
ISSN 2277-3061

2302| P a g e O c t 1 0 , 2 0 1 3

Modeling Concern Spaces Using Multi Dimensional Separation of
Concerns

Calin Eugen Nicolae Gal-Chis

Universitatea Babeş-Bolyai Cluj-Napoca, Facultatea de Matematică şi Informatică,
Str. Mihail Kogălniceanu, nr. 1, RO-400084 Cluj-Napoca, Romania

calin.gal-chis@ubbcluj.ro

ABSTRACT

For software products, the specifications, the requirements even the variables, the code or the software modules are
subject to be labelled with key-terms, or described using attributes or specific values. The purpose of these notations is
linked to the semantic of the object labelled, and is used as an indexing form for that specific category. A separation of
concerns meta model is proposed here to provide the support of using a unitary type of notation in labelling various kind of
resources used in the process of developing software, from requirements and specifications all the way to variables, code
or software modules. The use of a standard, unitary notation can have multiple benefits, covering areas like code
reusability, reverse engineering, assigning technologies for development, aspect-oriented software development (AOSD),
requirements engineering (engineering web applications, grouping requirements by categories, such as: technology,
importance, actor, volatility, functionality).

Indexing terms/Keywords

Separation of concerns; requirements; software engineering; concern space modelling.

Academic Discipline And Sub-Disciplines

Computer Science – Software Engineering

SUBJECT CLASSIFICATION

D.2.1 [Software Engineering]: Requirements/Specifications – methodologies

TYPE (METHOD/APPROACH)

Approach, Standardization, Aspects

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY

Vol 11, No.2

editor@cirworld.com

www.cirworld.com, member.cirworld.com

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

ISSN 2277-3061

2303| P a g e O c t 1 0 , 2 0 1 3

1. INTRODUCTION

The separation of concerns in software engineering can provide multiple benefits such as reduced complexity, improved
reusability, and simpler evolution. Using concerns help programmers to better visualize their work, stakeholders to relate
the specifications. Reverse engineering, change impact analysis and reuse of code are also supported by
concerns.Basically, software systems should benefit in many ways when using separation of concerns during product
cycle.

Looking to a software product as an outsider, one might consider that describing the concerns produces a substantially
large amount of metadata that adds bureaucracy during the development process of the software product. Although is
needed to monitor closely the additional complexity that multi-dimensional separation of concerns can bring to the table;
the software development and visualization tools are supposed to handle the added complexity; the benefits of using
concerns outweigh clearly the miss concept of not using them.

With respects to generality, a concern can be considered to be any matter of interest in a software system, and also
consider a concern space as an organized representation of concerns and their relationships. Defining concern spaces
and relating concerns to the source code accordingly during development stage has the power to add semantic to the
components of an application. The semantic value can be added to different entity spaces such as: the application model,
the data, the relations, the views, and the design; also to the requirements, and not only.

We show that, while existing modelling approaches address concerns in specific contexts for specific purposes, a general-
purpose concern-modelling capability is still needed. The purpose of this paper is to express the need of a unitary
framework for modelling Concern Spaces and the relations with different types of entities, to define primitives needed to
represent such relations, and to propose patterns that can be followed in various scenarios during the use of the
approach.

The paper will present in section 2 methodologies using different approaches regarding separation of concerns or models
for the separation of concerns. In section 3 an approach to model concern spaces will be introduced. In section 4 a case
study will be discussed. The paper will end with further work and conclusions sections.

2. RELATED WORK

In [4] authors are stressing the need of formalizing the concern spaces and to represent their relations to units as graphs,
so a visual representation can be generated using specific tools. Is debated on using an implicit ―null‖ concern in each
space, to automatically map units in the system not connected to any other concerns in the space’s domain. Also, an
open discussion is presented over how the graphs should be expressed in terms of mathematical relations, with no
restrictions or with restrictions, limiting the mapping to be injective (each unit maps to at most one concern), or surjective
(each concern is ―covered‖ by at least one unit). In [1], authors are using separation of concerns based by organizational
concepts, not programming concepts, in order to close the semantic gap between the software system and its operational
environment. They are proposing a software development methodology named Tropos which is founded on concepts used
to model early requirements. Tropos posits five main classes of concerns: actors, resources, (hard) goals, soft goals, and
tasks.

