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ABSTRACT

At present, the conjugate gradient (CG) method of Hager and Zhang (Hager and Zhang, SIAM Journal on Optimization,
16(2005)) is regarded as one of the most effective CG methods for optimization problems. In order to further study the CG
method, we develop the Hager and Zhang's CG method and present two modified CG formulas, where the given formulas
possess the value information of not only the gradient but also the function. Moreover, the sufficient descent condition will
be holden without any line search. The global convergence is established for nonconvex function under suitable
conditions. Numerical results show that the proposed methods are competitive to the normal conjugate gradient method.
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1 INTRODUCTION

Consider the following unconstrained optimization problem

min f (x), (1.1)

xeR"

where f :1R" 5> R is continuously differentiable. The nonlinear conjugate gradient method is one of the most effective

line search methods for (1.1) because of its simplicity and its very low memory requirement. This method can avoid, like
steepest descent method, the computation and storage of some matrices associated with the Hessian of objective
functions. The following iterative formula is often used by CG method

Xeq =X+ d k=12,... (1.2)
where X, is the current iterate point, 7, > 0 is a steplength, and d, is the search direction defined by

g+ S, if k21
dk+l: gk 1 ﬂk k - (13)
Oy if k=0’

where g, is the gradient of f (X) atthe point X, , and B, e Ris a scalar which determines the different
conjugate gradient methods. These based conjugate gradient methods [12, 17, 18, 27, 35] are equivalent

(see [13, 48] etc) in the linear case, namely, when f is a strictly convex quadratic function and a, is
calculated by the following exact minimization rule: the step size &, is chosen such that

f(x, +d,) :ryzlg] f(x, +ad,) (1.4)
One of the most efficient formula for ﬁk is the following PRP method [35]

ﬂ PRP __ g:+l(gk+1_gk)
k i 2
o]

where @, and 0, are the gradients Vf (X,) and Vf(X,,,) of f(X) atthe point X, and X, ., , respectively,

: (1.5)

and |||| denotes the Euclidian norm of vectors. For its convergent results, Polak and Ribiere [35] presenteded the global

convergence with the exact line search for convex functions. Powell [36] gave a counter example to show that there exist
nonconvex functions on which the PRP method does not converge globally even using the exact line search. He

suggested that ﬂk should not be less than zero, which is very important to ensure the global convergence (see [13, 37]).
Considering the above suggestion, Gilbert and Nocedal[19] proved that the modified PRP method

L. =max 0, ﬂkPRP is globally convergent with the WWP line search under the assumption of sufficient descent

condition.
From the literature, one hopes to find the steplength &, using the following weak Wolfe-Powell (WWP) line search
T
f(x +ad,) < f +52,0,d, (1.6)
And
T T
g(x +«d,) d >0o9,d,, (1.7)

where 6 €(0,1/2), and o € (J,1) . However, the global convergence of the PRP conjugate gradient method is still

open with the above WWP conditions. Some formulas which possess the global convergence property (such as ﬁkDY
[12]) with the WWP did not perform better than the performances of the PRP method in numerical computation. Based
,BkDY , Dai and Yuan [14] use the WWP condition and propose an efficient conjugate gradient method. Over the past few
years, much effort has been put to find out new formulas for conjugate methods such that they have not only global
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convergence property for general functions but also good numerical performance (see [13, 19]). Thus, any new conjugate
gradient method should at least satisfy one of the following conditions [41]:

(i) The method with the WWP line search rule (or other line search rules) has some strongly convergent properties, at
least, the method with the formula and the WWP line search rule (or other line search rules) may generate a descent
direction at each iteration, and converges globally.

(ii) The average performances on the numerical computation of the formula with WWP line search rule (or others)should
not be much inferior to the ones of the PRP.

