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ABSTRACT 

We propose a novel compressed sensing method to retrieve cerebral vascular image for spectral-domain optical 
coherence tomography (SD OCT). The compressed sensing method based on l1 norm minimization is applied to 
reconstruct each A-scan data. The proposed method uses about 25% of the total data as required in traditional SD OCT to 
reconstruct the cerebral angiograpy. Therefore this method is favorable for high speed imaging for cerebral angiograpy. It 
is shown that the proposed method can achieve better performance of axial resolution and higher signal-to-noise ratio 
(SNR) as compared with the conventional methods. 
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INTRODUCTION  

Optical coherence tomography (OCT) is a noninvasive optical imaging technology born in 1991[1]. Due to 
characteristics of non-invasive, high resolution (less than 10µm), fast imaging speed, no radiation damage and etc., OCT 
has become a research hotspot in the field of biological tissue imaging and is considered to be a promising nondestructive 
in vivo optical imaging tool. OCT has been used widely in modern medical diagnostics, such as eye disease, early 
diagnosis of tumors, early diagnosis of bone arthritis and .etc. In recent years, due to its better sensitivity and faster 
imaging speed compared to time domain OCT (TD OCT), spectral-domain OCT (SD OCT) has replaced conventional TD 
OCT in many medical applications[2]. 

Applications of SD OCT to cerebral blood flow imaging has become a new hotspot. Cerebrovascular disease is one of 
the main diseases of mortality and disability, which has always been among the top three disease resulting in human 
death. Cerebral blood flow information is an important index for the diagnosis of cerebral vascular diseases. High spatial 
resolution, on the order of micrometers, is necessary to distinguish micrometer-scale vessels (arterioles, venules, 
capillaries) and individual columns. The resolutions of PET and fMRI are too low to distinguish these components. Due to 
high spatial and time resolution, SD OCT provides a new technique for the detection of cerebral blood flow. However, the 
plaques, electromagnetic and scan noise of SD OCT system decreses the imaging quality, which causes cerebrovascular 
imaging fuzzy and background separation, and affects the detection of cerebral vascular distribution and brain blood flow. 

Since 2006, compressed sensing(CS)[3,4] has become a new research hotspot because of its potential ability to 
significantly reduce the amount of data acquisition in the area of mathematics and signal processing. CS has been applied 
in medical imaging such magnetic resonance imaging (MRI)[5] and photo-acoustic tomography[6,7]. Until recent years, CS 
has been introduced in OCT reconstuction[8,9]. SD OCT uses a spectrometer and a linear array CCD to obtain the 
interferogram. However, to achieve a larger imaging depth with a given axial resolution, it requires more pixels in the array 
detector to capture the spectral interferogram, which not only limits the imaging speed but also significantly increases the 
data processing and storage burden[3].  

In this thesis, the SD OCT system is established and applied to reconstruct cerebral vascular image for a rat. We 
propose a novel CS method to reconstruct cerebral vascular image. A random mask is generated for CS reconstruction, 
which enables random undersampling directly from an original interferogram to get a only a small fractional of points. The 
total amount of data to be transferred and processed can be dramatically reduced. And the signal-to-noise ratio of the CS 
reconstructed cerebral vascular image can also be improved. Therefore, the CS is favorable for high speed cerebral 
angiograpy imaging of SD OCT. 

Method and Materials 

System Setup 

Figure 1 depicts the schematic diagram of the established SD OCT setup to reconstruct cerebral vascular image of a 
rat in vivo. We use a broadband superluminescent diode (SLD 371-HP, Superlum Diodes Ltd.) as light source that has a 
~45 nm effective bandwidth centered at 835 nm. Maximum output power of the source is 12 mW. The light is coupled into 
the fiberbased Michelson interferometer via a broadband optical circulator (Thorlabs). In the reference arm, the light is 
delivered onto a stationary mirror. In the sample arm, the light is focused into the sample by an objective lens (f = 75 mm) 
with a focused spot of 15 μm. An X-Y galvanometer scanner (6215H, Cambridge Technology) is used to scan the probe 
beam transversely over the sample. Light returning from the sample and reference arms are recombined in the fiber 
coupler and the output interference signal is routed into a custom-built spectrometer via the optical circulator. The 
spectrometer consists of a 60mm focal length achromatic collimating lens (OZ Optics), a 1200 lines/mm transmission 
grating (Wasatch Photonics), and a 150-mm focal length achromatic focusing lens (Edmund Optics) that images the 
spectral interference onto a line-scan CCD camera (ATMEL AVIIVA SM2), with a maximum line scan rate of 29 kHz. The 
spectral resolution of the spectrometer with the camera (2048 pixels, with each pixel at 14μm×14μm in size and 12-bit in 
digital depth) is 0.0674 nm. The measured axial resolution is 6.8μm. The spectral data are transferred to a computer via a 
high-speed frame grabber board (PCIe-1430, National Instruments) for data processing. 

