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ABSTRACT: 

In this work, when dealing with transmission-gate-based master-slave (TGMS) flip-flops (FFs), a reconsideration of the 
classical approach for the delay, power, and area minimization is worthwhile to improve the performance in high-speed 
designs [1]. In particular, by splitting such FFs into two sections that are separately optimized and then reconciling the 
results, the emerging design always outperforms the one resulting from the employment of a classical Logical Effort 
procedure assuming such FFs as a whole continuous path[1]. Simulations have been performed at transistor level on 
several well-known TGMS FFs, designed in 65-nm and 90nm technologies using Microwind3.1 CAD tool, and the results 
have been compared to validate the correctness of such a procedure and of the underlying assumptions. Significant 
improvements have been found on delay, power and on area occupation, thus showing that this approach allows correctly 
dealing with the actual path in such circuits and hence to more properly steering the design towards the achievement of 
efficiency in the high-speed region[1]. 
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1. INTRODUCTION:  

Flip-Flops (FFs) are the basic building blocks  of  data  path structures. Indeed, they allow for the storage of data processed 
by combinational circuits and the synchronization of operations at a given clock frequency [1]. Due to their multistage 
structure, high clock switching activity, and increasing portion of clock period occupied by their timing latency, the  speed  
and  energy  of  FFs  significantly  affect  the  overall  performance  of  a  data  path  [2],  [3]. Optimal FF design strategies 
are usually based on automated algorithms embedded directly into simulators [1], [3], [4]. These algorithms are powerful  
methods  to  optimize  constraints  such  as  speed,  energy  consumption,  or  energy-delay  products,  even  for 
complicated  FFs consisting of several internal nodes. Moreover,  they  also allow  to account  for  the  joint optimization of 
FFs  and  clock  networks, for instance, through  a  proper clock slope  setting [5]. Of course, the resulting design strategies 
will depend on the specific FF topology and on the design constraint to be optimized. The appropriate choice of flip-flop (FF) 
topologies is of fundamental importance in the design of VLSI integrated circuits and, in particular, of both-speed and low-
energy Microprocessors. Indeed, FFs affect the clock frequency, since their delay occupies a significant fraction of the clock 
Cycle, especially in fast micro-architectures with low logic depth [2]. Moreover, together with the circuits devoted to the clock 
generation and distribution, FFs are part of the clock network, which is responsible for 30%–50% of the whole chip energy 
budget .Latches and flip-flops are basic  sequential  elements  commonly  used  to  store logic  values and  are  always  
associated  with  the  use  of clocks and clocking networks. 

In  low-energy,  constant  throughput  system,  the  supply  voltage  is  often  scaled  down  to  minimize  the  energy 
consumption. The design of the clocking subsystem-register elements and clock distribution network-has to be resistant to 
noise   and timing failures for robust circuit operation. Noise robust designs are usually fully static or pseudo-static .As  a  
result,  reducing  the  power  consumed  by  flip-flops  will  have  a  deep  impact  on  the  total  power  consumed.  In 
addition,  from  a  timing  perspective,  flip-flop  latency  consumes  a  large  portion  of  the  cycle  time  while  the  operating 
frequency increases. Accordingly, flip-flop choice and design has a profound effect both in reducing the power dissipation 
and in providing more slack time for easier time budgeting in high-performance systems. FFs  can  be  basically  split  into  
two  topological  categories:  Pulsed  FFs  and  MSFFs  [7].The  former  feature  an internally or externally  generated  time 
window during which the FF is transparent to the input data. 

In this work, large number of Master-Slave flip-flops and DET topologies having less power dissipation, delay and energy in   
65nm and 90nm CMOS technology have been proposed. 

2. TRADITIONAL METHOD: 

Traditionally, Logical Effort (LE) optimization is carried on by looking at the whole circuit as a unique    uninterrupted path 
[1], [6]. Actually, it has been shown that for this specific class of circuits, the problem of delay minimization has to be 
looked at from a different perspective by resorting to a novel approach, which gets inspiration from preliminary 
considerations in [8]. The LE basis is still exploited but, unlike the traditional methodology, TGMS FFs are split into two 
overlapping sections and two different paths that are separately optimized. In particular, the paths considered are the first 
part of the one considered in the traditional methodology and the clock-to-output one. As will be shown, breaking the data-
to-output path instead of considering it as a whole leads to the actual delay minimization. Remarkably, also energy 
consumption and area occupation of the resulting designs are always significantly lower than those obtained with the 
traditional LE method. Therefore, this means that the actual path effort of TGMS FFs is more properly handled through 
such a new approach, whereas the traditional one fails to correctly catch it. These considerations can be practically 
exploited when sizing these circuits in the high-speed energy-efficient design region, i.e., as a base (or as a starting point) 
when accounting also for energy in the minimization of energy-delay products, where is significantly larger than .The 
remainder of this paper has been organized as follows. In Section II, the main definitions about FFs timing have been 
clarified and applied to the case of TGMS FFs. In Section III, the novel approach has been discussed by revisiting the 
method of LE. Three TGMS FFs have been designed to exemplify the proposed approach. Comparisons with the 
traditional design strategy and with the results of a simulations-driven optimization have been carried out. 