The following sufficient descent condition

grd, <—c|g,|", ¥ k=0and some constantc >0 (1.8)

is often used to analyze the global convergence of the nonlinear conjugate gradient method with the inexact line search
techniques. Toouati-Ahmed and Storey [1], Al-Baali [2], Gilbert and Nocedal [19],and Hu and Storey [28] hinted that the
sufficient descent condition may be crucial for conjugate gradient methods. In order to ensure the sufficient descent
condition and establish the convergence of the PRP method, Grippo and Lucidi [21] presented a new line search rule.
Resent years, some good results on the nonlinear conjugate gradient method are given (see [3, 9, 25, 42]). But for some
methods which have been studied in the optimization area, such as the steepest descent method and the Newton method,

the descent properties or the sufficient descent properties are independent of line searches. Is there any nonlinear
conjugate gradient formula which possesses the sufficient descent property (1.8) without any line search? Many authors
answer this question positively (see [21, 23, 24, 43, 44, 45, 46, 47, 49, 53, 56]etc.). For instance, Zhang, Zhou, and Li [56]
presented a modified PRP method with

-9+ A -Gy, if k=1
dk+1 T ) (1.9)
_gk+1 ’ |f k = 0,

i
20d - y. B ) W .
where 3k =———= . Itis not difficult to get dk 0, = —||gk|| . This method can reduces to a standard PRP method if

A

exact line search is used, its global convergence with Armijo-type line search is obtained, but fails to WWP line search.
Based on [11], Hager and Zhang proposed a new conjugate gradient method [23]

~Gia t A d if k=1

G — (1.10)
B |-9.... if k=0,
2
: [
OV —2°7--5,)
h = 5 = dy, = Thi hod hat d
where ﬁk = Ty y S = X — X, and 'y, =g,,; —0, . This method can guarantee that 0,
k Yk

/. 2
provides a descent direction of f at X, . Moreover, d, satisfies dkTgk < —§||gk|| . This method can be regarded as

a modified HS method and possess global convergence with WWP line search. Furthermore,they gave another more
effective CG formula [24]

HZ* HZ
. =max B¢ ,

-1

where ¢, = - and ¢ >0 is a constant. Numerical results show that this method is better than the
2] min <o

others conjugate gradient methods (such as the PRP, the PRP+, the HS, and the DY, etc.)and the limited memory BFGS
method (see [23, 24] in detail). Today, this method (1.10) is considered to be one of the most effective algorithm.
Therefore, any new conjugate gradient method should satisfy the following two conditions:

(i) The method with the WWP line search rule (or other line search rules) has some strongly convergent properties, at
least, the method with the formula and the WWP line search rule (or other line search rules) may generate a sufficient
descent direction at each iteration, and converges globally.

(j)) The average performances on the numerical computation of the formula with WWP line search rule (or others)
should not be much inferior to the ones of the HZ ™ .
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In this paper, we design two new CG formulas to satisfy the above conditions. The main attributes of this paper are as
follows.

* The given method possesses the the sufficient descent property without any line search technique.

* The global convergence of the new methods is established for nonconvex function.

* Numerical results show that these two methods are competitive to the HZ ™ method.

In the next section, motivation and algorithm are stated. The sufficient descent property and the global convergence of
the new method are proved in Section 3. In the Section 4, the numerical results are reported. One conclusion is stated in
the last section.

2. MOTIVATION AND ALGORITHM
In this section, we will give motivations based on the BFGS formulas and the line search technique,respectively.
2.1 Motivations based on BFGS formula

It is well known that the BFGS method is one of the most effective methods for unconstrained optimization problems.
There are many good results can be found (see [5, 6, 7, 8, 15, 29, 30, 32, 49] etc.). Where Wei,Yu, Yuan, and Lian [40]
presented a new BFGS update method generated by Taylor’s formula as follows:

B TB * K

Bei=B - kTSkSk . +ykTyk* , (2.1)
s, B,s S, Y
k =k*-k k Tk

where Y. :yk+||&sk and p, =2 T(x)— f(% +ad,) +(g% +ad)+g(x)) s, .. Underthe
Sk

I

assumption that the objective functions are uniformly convex ones, the superlinear convergence of the new BFGS
algorithm was given with the weak Wolfe-Powell (WWP) linesearch. Observing the quasi-Newton Equation

Be.iS = Vi (2.2)

which contains not only gradient value information but also function value information at the present and the previous step,
one may argue that the resulting methods will really outperform than the original method. In fact, the practical computation
shows that this method is better than the normal BFGS method (see [39, 40] for detail). Furthermore, some theoretical
advantages of the new quasi-Newton equation (2.2) can be seen from the following two theorems.