 

Fig. 1 Schematic of the spectral domain OCT system used to monitor rat’s cerebral vascular image. 
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Animal Preparation 

An adult Sprague-Dawley rat weighing 250±20 g (from Zhejiang Animal Center) is anesthetized with an intraperitoneal 
injection of urethane (800 mg/kg). After a rat is anesthetized, a midline scalp incision is made and the parietal bone 
overlying the sensory cortex is thinned, leaving a thin translucent cranial plate covering an area of 3 mm×5 mm centered 
2-mm caudally and 2-mm laterally to the bregma. After the animal operation, the rat is fixed in a stereotaxic apparatus, 
and the data for cerebral vascular image of pial arteries can be achieved in vivo. 

SD OCT CS Reconstruction 

The SD OCT CS reconstruction is realized by solving an optimization problem that minimizes the L1 norm of the 
transformed image:  
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Where   is a wavelet transform used to calculate the wavelet sparsity, TV is the total-variation norm used to calculate 

the finite-difference sparsity, the values of a  and 


provides the relative weighting of the wavelet sparsity and finite-

difference sparsity, respectively, m is the reconstructed image, Mx  is the measured k-space data, uF
 is the 

undersampled Fourier transform, and   is the threshold parameter used to control the fidelity of the reconstruction 
relative to the measured k-space data. Minimize both the L1 norm in wavelet domain and the TV norm in total variation 
domain can promote the sparsity and realize a nonlinear edge-preserving denoising. The constraint 

-F m Mx
u

 enforces the data consistency. 

The constrained convex optimization problem in Eq. (1) was solved by considering its unconstrained form described as 
follows: 

1
( ) uminimize a m TV m F m Mx   

                                            (2) 

The nonlinear conjugate gradient and backtracking line-search method was applied to solve the unconstrained problem 
as described in Eq. (2). In our experiment, we use 2D wavelet transform to calculate the wavelet sparsity.  

The input interferograms of SD OCT are random subsampled by a mask.For each interferogram, the maximum and 
minimum data points are firstly selected during each period, and then undersampled at a certain rate in a random manner 
to further reduces the required data. Fig.2 gives the interferogram of the 100th x-axis and the red point is the samples(512 
points). This undersampled points of each x-axis are then linear interpolated, and all interpolated points are finally 
introduced into the CS reconstruction. The variable density random sampling with undersampling rate of 0.8, which 
samples less where the spectral intensity of interferogram is small and samples more where the spectral intensity is large, 
is used to select points to further reduce the required data amout to about 25 percents.  
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th
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Experimental results 

Fig3 shows the structural image of cerebral vascular image with different methods. Fig3.(a) is the original 
reconstructed image without interpolation. Fig3.(b) shows the reconstructed image with interpolation. Fig3.(c) gives the 

resultant image using the proposed CS method. The parameters of a  and   are 0.005 and 0.002 respectively. It is 
clearly that the axial resolution of the structural image of cerebral vascular image is greatly improved over the original 
method without interpolation using the proposed CS method. Because the noises of the background of the image are 
suppressed by the the proposed CS method, the SNR advantage of can be cleatly observed compared to the orignal 
method without and with interpolation. It is worth mentioning that the the proposed CS method does not show 
undersampling coherent alising. Fig4 shows another OCT structural images of cerebral vascular image with different 
methods, which gives similar results. The above results show that the proposed compressed sensing method can achieve 
high resolution and high SNR structural image of cerebral vascular image with a small amount of data. 

          

(a) original method without interlation      (b) original method with interlation  (c) the reconstructed image of the 
proposed CS method. 

Fig3. shows another OCT structural images of cerebral vascular image with different methods. 

         

(a) original method without interlation  (b) original method with interlation (c) the reconstructed image of the 
proposed method.  

Fig4. shows another OCT structural images of cerebral vascular image with different methods. 

Conclusion 

In conclusion, a novel compressed sensing method is developed to reconstruct the structural OCT images of cerebral 
vascular image. It is shown that the proposed CS method can achieve the even better performance of resolution than the 
interpolation with about 25% of the total data and higher SNR, which is favorable for high speed imaging of cerebral 
vascular image both SD OCT and SS-OCT. 
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