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ABSTRACT 

In In the last decades, Steganography techniques have been applied in a variety of data files. The need of 
copyrightprotection in Music, in Photography e.t.c pushed the software companies to develop many steganographic 
systemswhich they use, in various areas, e.g., in digital assets (DRM). In this paper, we propose a number of methods 
forimage steganography using Catalan numbers and Lucas numbers and we show that they produce better resultsthan 
the technique using Fibonacci numbers. We are able to use Catalan and Lucas numbers since we haveproved that these 
sets of numbers satisfy similar conditions to those of the Theorem of Zeckendorf. 
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INTRODUCTION 

The exchange of information is essential for the development of civilization. The discovery and evolutionof methods that 
could make transmission of information secure attracted people since antiquity. Over thecenturies people discovered and 
developed techniques which evolved into the sciences of Crytography andSteganography. Cryptography disguises the 
message to be trasmitted so that only the intended recipient isable to read it, while steganography hides the message by 
embedding it within other, seemingly harmless,messages. Steganography dates back to the ancient Greece but only lately 
(late 20th century) it began beingresearched for scientific reasons. Today, it is widely used in Telecommunications, 
Industry [1] , Medicine [2]and in the practice of hiding strongly encrypted data. Steganography, in contrast to 
Cryptography, is not trying to make a message incomprehensible for an invalid person [3], [4], but to hide its existence, 
using acover, e.g., by incorporating the message to be transmitted into an image. 

The LSB method 

In recent years, the LSB (Least Significant Bit) method became one of the most important steganographic methods for 
hiding data within images [5]. In a 𝑁 × 𝑀color RGB image, with 8 bit color depth, each pixel assumes an integer value x 

on the closed interval [0, 255] for each color (Red, Green, Blue). The number 𝑥represents the density of the color and it is 

encoded by an 8 bit binary word𝑏7𝑏6 …𝑏0, where 𝑥 =  𝑏𝑖 ∙ 2𝑖7
𝑖=0  and 𝑏𝑖 ∈  0,1 . For example 91 = 0 ∙ 27 + 1 ∙ 26 + 0 ∙ 25 +

1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 =  001000112. 

This definition of 𝑥allows the decomposition of an image into a collection of binary images by separatingthe bits into 8 bit 

planes. In the classical LSB embedding methods, the secret message is inserted into theleast significant bitplane, i.e., the 
8th bitplane, of the cover image, either by directly replacing those bits orby modifying them using a particular “inverse” 
function [6] (Figure 1).The embedding strategy can also be based on sequential insertion or selective embedding of the 
messagein “noisy” areas or random scattering throughout the image [7]. 

 

Fig 1: The LSB embedding method 

The Fibonacci method 

Several research teams have developed and extended the LSB method using different approaches. One ofthese 
approaches is presented in [9], and uses the Fibonacci  numbers, which are defined by the linearrecurrence relation 

Fn = Fn−1 + Fn−2 , n > 1, with F0 = 0 and F1 = 1. 

In the LSB scheme, one bit is embedded in each pixel color of the image. To increase the amount ofdata, we could embed 
them in higher bitplanes. This however causes noticeable distortions in the image. Toavoid this problem, the Fibonacci 
method uses a new representation of the pixel value which increases thenumber of available bitplanes. According to 
Zeckendorf’s  Theorem [8], every positive integer can be uniquely represented as a sum ofdistinct, nonconsecutive 
Fibonacci numbers. More specifically, Zeckendorf’s Theorem states that for everyx ∈ ℕ∗ there exists a finite sequence 

c1, c2, . . . , cn  of positive integers with ci+1 > ci  +  1, 1 ≤ i <  𝑘 ,such that x =  Fci

k
i=1 .  