Sutton and Rouvellou are proposing to model the software concerns in Cosmos [11]. The Cosmos schema includes three
types of elements: concerns, relationships, and predicates. In Cosmos, concerns are divided in two main types: logical
and physical. Logical concerns are describing the concepts of interest regarding a system or artefact, such as: example,
issues, aspects, features, and properties. Physical concerns indicate the elements of a system or the artefacts of software
where the logical concerns can be applied. Cosmos presents a set of five logical concerns: classifications, classes,
instances, properties, and topics. We can include in this category: functionality, behaviour, performance, robustness, state,
coupling, configurability, usability, size, cost, and others. Physical Concerns are considered to be the ―real world‖ entities
of a system, like software, hardware, systems, and services. There are three types of physical concerns in Cosmos:
instances, collections, and attributes. Physical instances are particular software units, physical collections are groups of
instances or of other (sub) collections, while physical attributes are the characteristics of the previous two physical
concerns: instances or collections.Another approach, ModelSoC, that uses concern separation for all artefacts
(documents, models, code) as the primary (de)composition method for the complete process, is presented in [3]. They
extend the hyperspace model for multi-dimensional separation of concerns to deal with information that is replicated in
different models. A implementation based on their framework Reuseware organises all data provided during development
in a concern space and composes integrated views as well as the final system from that. Their multidimensional approach
refers here to artefacts and not to concern spaces.

In [9] are provided hyperspaces to model the multi–dimensional separation of concerns. The process is used to
simultaneous separation of units according to multiple, arbitrary kinds (dimensions) of concern. This allows on-demand re-
modularization. One gain is that concerns can overlap and interact. On the other hand, there are parts difficult to map to
the hyperspace model as it is, because they are either not considered by the model or further refined parts of the model
cannot be easily added to the system.In [12], authors are describing a paradigm for modelling and implementing software
artefacts that allows separation of overlapping concerns along with multiple dimensions of composition and
decomposition. Their paradigm addresses different stages of software lifecycle to offer artefacts traceability, flexibility and
quality.

ISSN 2277-3061

2304| P a g e O c t 1 0 , 2 0 1 3

The separation of concerns method is applied by Chen, Liu and Mencl [13] on Requirements Modelling. Even, though they
split the model into several parts their approach is supporting separation of concerns and consistent and incremental
modelling of requirements.The separation of concerns is taken to a higher level by Moreira, Rashid and Araujo [7], in a
multi-dimensional separation of concerns. Despite of the fact that they give up on using viewpoints, use cases or themes
in representing the requirements, the solution provided is conceptualized in such a way that different types of
requirements (functional and NFR) are no longer described using separate representations, but are using a unique
representation. All requirements are decomposed in a uniform pattern regardless of their functional or non-functional
nature. The requirements space is divided into the system space and meta concern space, as in Figure 1. The system
space gathers different types of systems that are possible to be realized (i.e. requirements associated to application that
are just part of the requirements space); while the meta concern space comprises an abstract set of typical concerns
(functional and non-functional requirements), that are found in various systems. Still, the relation in between the meta
concern space and the system space entity is an restricting injective mapping.

Figure 1. The requirements space in the vision of Moreira, Rashid and Arajo

3. MODELING CONCERN SPACES

One common characteristic of all approaches presented before is the focus on just one particular type of concern spaces.
Mostly, the representations of the concern spaces used in each approach has appeared from the need to solve a certain
problem, and for that reason a Concern Space was defined. The needs met by the use of Concern Spaces in the
presented approaches are: organizational needs of the software system and system’s operational environment in [1],
artefacts classification needs in [3], remodularization needs by separating units in [9], the needs of separating concerns in
logical ones and physical ones in software development only [11], artefacts traceability, flexibility and quality needs in [12],
requirements modelling needs in [7] and [13]. So, the same concept of Concern Spaces was introduced in different ways
by each of the approaches discussed before. A proper, generic type was not introduced, and the lack of standardization
allowed multiple definitions of the same concept.