Theorem 2.1 (Lemma 3.1 [40]) Considering the quasi-Newton equation (2.2). Then we have for all k=1
F(x,)= f " L B
(%) = F (X)) + 9 (%) (X —Xia) +§ (X = Xs1) B (X —X4) -

Theorem 2.2 (Theorem 3.1 [31]) Assume that the function f (X) is suffciently smooth and ||Sk || is suffciently small, then

we have
« 1 4
SIGk+1Sk _SII Yi _ESI (TeuaSi)Sc = O(”Sk” ) (2.3)
and
T - 1 4
Sy Gk+lsk =S¢ Yk _Esk (Tk+lsk)sk = O(HSk ” ) (2-4)

where G, denotes the Hessian matrix of f at X,,; , T,,; isthe tensorof f atX,,, ,and

0 B (x, )
s (T...s.)s, = E — Tkl
« (TS S, i,j,|=1axlaija}[|

It can be seen that if the objective function f is uniformly convex, then

S:y;:s:yk+2 fk_fk+l + Oy T 0k TSk :25I9k+1+2(fk_fk+1)>o
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holds, where the last inequality is from the uniform convexity of f . Hence, the update formula (2.1)can ensure the

positive definiteness of the matrix Bk for uniformly convex function, and the superlinear convergence of this method has
been established. However, if f is a general convex function, then SE y; may equal to 0. In this case, the positive

definiteness of the update matrix Bk can not be sure.Moreover, the global convergence and the superlinear convergence

are still open for the general convexfunction. Motivated by the above observations, we study whether there exists another
guasi-Newtonformula whose approximation for the Hessian of the objective function is not inferior to those of the formula
(2.1) or the normal BFGS formula in some sense, which possesses the global convergence and the superlinear
convergence for general convex function and its numerical results are competitive to those of other similar methods. Now

we discuss p, for general convex functions in the following two cases:

casei: If p, >0 we have

Sy (yk ==, )= Sk Yv + O > Sk Y20 . (2.5)

s kll

case ii: If p, <0, we get
0>p, =2 f(x)—f(x +d) +(9(x, +akdk)+g(xk))T Sy
>-20,.,5 +(9(x +d)+g(x))"s, (2.6)
T
==5 Y

which means that S: Y > 0 holds. Therefore, we define the quasi-Newton equation as follows [or see [50]in detail]:

Bk+lsk 0 YL“ 1 (2.7)
x max p,,0
where Y, =Y, +Wsk ,and
k
B
Bk+1 e Bk Sksk yk (yk ) , (28)
S B Sk Sy yk

which can ensure B, ., inherits the positive definiteness of B, for the general convex function. The global convergence

and the superlinear convergence have been established for general convex functions.Numerical results show that this
method is interesting.Zhang, Deng, and Chen [54] presented the following quasi-Newton equation:

By..S yk =Y t A(Sk ) (2.9)
Where

E= 6 f(Xk)_ f(xk+l) +3 g(xk+1)+g(xk) ' Sk

s

They obtained the following modified BFGS-type update formula

(2.10)

T 3x 3T
By S« Sk Bx yk yk

Bk+1 = Bk -
=
Sy Bksk Yk Sy

This quasi-Newton equation (2.9) contains both gradient and function value information at the current and the previous
step too, one may argue that the resulting methods will really outperform than the original method. In fact, the practical
computation shows that this method is better than the normal BFGS method (see [54] for detail). Furthermore, some
theoretical advantages of the new quasi-Newton equation (2.9) can be seen from the following theorem.
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Theorem 2.3 (Theorem 3.3 [54]) Assume that the function f (X) is suffciently smooth and ||Sk || is suffciently small, then

we have
4

S (Geus —Yi ) =o(s | ) (2.11)

and
T 3

S (G — Vi) =o(ls ] ) - (2.12)