This sum is called the Zeckendorf representation  of x . Equivalently, given thatFk ≤ Fk+1, for some k ≥  2, we have that 

x =  wiFi+1
k
i=1 , where wi ∈  { 0, 1} , wk =  1 and ther is noi  such that wi   =  wi+1  =  1. The sequence 𝑤𝑛𝑤𝑛−1 …𝑤1  is a 

binary word with no consecutive 1’s and itis called the Fibonacci encoding  of 𝑥  (with respect to 𝑛 ). By convention, 0 is 

encoded by the binary word00 · · ·   0, so that the encoding is extended to all nonnegative integers. Strictly speaking, this 

encoding is abijection from the set of integers { 0, 1, 2, . . . , 𝐹𝑛+2 − 1}onto the set of binary words of length 𝑛 , having 
noconsecutive 1’s. For this reason, in the literature, these words are often referred to as Fibonacci words . Consequently, 
each value of each pixel color, can be written from now on, using this new basis. Sincethis value ranges from 0 to 255, we 
only need the terms 𝐹2, 𝐹3 , . . . , 𝐹13  for its encoding, that is the elementsof the set 

𝐹(12) =  { 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233} 
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 consisting of all 𝐹𝑛  , where 2 ≤ 𝑛 ≤ 13.  

For example, the number 39 can be written as a sum of elements of the set 𝐹(12)  as 

39 = 0 ·   1 +  1 · 2 + 1 · 3 + 0 · 5 +  0 ·   8 +  0 ·   13 +  0 ·   21 + 1 ·   34 +  0 ·   55 +  0 ·   89 +  0 ·   144 +  0 ·   233,   

or 

39 = 0 ·   1 +  0 ·   2 +  0 ·   3 +  1 ·   5 +  0 ·   8 +  0 ·   13 +  0 ·   21 + 1 ·   34 +  0 ·   55 +  0 ·   89 +  0 ·   144 +  0 ·
  233,   

or 

39 = 0 ·   1 +  0 ·   2 +  0 ·   3 +  1 ·   5 +  0 ·   8 +  1 ·   13 +  1 ·   21 + 0 ·   34 +  0 ·   55 +  0 ·   89 +  0 ·   144 +  0 ·
  233. 

These three sums can be represented respectively by the binary words: 

000010000110𝐹12,  000010001000𝐹12,  000001101000𝐹12. 

Therefore, the number 39 has more than one representations, in terms of Fibonacci numbers. Fromall these 
representations, we choose the one which is derived from Zeckendorf’s Theorem, i.e., the onecorresponding to the binary 
word 000010001000𝐹12, (which is the only one containing no consecutive 1’s). Inthis way, we produce 12 bitplanes for 

embedding data and so we can increase the stego capacity. 

An extension of Zeckendorf’s Theorem 

In this section, we give an extension of Zeckendorf’s theorem, which allows us to use other integer sequencesfor the 
representation of bytes. This way, we improve the previously described Fibonacci method. Some oftheses results were 
presented in [10].  

Theorem 1 (Extension of Zeckendorf’s Theorem) . Let (an)n∈ℕ∗be a strictly increasing sequence of positiveintegers, with 

a1 = 1, a2 = 2, and an + an+1 ≥ an+2 and n ∈ ℕ∗. Then, every positive integer x withan ≤ x < +an+1, n ∈ ℕ∗can be 

represented as a sum of different and nonconsecutive terms of the sequence(an), with the restriction that the term an  

appears in the sum.  

Proof. We will use induction on x. If 1 ≤ x ≤ 3, then the claim obviously holds, since a1 = 1, a2 = 2,a3 = 3. Let x > 3, and 

assume that the claim holds for all positive integers less than x. Then, there existsa unique n >  2, such that an ≤ x <
+an+1. If an = x, then the claim obviously holds. If an < 𝑥 < +an+1,then, setting y =  x −  an , by the induction hypothesis, 

we have that y is represented as a sum of differentand nonconsecutive terms of the (an )sequence. Lety = abλ
+ abλ−1

+

⋯ + ab1
be a represention of y , where (bn) is a strictly increasing sequence of nonconsecutive positive integers, andλ ∈

ℕ∗. Therefore, given the restriction that the term an  must appear in the representation of x , we obtainthe representation 

x = an + y of x . Furthermore, we have that 

< an+1 ⇒ y < an+1 − an  

and sincean+1 − an ≤ an−1, it follows that y < an−1. The representation of y  gives that abλ
≤ y, thusabλ

< an−1. Finally, 

since the sequence (an)is strictly increasing, we haveabλ
< an−1 ⇒ bλ < 𝑛 − 1,so that the representation of x  contains no 

consecutive terms. 