The model presented in this paper was introduced in [2], and extends the multi-dimensional separation of concerns
defined by [7] already presented in the previous section. This higher level approach of the concerns spaces, provides a
flexible structure and has the power to adapt the domain composition to changes in the range, always offering default
mapping solutions. The range can express various types of entities, from common ones like code, software specifications
or requirements to more specific ones like software artefacts, user types, developer profiles, technologies or even various
informational systems.Concern Space groups one or more concerns and they are represented as multiple dimensions of
the space (Figure 2).

Figure 2. A three-dimensional Concern Space

A novelty introduced by the approach is that the model can refer to multiple system spaces (Figure 3) and can handle
multiple concern spaces (Figure 4). The relations formed among these system spaces and concern spaces can add value
to the software engineering field, providing a structure to represent relations, dependencies, qualities/attributes of different
software concepts or entities.For example, different System Spaces (of two different web applications) can be related
through the use of a Concern Space. This can lead to artefacts and code reusability.

ISSN 2277-3061

2305| P a g e O c t 1 0 , 2 0 1 3

Figure 3. Different System Spaces related through the use of a Concern Space

The following primitives will be defined: Concern Space, MultiSpace, Concern (Concern Dimension), Entity, Concern
Value.

 Concern Space = a group of concerns referring to/describing similar capacities (issues /behaviour) of at least one type
of entities. A Concern Space has a name, a description, and a set of dimensions (stored as a vector - one dimension
for each concern in the space). Optional, parameters can be declared, to configure the Concern Space (a range of
values for each dimension – [minValue, maxValue], by default [0,1]). The multiple dimensions of a concern space are
represented visually in Figure 3.

 MultiSpace = Concern Space of Concern Spaces – Concern Spaces grouped by the same category of meta data. A
MultiSpace space has a name, a description, and a set of Concern Spaces. On same level, the MultiSpaces, can be
grouped interest-wise in a Meta MultiSpace on a higher level. So, MultiSpaces can be applied over MultiSpaces. This
process can be applied recursively, on higher levels, if necessary.

 Concern = Concern Dimension – one of the elements in the set of dimensions of a Concern Space. A Concern has the
purpose of describing an attribute of an entity, by assigning a corresponding value to the relation of an entity to that
specific concern.

 Entity – an object that can be associated to one or more Concern Dimensions from a Concern Space. Entities can be
requirements, artefacts, users, software modules, technologies, specifications, even concern spaces.

 System Spaces – a collection of entities with cohesion. As entities can be of different categories, they can be grouped
in separate System Spaces - such as Requirements system space, Viewpoints system space, Developers system
space.

 Concern Value – a value that describes numerically (scalar) the relation between the Entity and the Concern
Dimension. The value of the concern reflects the attribute weight of the entity regarding the concern space, the concern
range values and the comparing/contrasting relation of the concern with the other concerns in the concern space. The
Concern Space had to include at least one dimension (concern).

Figure 4. The Concern Space meta model

ISSN 2277-3061

2306| P a g e O c t 1 0 , 2 0 1 3

It can be observed that any two consecutive levels in the meta model can be represented as weighted bipartite graphs.
The relation in between the primitives is represented in the form of classes and relations in Figure 5.

Figure 5. Multi-dimensional separation of concerns Metamodel

In concern spaces one or more dimensions (concerns) can be associated with the entities. Values are assigned for the
dimensions from the {0,1} set, or from a set of positive fuzzy values, according to the considered impact of the dimension
in the entity can be used, providing in this way a certain weight to the edge. The weight can be specified for each
dimension (concern) in the space. By default, all the concerns in a Concern Space are associated to each entity with a
value of 0, so no edge will be drawn to indicate the entity representation in that concern. Also, the vector of concerns of a
particular concern space assigned to an entity is a vector of concerns with all values set at zero. The weight of a concern-
entity relation is not limited just as Boolean or Integer values; real numbers for describing weights (continuous quantities,
time) had to be supported as has been demonstrated in [5].

For every entity, there is a vector from each Concern Space that is associated with the entity, expressing the blueprint of
the entity in the Concern Space. This association can be expressed as a function with the entity and the concern space as
the arguments, and with the associated vector of concerns as a result.

Let e be an entity in the system space E, S a n-dimension concern space and f a mapping function that describes the
relation between the entity e and the concern space S.

f(e,S) = v, where eE, vR
n

We will present an example to illustrate the use of the function.

