pixel of image under the window. 
Then, the entropy of each central pixel of  image under the window is calculated as:  

)()( cc plnpCPixS
 

Where, pc is the probability of central pixel CPix of binary image under the window. When the probability of central 

pixel, 1cp , then the entropy of this pixel is zero. Thus, if the gray level of all pixels under the window homogeneous, 

1cp and 0S . In this case, the central pixel is not an edge pixel. Other possibilities of entropy of central pixel under 

window are shown in Table 1. 

Table 1: p  and S  of central under window 

p  1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9 

S  0.2441 0.3342 0.3662 0.3604 0.3265 0.2703 0.1955 0.1047 0.0 

 

In cases 9/8cp , and 9/7cp , the diversity for gray level of pixels under the window is low. So, in these cases, 

central pixel is not an edge pixel. In remaining cases, pc≤6/9 , the diversity for gray level of pixels under the window is 
high.  The complete TsallisEdgeDetection algorithm can now be described as follows: 

Algorithm TsallisEdgeDetection; 

   Input: A  digital grayscale image A of size M × N. 

   Output: The edge detection image g of A. 

    Begin 

Step 1: Applying TsallisThreshold procedure to select suitable threshold value 
*t and q. 

Step 2: Create a binary image: 

For all x, y, If 
*),( tyxf  then 0),( yxf  Else 1),( yxf . 

Step 3: Create a mask, w, with dimensions m×n : Normally, m=3 and n=3. 

a = (m-1)/2 and b = (n-1)/2. 

Step 4: Create an M×N output image, g: For all x and y, Set g(x, y) = f(x, y). 

Step 5: Checking for edge pixels: 

For y = b+1 to N-b 

For x = a+1 to M-a 

sum = 0; 

For k = -b to b  

For j= -a to a  
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If ( f(x, y) = f (x+j, y+k) ) Then sum= sum+1  End if 

End for 

End for 

If ( sum >6 ) Then g(x,y)=0  Else g(x,y)=1 End if 

End for 

End for 

   End algorithm. 

 

4. ANALYSIS OF TEST RESULTS 

In this section, we discuss the experimental results obtained  using the proposed method. The performance of the 
proposed scheme is evaluated through the simulation results using MATLAB for a set of sixteen test images and the 
results of the proposed scheme are compared with the results of well-established edge detection operator on the same set 
of test images. The resent published method by B. Singh and A. P. Singh [10] is chosen for comparison because both 
approaches are more similar in the technique of implementation. For this purpose, first group, a standard test images: 
bacteria.tif, blood1.tif, brain.tif, cameraman.tif, eight.tif, ic.tif, rice.tif; saturn.tif, and tree.tif were taken from MATLAB 
environment. second group, a test images from the real-world and synthetic images from other papers: analskin.tif, cell.tif, 
eggspindle.tif, pout.tif, rose.tif, synthetic.tif, and things.tif. 

Here, we have used in addition to the original gray level function f(x, y), a function g(x, y) that is the average gray level 
value in a 3×3 neighborhood around the pixel (x, y).  

Table 2 The optimal threshold values 
*t for various values of q 

Test Image 
(...)*t  

0.05 0.1 0.2 0.3 0.4 0.5 0.9 1 1.1 1.65 1.7 3 

analskin.tif 121 132 74 74 74 58 58 58 247 247 30 0 

bacteria.tif 107 105 104 104 104 104 104 104 239 14 44 5 

blood1.tif 143 143 138 171 171 171 171 171 255 48 106 46 

brain.tif 121 132 133 140 141 155 164 172 255 24 148 0 

cameraman.tif 128 125 123 122 192 192 192 192 253 38 14 7 

cell.tif 124 124 121 121 117 117 113 113 247 46 3 2 

coins.png 161 159 158 157 158 159 200 210 255 140 82 56 

eggspindle.tif 91 97 115 115 115 121 121 121 205 85 25 0 

ic.tif 125 125 92 88 84 84 83 83 255 19 1 0 

pout.tif 152 158 161 162 166 166 166 167 224 89 99 73 

rice.tif 132 132 129 129 129 126 121 118 255 43 42 40 

rose.tif 129 132 138 142 156 158 158 103 255 28 17 0 

saturn.tif 131 134 141 146 158 160 165 165 255 36 1 0 

synthetic.tif 121 121 121 121 120 113 113 113 255 180 0 0 

things.tif 120 112 173 180 180 180 180 180 255 59 132 16 

trees.tif 130 130 126 125 125 124 124 124 255 23 40 0 

 