According to Theorem 1, given a sequence (an)satisfying the above requirements, any x ∈ ℕ is representedas 

x =  wi ∙
n

i=1
ai 

where wi ∈  0,1 , wn = 1and there is no, such that wi = wi+1 = 1. The number n  is theunique positive integer satisfying 

an < 𝑥 < +an+1. Therefore, each representation corresponds to a uniqueFibonacci word wn wn−1 … w1, so that each x ∈
ℕcorresponds to at least one Fibonacci word. By choosingthe lexicographically greatest corresponding word, we define an 

encoding for the elements of ℕ. This isequivalent to applying recursively the restriction of the Theorem. The 
implementation for this is trivial and,therefore, the process of encoding and decoding each integer x is straightforward. 

For example, the sequence (1, 2, 3, 5, 7, 9, 11) is a sequence of length 7 which encodes all integers in theinteval [0,  22]. 
(Note that 22 is obtained as the maximum sum of nonconsecutive terms of the sequence, i.e.,22 = 11 + 7 + 3 + 1.) 
Following the restrictions of Theorem 1, the number 18 is represented as 

18 = 11 + 7 or 18 = 11 + 5 + 2. 

These representations correspond to the Fibonacci wordsw = 1010000 and u = 1001010respectively. Since w  is greater 

than u , the number 18 is encoded by w . 

Corollary 2. Let (an)n∈ℕ∗ be a strictly increasing sequence of positive integers, such that the Fibonaccinumbers F2 , F3 , F4 , … 

form a subsequence of (an). Then, every positive integer x, with an < 𝑥 < +an+1,n ∈ ℕ∗ can be represented as a sum of 

different and nonconsecutive terms of the sequence (an), with therestriction that the term  an appears in the sum. 
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Proof. By the definition of (an), it follows that a1 = F2 = 1, a2 =  F3 = 2and a3 = F4 = 3. Hence, byTheorem 1, it suffices to 

prove that an + an+1 ≥ an+2. This is obviously true for  n =  1. If n ≥ 2, then bythe definition of (an ), it follows that there 

exists a unique k ∈ ℕ∗, where 2 ≤ k ≤ n, such that 

Fk ≤ an < an+1 ≤ Fk+1 

If, an+1 ≤ Fk+1 then an+2 ≤ Fk+1so that 

Fk ≤ an < an+1 < Fk+1 ⇒ an + an+1 > Fk−1 + Fk = Fk+1 ≥ an+2 

On the other hand, if an+1 = Fk+1, then an+2 ≤ Fk+2, so that 

Fk ≤ an < an+1 = Fk+1 ⇒ an + an+1 > Fk + Fk+1 = Fk+2 ≥ an+2 

Thus, in both cases we have that  𝑎𝑛 + 𝑎𝑛+1 > 𝑎𝑛+2 

The Lucas numbers 

The mathematician Francois Edouard Anatole Lucas (1842 - 1891), studied the Fibonacci numbers and the 

related sequence that is named after him. The Lucas sequence is defined as follows: 

𝐿𝑛 =  
2,                          𝑛 = 0,
1,                           𝑛 = 1,
𝐿𝑛−1+𝐿𝑛−2 ,         𝑛 > 1.

  

As in the Fibonnaci method, we define the set 

𝐿(12) =  { 1,2,3,4,7, 11, 18, 29, 47, 76, 123, 199}that consists of all 𝐿𝑛  , where 0 ≤ 𝑛 ≤ 11. 

In accordance to Theorem1, each positive integer in the closed interval [0,  255] can be uniquely representedas a sum of 

different, nonconsecutive Lucas numbers.For example, the number 39 can be written as a sum of elements of the set 𝐿(12)  

as 

39 = 0 · 1 +  0 · 2 + 1 · 3 + 0 · 4 + 1 · 7 + 0 · 11 + 0 · 18 + 1 · 29 + 0 · 47 + 0 · 76 + 0 · 123 + 0 · 199, 

39 = 1 · 1 + 1 · 2 + 0 · 3 + 0 · 4 + 1 · 7 + 0 · 11 + 0 · 18 + 1 · 29 + 0 · 47 + 0 · 76 + 0 · 123 + 0 · 199. 