Let’s consider the concern space S1,

S1={1, ―programming language‖, ―the type of programming language‖, (html, javascript, php, mysql, css), 10}.

The system space E1 is formed by the available software developers

E1= {Dev1, Dev2, Dev3, Dev4}.

The system space E2 is formed by software modules to be implemented

E2= {Module1, Module2, Module3}, where Module1 is a web form, Module2 is a database search engine and
Module3 is a product page.

The relations in between the entities in the system spaces and the concern space are described below, using the mapping
function.

f(Dev1, S1)={7,4,10,9,2} – developer Dev1 is specialized in php and mysql

f(Dev2, S1)={10,8,3,2,10} – developer Dev2 is specialized in html, javascript, css

f(Dev3, S1)={9,7,6,7,8} – developer Dev3 is proficient in all programming languages

f(Dev4, S1)={10,10,5,4,9} – developer Dev4 is specialized in html, javascript, css

f(Module1, S1)={8,7,1,1,8} – Module1requires developer solid knowledge of html, javascript and css

f(Module2, S1)={4,2,8,9,2} – Module2 requires developer strong knowledge of php and mysql

f(Module3, S1)={9,5,4,3,10} – Module3 requires developer strong knowledge of html, css and moderate
knowledge of the other languages

So, we can make associations between developers and modules to be implemented. A solution may be: Dev1 to Module2,
Dev2 and Dev3 to Module3, and Dev4 to Module1, and can be influenced by entities relations to other concerns, such as

hours alocated, priority, etc.

In this way, relating different system spaces E1, E2 through the use of a Concern Space S1 is usefull in linking entities from
one System Spaces to entities from another one, such as assigning the right developer to the task of implementing a
module in the web application.

As represented in the Figure 5, one entity can be associated with more than one Concern Space. We will consider the
following concern spaces:

ISSN 2277-3061

2307| P a g e O c t 1 0 , 2 0 1 3

S1={1, ―MVC‖, ―the weight in the ModelViewController‖, (Model, View, Controller), 1},

S2={2, ―CRUDS‖, ―Create Read Update Delete Static functionalities of an entity‖, (read, create, update, delete,
static), 1},

S3={3, ―nonFA‖, ―non functional aspects of entities‖, (sleekdesign, loadspeed, volatility), 10},

S4={4, ―Priority‖, ―importance of the entity‖, (priority), 10}.

The Entity1 is a requirement in the Requirements Space with the name ‖productpage‖ and the description:―Display a
professional looking Product Page with product details‖. Below are represented the values of the mapping function f with
the Entity1 as the first argument and each of the Concern Spaces introduced as the second argument.

f(Entity1, S1)={0,1,0}

f(Entity1, S2)={1,0,0,0,0}

f(Entity1, S3)={8,4,0}

f(Entity1, S4)={7}

Figure 5. Example of an entity linked to multiple concerns in different concern spaces with the respective values

On refinements of entities such as requirements, the sub-requirements are inheriting all the upper levels (concern spaces)
of the original requirement, as presented in Figure 6. Also a new concern-space, based on the original requirement is
created, to show the relation in between the newly created sub-requirements, as presented in the next figure.

Figure 6. Refining an entity in sub-entities

In this Figure, we can consider the entity E7, as being a requirement in the web application Requirements Space with the
description: ―the members can edit their profile‖. This entity can be refined in two entities, entity E7.1 ―the regular members
can edit their profile‖ and entity E7.2 ―the premium members can edit their profile‖. The newly created ConcernSpace5
gets as details the description of the former entity E7:‖ the members can edit their profile‖ and one dimension is
automatically generated: the concern C5.1 ―edit the profile‖. Following this refinement other concerns can be added to the
ConcernSpace5, (such as concern C5.2 ―upload video profile‖) that would be linked to entities (the concern C5.2 can link

to entity E7.2 with the sense ―premium members can upload a video profile‖)

This refinement capacity offers stability (the use of same model structure) and flexibility (anytime entities can be changed
and detailed).

ISSN 2277-3061

2308| P a g e O c t 1 0 , 2 0 1 3

4. CASE STUDY

This part will investigate the main existing web development methodologies and their tools, with respects to the tools
supporting RE.