Similarly, we can define another quasi-Newton equation as follows
BeaSk = y:1m J

T ,\,mm

where y;"m =Y, +max K ,0 Sy - Itis not diffcult to deduce that S, Y, > 0 holds for generally convexk

functions.
Motivated by the above discussions and the conjugate gradient method HZ, the modified HZ formulas are to replace Y,

by y,f‘ and ylinm respectively. Namely the new conjugate gradient formulas are defined by

Qe T A if k21

d .= 2.13
k+1 _gk+l |f k b 0, ( )
and
-0, +4d, ,if k=1
W A (2.14)
—0pui if k=0,
e run_ I I ol
gk+l(yk -2 ST m Sk) gk+1(yk -2 ST mm Sk)
where S = — <k and g = Lok .In the following section,we
dy i dy i

state our algorithms.
2.2 Algorithms

The earliest nonmonotone line search framework was developed by Grippo, Lampariello, and Lucidi in[20] for Newton’s
methods. Many subsequent papers have exploited nonmonotone line search techniques of this nature (see [4, 26, 33, 51,
52, 57] etc.). Although these nonmonotone technique work well in many cases, there are some drawbacks. First, a good
function value generated in any iteration is essentially discarded due to the max in the nonmonotone line search
technique. Second, in some cases,the numerical performance is very dependent on the choice of M (see [20, 38]). Zhang
and Hager [55]presented a new nonmonotone line search technique defined by:

f(x, +d,)<C +6a9(x)"d,, (2.15)

9 (% +akdk)T d, 2O'g(Xk)T d, , (2.16)

where O<do<o<l , Cu= 7E +(; (%, + d) , Qe =mQy +1 '
k+1

M € Mein  Mwaxc » O min<Twax =1, C, = F(X),and Q, =1. it is not difficult to see that C,, is a convex

combination of C, and f (X,,;). Since C, = f(X,), it follows that C, is a convex combination of the function values

f(x), f(X,), -, f(X.). The choice of 7, controls the degree of nonmonotonicity. If 77, = 0 for eachK , then the

line search is the usual monotone Wolfe or Armijo line search. If 77, =1 for each K , thenC, = A, , where
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A=1>1()

is the average function value. Numerical results show that this technique is better than the normal nonmonotone
technique. Considering the efficiency of this technique, we will use this technique to find steplength &, . Based on the
above discussions, we state our algorithms as follows.

Algorithm 1(New-cgl)

Step 0: Choose an initial point X, € R",£€(0,1),0<0 <0 <L0<7 i1 < Wy <1. Set
d =-0,=-Vi(x),Q =1C, = f(x) k:=1.

Step 1: If ||gk ” < g, then stop; Otherwise go to the next step.

Step 2: Compute step size &, by line search rules (2.15) and (2.16).

Step 3:let Xy, = X, + &0, .1 |9y, < €. then stop.

Step 4: Calculate the search direction by (2.13)
Step 5: K: =k +1, and go to Step 2.
Algorithm 2(New-cg2)
Step 4 of Algorithm 1 is replaced by: Calculate the search direction by (2.14).
In the following section, we will show that the given two algorithms possess the sufficiently descent
property without any line search technique and the global convergence for the general functions.

3. THE SUFFICIENT DESCENT PROPERTY AND THE GLOBAL CONVERGENCE

With conjugate gradient methods, the line search typically requires sufficient accuracy to ensure that the search directions
yield descent [10, 22], Moreover, it has been shown [12] that for the Fletcher-Reeves [18] and Polak-Ribie -Polyak [34, 35]
conjugate gradient methods, a line search that satisfies the strong Wolfee conditions may not yield a direction of descent

2
for a suitable choice the Wolfe line search parameters, even for the function f(X) =ﬂ||X|| , where A >0 is a
constant. An attractive feature of these two conjugate gradient is that the search directions always yield descent.