The above two sums are encoded respectively by the binary words:000010010100𝐿12
,  000010010011𝐿12

. 

As in the case of Fibonacci numbers, we use the representation 000010010100𝐿12
 which is the lexicographicallygreatest. 

The method using Catalan numbers. 

The Catalan numbers are named after the Belgian mathematician Eugene Charles Catalan (1814 - 1894).The Catalan 
numbers appear in a variety of counting problems. The 𝑛 -th Catalan number is given explicitlyin terms of binomial 
coefficients by 

𝐶𝑛 =
1

𝑛+1
 2𝑛

𝑘
 =

 2𝑛 !

 𝑛+1 !𝑛!
, 𝑛 ∈ ℕ. 

The first 11 Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796. Clearly, not every integer inthe interval 
[0,  255] can be represented as a sum of distinct Catalan numbers. For example, 18 = 14+2+2. 

We define the set 𝐶(6) = {1,2,5,14,42,132} , consisting of the Catalan numbers which are less than orequal to 255. 

Furthermore, we consider the sets  

𝐶𝐹 =   𝐶(6)𝐹(12)={1,2,3,5,8,13,14,21,34,42,55,89,132,144 ,233} 

and 

𝐶𝐿 = 𝐶(6)𝐿(12) =  1,2,3,4,5,7,11,14,18,29,42,47,76,123,132,199 . 

We use the sets 𝐶𝐹 and 𝐶𝐿 for the representation of the color values of each pixel. Using the set  CF forthe representation 

of the color values of each pixel, we create 15 virtual bitplanes, 3 more than the numberof bitplanes produced by the 
Fibonacci method. Using the set 𝐶𝐿, we create 16 virtual bitplanes, 4 more  than the Fibonacci and the Lucas 

representation. In this way, more stego data can be embedded into theimage. 

The procedure for this method is as follows. Firstly, each pixel value is represented by its decimal value.Then, this value is 
converted using 𝐶𝐹  (or 𝐶𝐿 ) numbers, to 15 (or 16) bitplanes. So, the message can beembedded in the last bitplane (as in 

LSB) as well as in higher bitplanes. 

Measures and results 

We examine the effectiveness of our methods, by comparing the quality of the correspoding (resulting)images. The 
implementation of our method is done using our own application (Crypto ver. 1.2), which ispowered by MATLAB software. 
As test image, we use the three grayscale images: baboon, airplane andpepper. (Figure 2). 
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Fig 2: Test Images 

We create four stego images, each one using a different method (LSB, Fibonacci, Lucas, Catalan-Fibonacci, Catalan-
Lucas method). 

We use two metrics to compare the various image techniques: The Mean Square Error (MSE) and thePeak Signal to 
Noise Ratio (PSNR). A lower value for MSE means lower error, and as seen from the inverserelation between MSE and 
PSNR, this translates to a high value of PSNR. MSE is the cumulative squarederror between the stego image and the 
original image and is defined as follows: 

𝑀𝑆𝐸 =
1

𝑚𝑛
  [𝐼 𝑖, 𝑗 − 𝐾 𝑖, 𝑗 ]2

𝑛−1

𝑗 =0

𝑚−1

𝑖=0

, 

where 𝐼and 𝐾are two 𝑚 × 𝑛monochrome images, where one of the images is considered to be a noisyapproximation of 
the other. 

PSNR is given by the formula: 

𝑃𝑆𝑁𝑅 =  10 log10
  
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
  , 

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image. When the pixels are represented using 8bits per sample 

the value of 𝑀𝐴𝑋𝐼is 255. 

We present the measures of PSNR, when embedding data in more bitplanes, in tables 1, 2, 3, 4, 5, 6 and7.For pages 
other than the first page, start at the top of the page, and continue in single-column format.  