A wide use of the concerns is for describing requirements. Given a problem to be solved we will describe the requirements
using the concern spaces created for the problem. The concern spaces proposed do not have to be used just for
requirements. Once the problem is understood the concern spaces can be created together with the stakeholders to make
clear different attributes of the product.

―A web application selling online songs and albums is required. Online users can listen songs and can buy songs.
In order to buy songs the user had to be logged into the application and to pay using credits. Credits can be
purchased by Credit Card, received as promotion (special holidays/contests) or as loyalty (long period
member/purchase volume/ friend invites). Credits also can be donated/transferred from one user to another.
Promotions are offered on the homepage. The application had to record browsing history for authenticated users
in order to determine their client-profile. For administrative purposes a multi-user back-office will be created to
administrate user accounts, music, promotions, and generate reports such as purchases/trends/profiles. Front-
end had to be fast and to look professional.‖

Part of the entities in the Requirements Space will be introduced in Table 1, and will make the subject of our case study.

Table 1. Requirements sample from requirements space

Id Requirements

R1 User listens online music

R2 User purchases music

R3 System can retrieve information

R4 System can record user browsing history

R5 Media have to load fast adjusting to the system capabilities

R6 Front end have to use latest design trends

R7 Front end have to update fast

R8 Application have to be portable on various platforms

Different concern spaces can be applied to the requirements determined in this example. Two concern spaces will be
introduced now in the study, in Table 2 and Table 3.

Table 2. Concern Space Information Retrieval.

Id = CS1 Concernspace Information retrieval

C1.1 Database retrieval

C1.2 WebPage retrieval

C1.3 HostMachine retrieval

Table 3. Concern Space Type of User.

Id = CS2 Concernspace Type of user

C2.1 Client

C2.2 Guest

C2.3 Admin

As associations are made in the model.

ISSN 2277-3061

2309| P a g e O c t 1 0 , 2 0 1 3

we can see the graph dependencies in between the requirements and the concern spaces in Figure 7.

Figure 7. Modelling the selected concern spaces over the requirement space of the case study

We can see that, regarding the type of user, most of the requirements are not the concern of the user ―administrator‖. On
the other hand, most of the requirements are connected to ―information retrieval‖ activities or to users ―guest‖ or ―client‖.

For another view of the relations, a composition table for the mapping function can be made:

Table 4. Composition Table of the relations between entities and Concern Spaces.

Entity Concern Space CS1
InformationRetreival

f(Ri,CS1) Concern Space CS2
TypeOfUser

f(Ri,CS2)

R1 C1.1, C1.2, C1.3 {1,1,1} C2.1, C2.2, C2.3 {1,1,1}

R2 C1.1, C1.2 {1,1,0} C2.1 {1,0,0}

R3 C1.1, C1.2, C1.3 {1,1,1} {0,0,0}

R4 {0,0,0} C2.1, C2.2 {1,1,0}

R5 C1.3 {0,0,1} {0,0,0}

R6 {0,0,0} C2.1, C2.2 {1,1,0}

R7 {0,0,0} C2.1, C2.2 {1,1,0}

R8 {0,0,0} C2.1, C2.2 {1,1,0}

This model can also be used on representing the concern spaces used in other approaces. In Model-Driven Software
Development (MDSD) information that is captured in artifacts (documents, diagrams, etc.) that are created during the
development of systems. These artifacts are regarded as models of the system and are integrated by means of
transformation and composition. For example, ModelSoC[3] is introduced as an extension of the hyperspace model for
multi-dimensional separation of concern defined by Ossher and Tarr [9] that can handle replication of information in
different formats and usage of DSMLs for composing information. During the process, information is transported between

different models—i.e., different views on the system—by model transformations. Five different types of viewpoints are

supported by the approach: OpenOffice use case documents, UML use case models annotated with invariants, UML class

models, Value Flow models and Java. Also, 12 concern dimensions were identified and defined as composition systems.
The relation between viewpoints (y-axis) and concern dimension (x-axis) is presented below [Table 5].