Our analysis is based on how much information is lost due to edge detection. In this analysis, given two thresholded 
images of a same original image, we prefer the one which lost the least amount of information. The optimal threshold 
value was computed by the proposed method for these sixteen images. Table 1 lists the optimal threshold values t* that 
are found for these images for q values equal to 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.9, 1, 1.1,  1.65, 1.7 and 3, respectively. The 
original images together with their edge images obtained by using the optimal threshold of some values t* are displayed 
side by side in Figs. 3-18. 

Using the above sixteen images and also some other images, we conclude that when q value lies between 0 and 1, our 
proposed method produced good edge detection with optimal threshold values (see the first columns of Table 2 and 
Figure2). Moreover, the optimal threshold value does not change very much when the fractional q value changes a little. 
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However, in most cases,  when q was greater than 1, this proposed method did not produce good edge images and the 
threshold values produced were unacceptable (see the last columns of Table 2 and Figure2). When the value of q was 
one - Shannon entropy - the threshold value produced was not always a good edge images (see Figs. 3–18).  

The results of edge detections for these test images using the method in [10] - Shannon entropy - and proposed scheme 
are shown in Figs. 3-18. From the results; it has again been observed that the performance of the proposed edge 
detection scheme is found to be satisfactory for all the test images as compare to the performance of the previous method. 
It has been observed that the proposed method for edge detection works well as compare to the previous method. 

 

Figure 2. chart of average values of 
*t  at various q of the test images. 

 

     original image      
*t =132, q=0.1       

*t = 58, q=1 

     

  original image       
*t =104, q=0.4       

*t = 104, q=1 

         

Figure 3. analskin image, and its the edge images. Figure 4. bacteria image, and its the edge images. 

  original image        
*t =138, q=0.2         

*t =171, q=1 

       

  original image        
*t =155, q=0.5      

*t = 172, q=1 

        

Figure 5. blood1 image, and  its the edge images. Figure 6. brain image, and its the edge images. 

  original image         
*t =123, q=0.2       

*t =192, q=1 

       

  original image       
*t =117, q=0.4     

*t = 113, q=1 

        

Figure 7. cameraman image, and  its the edge images. Figure 8. cell image, and its the edge images. 
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    original image       
*t =158, q=0.5        

*t =210, q=1 

       

  original image      
*t =97, q=0.1        

*t = 121, q=1 

              

Figure 9. coins image, and its the edge images. Figure 10. eggspindle image, and its the edge images. 

      original image       
*t =125, q=0.1        

*t =83, q=1 

          

  original image       
*t =99, q=1.7          

*t =167, q=1 

                 

Figure 11. ic image, and its the edge images. Figure 12. pout image, and  its the edge images. 

  original image      
*t =121,q=0.9           

*t =118, q=1 

          

  original image       
*t =132, q=0.1       

*t =103, q=1 

                           

Figure 13. rice image, and its the edge images. Figure 14. rose  image, and its the edge images. 

      original image     
*t =  131, q=0.05     

*t =165, q=1 

             

  original image      
*t =180, q=1.65       

*t =113, q=1 

                       

Figure 15. Saturn image, and its the edge images. Figure 16. synthetic  image, and its the edge images. 

    original image      
*t =120, q=0.05      

*t =180, q=1 

        

  original image        
*t =125,q=0.4         

*t =124, q=1 

          

Figure 17. things image, and its the edge images. Figure 18. trees  image, and its the edge images. 

 

5. CONCLUSION 

In this study, an attempt is made to develop a new technique for edge detection based on Tsallis entropy. It is already 
pointed out in the introduction that the traditional methods gives rise to the exponential increment of computational time. 
However,  the proposed method is decrease the computation time with generate suitable quality of edge detection . 
Experiment results have demonstrated that the proposed scheme for edge detection works satisfactorily for different gray 
level digital images. The theoretical principles and systematic development of the algorithm for the proposed versatile 
edge detector is described in detail. The Tsallis q coefficient can be used as an adjustable value and can play an 
important role as a tuning parameter in the image processing chain for the same class of  images. This can be an 
advantage when the image processing tasks depend on an automatic thresholding. The technique has potential future in 
the field of digital image processing.  
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