In the next tables and in columns 2, 3, 4, 5 and 6, we see PSNR measurements for each method. We cansee that our 
method improves the performance of the image quality, when compared to the simple LSB andthe Fibonacci methods. 
Moreover, the Lucas sequence and the sets CF and CL give better results than theLSB and Fibonacci methods, when we 
embed data in higher bitplanes. Of all the methods, the one usingthe set CL seems to give better results. More 
specifically, the PSNR value in the Lucas method and in theCatalan-Lucas method is increased by about 2.5% and 13% 
respectively, compared to the Fibonacci method,while the Catalan-Lucas method improves the PSNR value of the 
Catalan-Fibonacci method by about 5%.In figure 5, we can see an average PSNR comparison and in figure 6, we see 
what happens to the picture when we overflow the image with stego data 

Table 1. Measures for image using 1 bitplane (Last). 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 76.29 76.29 76.29 76.29 76.29 

324 73.37 73.37 73.37 73.37 73.37 

576 71.19 71.19 71.19 71.19 71.19 

784 69.44 69.44 69.44 69.44 69.44 

1024 67.99 67.99 67.99 67.99 67.99 
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Table 2. Measures for image using 2 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 72.21 72.21 72.21 72.21 72.21 

324 69.16 69.16 69.16 69.16 69.16 

576 67.06 67.06 67.06 67.06 67.06 

784 67.06 67.06 67.06 67.06 67.06 

1024 67.06 67.06 67.06 67.06 67.06 

 

Table 3. Measures for image using 3 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 64.99 69.16 69.16 69.16 69.16 

324 61.88 66.07 66.07 66.07 66.07 

576 59.83 64.01 64.01 64.01 64.01 

784 58.19 62.35 62.35 62.35 62.35 

1024 56.80 60.96 60.96 60.96 60.96 

 

Table 4. Measures for image using 4 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 61.01 64.99 66.85 64.99 66.85 

324 57.88 61.88 63.74 61.88 63.74 

576 55.84 59.83 61.68 59.83 61.68 

784 54.20 58.19 60.04 58.19 60.04 

1024 52.82 56.80 58.65 56.80 58.65 

 

Table 5. Measures for image using 5 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 54.01 61.01 52.82 61.01 64.99 

324 50.88 57.88 59.02 57.88 61.88 

576 48.84 55.84 56.98 55.84 59.83 

784 47.21 54.20 55.34 54.20 58.19 

1024 45.83 52.82 53.96 52.82 56.80 
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Table 6. Measures for image using 6 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 48.50 56.86 58.27 57.46 62.56 

324 45.36 53.76 55.14 54.76 59.67 

576 43.33 51.68 53.10 52.84 56.98 

784 41.70 50.07 51.47 51.03 55.48 

1024 40.32 48.65 50.09 49.14 53.97 

 

Table 7. Measures for image using 7 bitplanes. 

stego bits 
PSNR 

(LSB) 

PSNR 

(Fibonacci) 

PSNR 

(Lucas) 

PSNR 

(Catalan-
Fibonacci 

PSNR 

(Catalan-
Lucas) 

196 38.86 52.68 54.17 56.19 59.27 

324 36.75 49.54 50.88 53.08 56.14 

576 34.93 49.54 48.84 51.02 54.10 

784 33.62 45.87 47.21 49.39 52.47 

1024 31.26 44.50 45.83 48.01 51.09 

 

In figure 3, we can see an average PSNR comparison and in figure 4, we see what happens to the picture when we 
overflow the image with stego data 

 

 

 

Fig 3: Average PSNR comparison 
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Fig 4:Worst cases comparison 

Conclusions 

Our methods using Lucas, Catalan-Fibonacci and Catalan-Lucas numbers are superior over the Fibonaccidata hiding 
technique. In the classical LSB technique it is only possible to embed secret data just inthe first few bitplanes, since image 
quality becomes radically deteriorated when embedding data in higherbitplanes. Battisti et al. (2006), Sandipan et al 
(2007) proposed an improvement over this by using Fibonacciembedding technique and our method, using a greater set 
of virtual bitplanes, increases the number of stegobits that can be embedded when an image should be regarded as a 
stego image. Besides, apart from theLSB method, in which the tracking of data is easy (if there is suspicion of course), the 
Fibonacci, Lucas, CFand CL methods offer a kind of encryption, through the way that they conceal the bits in more 
bitplanes. Particularly, our method enables a large number of bitplanes, offering not only more space for our stego databut 
also increased security towards steganalysis software. 
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