Table 5. Viewpoints supported by concerns dimensions in ModelSoC

ISSN 2277-3061

2310| P a g e O c t 1 0 , 2 0 1 3

Using our Multi Dimensional Separation of Concerns, we can consider concern dimensions in ModelSoC as concerns in
the Composition Systems Concern Space (S0), and the five viewpoints as entities of the ViewPoints System Space. S0 =
{0, ―Composition Systems‖, ―Composition Systems of concerns‖, (usecase, participation, exchange, flow, trigger, factory,
class, dataclass, associate, typebind, app, security), 1}The mapping function f using entities from the ViewPoint System
Space as the first argument and the Concern Space S0 as the second will give us the following:

f(“OpenOffice”, S0) ={1,1,0,0,0,0,0,0,0,0,0,0}

f(“UML use case”, S0) ={1,1,1,0,0,0,0,0,0,0,0,0}

f(“Value Flow”, S0) ={1,1,1,1,0,0,0,0,0,0,0,0}

f(“UML class”, S0) ={0,0,0,0,0,0,1,1,1,0,0,0}

f(“Java”, S0) ={1,1,1,1,1,1,1,1,1,1,1,1}

The composition systems in ModelSoC concern space S0 are composing the so-called ―concerns‖. Examples of such

―concerns‖ are given in the ModelSoC example: (a) Customer participates in Book Ticket (b) Bank participates in Book
Ticket or (c) Account is exchanged between Customer and Bank. These ―concerns‖ are considered to be ―entities‖ in our
approach.Considering the three entities as being part of a System Space called Features, we will be able to mapp the
relations in between the entities in Features System Space and the S0 Concern Space. As mentioned in the ModelSoC
example [3], the entities (a), (b) are linked to participation and to usecase concern dimensions, while (c) is linked to
exchange concern dimension.

f(―(a)Customer ...‖, S0) ={1,1,0,0,0,0,0,0,0,0,0,0}

f(“(b)Bank...‖, S0) ={1,1,0,0,0,0,0,0,0,0,0,0}

f(“(c)Account...‖, S0) ={0,0,1,0,0,0,0,0,0,0,0,0}

Also another Concern Space can be defined here as the Actor Type Concern Space S1. Concerns in this space can be
―Customer‖, ―Bank‖, but, if needed, can be extended to other dimensions (like ―ticket‖, ―account‖).S1 = {1, ―Actor Type‖,
―types of actors in the system‖, (Customer, Bank), 1}Considering the Features System Space, we mapp with the f mapping
function the relations to S1 Concern Space.

f(―(a)Customer ...‖, S1) ={1,0}

f(“(b)Bank...‖, S1) ={0,1}

f(“(c)Account...‖, S1) ={1,1}

So we can see in this example 2 system spaces and also 2 concern spaces conected by using the multi-dimensional
separation of concerns. This way we can track the relations [Figure 8]from features entities to viewpoints entities using the
conceptul binding by relating the system spaces to the same concern space S0, and from one concerns space to another -
from Actor types S1 to composition systems S0 using the conceptual binding through the Features system space.

Figure 8. Conceptual bindings in between system spaces and in between concern spaces

So, a transformation map of the primitives from ModelSoC to MultidimensionalSoC will convert as follows [Table 6]:

Table 6. Primitives transformation map from ModelSoC to MultidimensionalSoC

ModelSoC MultidimensionalSoC

Not existent Multispace

Concern Space Concern Space

Concern dimension Concern dimension

Concern Entity

Exists – not defined System Space

ISSN 2277-3061

2311| P a g e O c t 1 0 , 2 0 1 3

Different aspects of software development can be captured using concern spaces. The prioritisation analysis made in the
Volere project [14] provides guidance on prioritising requirements. The prioritization factors that commonly affect
prioritisation decisions are: Minimise Cost of implementation (how much cost to develop?), Value to customer (how much
does the customer want it?), Time to implement (how much time to deliver?), Ease of technical implementation (how
technologically difficult?), Ease of business implementation (how organisationally difficult?), Value to the business (how
much will the business benefit?), Obligation to some external authority (necessity to obey law?). An example of prioritizing
the requirements calculating a Priority Rating is provided as a table [Table 7] where a score out of 10 is assigned to every
requirement for each prioritization factor.