3. PROPOSED METHOD: 

The proposed approach suggested in this work breaks up the optimization in two steps[1]. In particular, two LE 
optimizations have been carried out to minimize the delays from input to node (path1) and from (enabling the Slave TG) to 
output (path 2), and then the results have been reconciled[1]. In the authors’ opinion, such an approach is intuitively 
justifiable since the signals coming from and which traverse block would experience a different effort according to the 
classic interpretation[1]. Hence, though blocks and nearly contemporarily act when the condition is satisfied, two distinct 
overlapping paths can be identified. Such paths are not simply restricted to master and slave sections[1]. Indeed, the first 
delay (up to node) is influenced by the enabled block in the slave (and hence by the input capacitance of the gate that 
follows block) and the second delay is influenced by the resistance introduced by block[1] .According to the above point of 
view, the overall path effort is hence more appropriately broken into two separate contributions and, rather than according 
to the minimum is actually found according to notation means that the delay is optimized by applying the LE method[1].  
Two sets of LE parameters have to be derived for paths 1 and 2, and condition (2) is applied to both paths[1]. Note that 
the input capacitance of the gate following block is considered as the final load for path 1, while blocks  represent the first 
stage for path 2[1].Further arrangements are necessary to properly define the LE equations according to the FF topology 
(the examples in the next section clarify many practical aspects). Nevertheless, it is anticipate that, by separately 
optimizing path 1 and path 2 and then reconciling the results, a unique possible size for blocks and (and hence for all of 
the other gates) comes out, just like in the traditional LE approach[1]. 
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3.1 Circuit Styles: 

In the Master-Slave FFs, circuits are driven by complementary clock signals. The master-slave flip-flop comprises a master 
stage and slave stage. The master-slave configuration has the advantage of being edge-triggered, making it easier to use in 
larger circuits, since the inputs to a flip-flop often depend on the state of its output. This eliminates the possibility of 
ambiguous outputs, which can occur in single-element flip-flops as a result of propagation delays of the individual logic of 
ambiguous outputs, which can occur in single-element flip-flops as a result of propagation delays of the individual logic input 
with same clock pulse[1]. 

The Three MS (master-slave) topologies considered are as follows: 

A. Transmission Gate FF [1] (TGFF) 

B. Write-Port Master-Slave FF [1] (WPMS) 

C. Clocked CMOS Flip-Flop [1] (C
2
CMOS) 

3.2 Transmission Gate Flip-Flop: 

A Flip-Flop can be designed as a latch pair, where one is transparent-high, and the transparent-low. Master-Slave Flip- 
Flops based on transmission gates are the best when energy is the main concern. The edge-triggered flip-flop is built from 
two D-type level-triggered latches. Both latches are enabled with opposite polarity of the clock signal: The second (or 
slave) latch is controlled by the clock signal, while the first (or master) latch is enabled by the negated clock. The 
Transmission-gate flip-flop with input gate isolation is derived from the power PC603 latch-pair , where the input gate 
isolation is added for better noise immunity. An additional inverter at the output of the TGFF provides non-inverting 
operation[1]. 

In this TGFF, we use the transmission gates for both master and slave latches as shown in fig.1. It is one of the fastest 
classical structure. Its main advantage is the short direct path and the low power feedback. The large load on the clock will 
greatly affect the total power consumption of the flip-flop. This flip-flop is the transmission gate flip-flop; it has a fully static 
master-slave structure, which is constructed by cascading two identical pass gate latches and provides a short clock to 
output latency. It has a poor data to output latency because of the positive setup time. Moreover, it is sensitive to clock 
signal slopes and data feed through. This adds another concern when using it[1]. 

Clocked capacitances should be minimized in order to reduce the clock load. The method of logical effort [6] is used in 
transistor size optimization. The path in the TGFF responsible for the CLK-Q delay is depicted. The off-path capacitance, 
Coff-path is equal to the gate capacitance of two minimum width feedback transistors. Keeper transistors in the feedback 
of both master and slave latches are of minimal width. Minimum sizing of the master stage minimizes the energy 
consumption with little impact on the setup time[1]. 

 

 

Figure1: (a) Schematic of the TGMS FF proposed in [1]. LE parameters according to the (b) traditional and (c) 
proposed approaches[1]. 