Table 7. An example of the Volere Prioritisation Spreadsheet

Requirement/Product
Use Case/Feature

Value to
Customer

Value to
Business

Minimise Imple-
mentation Cost

Ease of
Implementation

Time to
Implement

Requirement R1 2 7 3 8 3

Requirement R2 8 8 5 7 6

Requirement R3 7 3 7 4 5

Requirement R4 6 8 3 5 9

Requirement R5 5 5 1 3 7

Requirement R6 9 6 6 5 4

Requirement R7 4 3 6 7 6

Considering the present approach for using concern spaces, the requirements are part of the Requirements Space for a
particular application and the prioritization factors are the dimensions in a Concern Space, as presented below:

S2={2, ―prioritization‖, ―prioritization factors for requirements‖, (Value to Customer, Value to Business, Minimise

Implementation Cost, Ease of Implementation, Time to Implement), 10},

Given this concern space we can use the mapping function f with the requirements as the first argument and the Concern
Space S2 as the second.

f(R1, S2)={2,7,3,8,3}

f(R2, S2)={8,8,5,7,6}

f(R3, S2)={7,3,7,4,5}

f(R4, S2)={6,8,3,5,9}

f(R5, S2)={5,5,1,3,7}

f(R6, S2)={9,6,6,5,4}

f(R7, S2)={4,3,6,7,6}

According to the Eclipse Process Framework (EPF) [15], during the Project Plan phase of developing an application, the
team members are assigned roles they play in the project. The work is divided into a number of content areas. Each
content area is lead by a committer that is the content lead and responsible for that content area. The content lead is
working closely with a number of regular committers. In an example of project plan covering content and enablement
portions of the EPF 1.0 project, the work is divided into the following content areas:

 Project management: Chris Armstrong (lead), Jochen Krebs, Per Kroll

 Requirements: Chris Sibbald (lead), Paul Bramble, Ana Paula Valente Pereira, Leonardo Medeiros, Kurt Sand,
Bruce MacIsaac, Jim Ruehlin, Ricardo Balduino.

 Change management: Chris Sibbald (lead), Kurt Sand.

 Development: Brian Lyons (lead), Scott Ambler, Ricardo Balduino.

 Architecture: Mark Dickson (lead), Jim Ruehlin, Ana Pereira, Chris Doyle.

 Test: Brian Lyons (lead), Nate Oster, Jeff Smith, Dana Spears.

 General: Steve Adolph (lead).

 Developer outreach: Per Kroll / Naveena Bereny (leads), Ricardo Balduino, Scott Ambler, Kurt Sand.

As noticed, the content lead and the regular commiters are mentioned for each content area. Considering the System
Space formed out of the team members, and S2, a concern space of content areas we can express the relations among

ISSN 2277-3061

2312| P a g e O c t 1 0 , 2 0 1 3

these two spaces using the mapping function f. Different weights are given in the concern space to content leads and to
regular commiters, such as a content lead has a maximum value of 2, and a regular commiter a lesser value of 1.

S3 = {3, ―content areas‖, ―team members involvment in the content areas‖, (Project management, Requirements,
Change management, Development, Architecture, Test, General, Developer outreach), 2},

f(―Chris Armstrong‖, S3) ={2,0,0,0,0,0,0,0}

f(―Jochen Krebs‖, S3) ={1,0,0,0,0,0,0,0}

f(―Per Kroll‖, S3) ={1,0,0,0,0,0,0,0}

f(―Chris Sibbald‖, S3) ={0,2,2,0,0,0,0,0}

f(―Ricardo Balduino‖, S3) ={0,1,0,1,0,0,0,1}

f(―Kurt Sand‖, S3) ={0,1,1,0,0,0,0,1}

f(―Brian Lyons‖, S3) ={0,0,0,2,0,2,0,0}

f(―Steve Adolph‖, S3) ={0,0,0,0,0,0,2,0}

 ...

In these examples we were able to observe the versatility of this approach over different types of system spaces. Also, we
have seen that modeling of concerns in various multidimensional Concern Spaces can be a solution in different existing
approaches, and the modelling is clear and can handle the representations of both simple and complex systems.

5. FUTURE WORK

A methodology is necessary in order to systematically investigate and determine the proper concern spaces to be
considered and used for different types of entities. Such work can extend the valuable contribution of Poshyvanyk et all in
[10].