ISSN 2277-3061  
 

2390 | P a g e                                                           O c t  1 5 ,  2 0 1 3  

 
 

3.3 Write-Port Master-Slave Flip-Flop: 

Write-Port Master-Slave latch has the structure devoid of PMOS in its pass gate. Despite of this advantage, this latch 
shows worse performance and power consumption than TGFF. This is partly due to the adoption of NMOS. Pass-
transistors and typically non-gated Keepers but also to the impact of the longer internal wires are needed[1]. 

 

Figure2: Schematic of the WPMS FF [1] 

In this circuit n-MOS only clocked transistors are used to reduce energy consumption. However on-path inverters, which 
are interrupted by clock signals at, respectively slow down the flip-flop and increase the energy consumed. On-path 
inverters do not receive a clock signal; the operation speed is increased while energy consumption is decreased. By 
removing the clock signal from the on-path inverters timing interruptions are removed that would otherwise slow down the 
flip-flop. Also by removing the clock signal from the on-path inverters, the energy consumption required for the flip-flop to 
operate is reduced. Transmission-gate transistors provide very low-energy consumption and relatively short delay. The 
transmission-gate transistor is serially connected to flip-flop input D of the inverter and the transmission-gate transistor is 
connected between two inverters. Small n-MOS transistors are placed in parallel with each of the transmission-gate 
transistors to compensate for a voltage drop when a logic level 1 is propagated through the transmission-gate 
transistors[1]. 

Transistors are serially connected with each small n-MOS transistors to further reduce energy consumption by not pulling-
up voltage levels of the flip-flop. The master latch includes the first pair of parallel-connected inverter, the transmission-
gate transistor, and the small n-MOS transistors. The Slave latch includes the inverter, the transmission-gate transistor 
and the small n-MOS transistors and output inverter. When logic 0 is present on the clock signal, the logic level on the 
input D disables the slave latch. The slave latch is enabled and the master latch is disabled when a logic level 0 is present 
on the clock signal. Once enabled, the logic level of the output will be the inverted logic level of the stored logic level 
present at the WPMS has minimum delay, energy-delay product and minimum energy worse than the TGFF[1]. 

3.4 Clocked CMOS Flip-Flop: 

(A Clock-Skew Insensitive Approach) 

An ingenious positive edge-triggered register that is based on a master-slave concept insensitive to clock overlap as 
shown in Fig3 has been proposed. This circuit is called the C

2
CMOS (Clocked CMOS) flip-flop which operates in two 

phases: when clk=0, the first driver is turned on, and the master stage acts as an inverter sampling the inverted version of 
D on the internal node X. The master stage is in the evaluation mode. When clk=1, the master stage section is in hold 
mode, while the second section evaluates. The previous value stored is propagated to the output node through the slave 
stage, which acts as an inverter[1]. 

 

Figure3: Schematic of the C
2
MOS  FF [1] 
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In this work, it has been shown that C
2
MOS circuits, due to their low power consumption and the ability to apply 

pipelining at much finer level, can be used to build very high throughput circuits with low power consumption. 

4. SIMULATION RESULTS: 

The comparison table for before and after splitting the design examples in 90nm & 65nm technology have been presented 
in this section. 

Table1: Comparison table for before and after splitting the design examples in 90nm technology 

Design examples Splitting 

 

Power (µW) 

 

 

Delay (ns) 

 

 

PDP(10
-15

W-s) 

 

 

Area(µ sq .m) 

 

TGMS FF Before 68.25 0.36 24.57 138.75 

After 30.00 0.30 9.00 109.67 

WPMS FF Before 424.00 0.85 360.40 267.52 

After 252.00 0.44 110.88 171.56 

C
2
MOS Before 329.00 0.17 55.93 303.43 

After 36.74 0.16 5.87 285.24 

 

 

Figure4: Comparison chart for before and after splitting the design examples in 90nm technology 

 

Table2: Comparison table for before and after splitting the design examples in 65nm technology 

Design 
examples 

Splitting 

 

Power (µw) 

 

 

Delay (ns) 

 

 

PDP(10
-15

ws)
 

 

 

Area(µ sq.m) 

 

TGMS FF Before 9.57 0.25 2.39 68.62 

After 7.26 0.24 1.74 59.21 

WPMS FF Before 55.45 0.63 34.93 136.66 

After 38.44 0.35 13.45 84.39 

C
2
MOS Before 55.30 0.09 4.97 146.56 

After 3.56 0.08 0.28 138.42 
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Figure5: Comparison chart for before and after splitting the design examples in 65nm technology 

5. CONCLUSION: 

A reconsideration of the classical approach for the delay, power, and area minimization to improve the 
performance in high-speed designs have been achieved  by splitting such FFs into two sections that have been separately 
optimized and then reconciling the results. Simulations have been obtained at transistor level on several well-known 
TGMS FFs, designed in 65-nm and 90nm technologies using Microwind3.1 CAD tool. Significant improvements have been 
found on delay, power and on area occupation, thus showing that this approach realizes high performance designs. 
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