Samples of concern spaces and multispaces databases along with entities spaces (system spaces) should be created in
order to support the development processes based on separation of concerns methodologies.

A tool to support for the implementation of concern spaces is under development. Conversion patterns from types of
concern spaces introduced in other approaches towards the model introduced here is needed to prove model generality
and acceptance.

Oher visualizations tools can provide graphical renditions, but may also offer query facilities. The manually mapping of
code to concerns is difficult and time-demanding, as proved in [6]. Such activities should be assisted by and, if possible,
partially automated with specialized tool.

The impact of this approach on web application requirements and product development will be also a subject of future
research, as one direction can be to drop concern information into the web application source code for reverse
engineering purposes. A valuable contribution is this direction is made by Marcus and Rajlich in [8].

6. CONCLUSION

The approach presented here is meant to introduce a generalization of the concern spaces and of the separation of
concerns modelling. The model presented has multiple possible applications, such as requirements engineering,
informational systems, reverse engineering. The model can be expressed visually as a graph, can handle complex
scenarios and is flexible, reliable through the life cycle of the scope.

ACKNOWLEDGMENTS

This work was possible with the financial support of the Sectoral Operational Programme for Human Resources
Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841
with the title „Modern Doctoral Studies: Internationalization and Interdisciplinarity‖.

REFERENCES

[1] Castro J., Kolp M., and Mylopoulos J.2002. ―Towards requirements-driven information systems engineering: the
Tropos project‖ - Information Systems 27 (2002) 365–389

[2] Gal-Chis C.E.N., 2013.A Multi-Dimensional Separation of Concerns of the Web Application Requirements, Studia
Universitatis Babes-Bolyai, Series Informatica, Volum LVIII, nr. 3, 2013, pp 29-40

[3] Jendrik J., Uwe A. 2010. Concern-Based (de)composition of Model-Driven Software Development Processes, Model
Driven Engineering Languages and Systems – 2010 p.47-62

[4] Kaminski P. 2001. Applying Multi-dimensional Separation of Concerns to Software Visualization. Workshop on
Advanced Separation of Concerns, ICSE 2001

ISSN 2277-3061

2313| P a g e O c t 1 0 , 2 0 1 3

[5] Kruskal V., 2000. A Blast from the Past: Using P-EDIT for Multidimensional Editing. Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering, ICSE 2000.

[6] Lai A., Murphy G. C., 1999. The Structure of Features in Java Code: An Exploratory Investigation. Workshop on Multi-
Dimensional Separation of Concerns in Object-Oriented Systems, OOPSLA ’99,

[7] Moreira A., Rashid A., Arajo J., 2005. Multi-Dimensional Separation of Concerns in Requirements Engineering. IEEE.

[8] Marcus, A., Rajlich, V., 2005. Panel: Identifications of Concepts, Features, and Concerns in Source Code, the
Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM2005), Budapest, Hungary,
September 25-30, 2005, p. 718

[9] Ossher H., Tarr P., 2002. MultiDimensional Separation of Concerns and the Hyperspace Approach

[10] Poshyvanyk, D., Gethers, M., and Marcus, A., 2012. Concept Location using Formal Concept Analysis and
Information Retrieval, ACM Transactions on Software Engineering and Methodology (TOSEM), 21(4), 2012.

[11] Sutton Jr., S. M., Rouvellou, I. 2002. Modelling of Software Concerns in Cosmos, 1st International Conference on
Aspect-Oriented Software Development, Enschede, The Netherlands, April, 2002

[12] Tarr P., Ossher H., Harrison W., Sutton Jr. S.M. ―N-degrees of separation: Multidimensional separation of concerns‖

[13] Chen X., Liu Z., Mencl V., 2007. Separation of Concerns and Consistent Integration in Requirements Modelling‖.
Macao, China.

[14] *** - Prioritisation Analysis - http://www.volere.co.uk/prioritisationdownload.htm - 2009

[15] *** - Project Plan - http://epf.eclipse.org/wikis/openup/

Author’ biography with Photo

Calin Eugen Nicolae Gal-Chis is a PHd student in Computer Science at
Universitatea Babeş-Bolyai Cluj-Napoca, Facultatea de Matematică şi
Informatică Department, Cluj-Napoca, Romania