Lemma 3.1 Consider (2.13) and (2.14), we have

gk+1dk+1 =- ||gk+l|| (3.1)
Proof. Since CI1 =—0, ,we get ng d1 = —||gl||2 , then (3.1) holds. For K =1, multiplying (2.13) by glﬂ ,we obtain
Okiibs = Hgk+1H + B¢ 9l
A [ N

_Hgk+1H2 + gIJrldk(

dy Vi (dg ye)? (32)
A N e P G 2|y (or..d)?
(deve)?

Let U== (dk V)0V =2(9,,d,) Yy, and use the inequality V'U < % (||V||2 +||u||2) we have
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2
+H29;-+1dk ylZnHz)

m m 1 1 m
ngYk d: Yk ngdk < E(HEdJYk gk+l
(3.3)

— @YY gl + 200l 2

7 2
this implies that g:Jrlkorl < —§||gk+l|| by considering the last equality of (3.2). Similarly, we can also get (3.1) from
(2.14). The proof is complete.

In the following we assume that J, # 0 for all k, for otherwise a stationary point has been found.The following

assumptions are often used to prove the convergence of the nonlinear conjugate gradient methods (see [18, 27, 35, 43,
49] etc.).

Assumption 3.1 (i) The level set Q= X e R" | f(x) < f(X,) isbounded, where X, is a given point.

(i) In an open convex set Qo that contains 2, f has a lower bound, is differentiable, and its gradient g is Lipschitz

continuous, namely, there exists a constant L > 0 such that
laC)-g<Lix=y|, vxyeQ,. (3.4)

Lemma 3.2 Suppose that Assumption 3.1 holds. Let the sequence (, and dk be generated by Algorithm 1. Then

_oloid
akzl—a‘ . Z‘ (3.5)
L ldd]
and
m. -0 2
sty 22 g @9)
Hyf‘” <2L|s| (3.7)
hold.
Proof. By (2.16) and the Lipschitz condition (3.4), we have
~(1-0)9;d, <(9s—90)" d < L|d[",
Considering (3.1), we get (3.5). Using the definition of yL“ , (3.1), and the relation (2.16), we obtain
N max p,,0
d;yk = d; (yk +Wsk) 2 dkTyk = dkT (gk+1 - gk) 2 _(1_0-)ggdk
K (3.8)

71—
> I D)g,

then (3.6) holds. In the following, we prove that (3.7) holds. By mean value theorem, we get
Pe=2(f = fea) + (G + 90" S
=(-29(% +65)+ 0.1 +9,)"S,
<[sc 9w — 90 + 6]+ ]9 —a (% +65,)[ ] (3.9)
<[s|[L@-)[s [ +LO]s.]]
=L’
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where @ € (0,1) and the last inequality follows (3.4). Therefore, from the definition of Y, and the Lipschitz condition
(3.4), we have

max p,,0

S
T <l 2l s
k

Yie |[= [ Vi +
H k H k ||Sk||2

Then (3.7) holds. This completes the proof,

Based on Assumption 3.1, Lemma 3.1, and Lemma 3.2, similar to the Theorem 3.2 in [23], it is not difficult to prove the
following global convergence theorem of Algorithm 1. So we only state it as follows,but omit the proof,

Theorem 3.1 Let Assumption 3.1 hold and the sequence (,, dk be generated by Algorithm 1. Then
liminf|g, | =0.
k—o

In a way similar to the above discussions, we can also get the global convergence of Algorithm 2. In this paper, we do not
prove it anymore.

4. NUMERICAL RESULTS

In this section, we test the numerical behavior of Algorithm 1. The algorithm is implemented by Fortran code in double
precision arithmetic. All experiments are run on a PC with CPU Intel Pentium Dual E7500 2.93GHz, 2G bytes of SDRAM
memory, and Red Hat Linux 9.03 operating system. Our experiments are performed on the subset of the nonlinear
unconstrained problems from the CUTEr [17] collection, and the second-order derivatives of all the selected problems are
available. Since we are interested in large problems,we refined this selection by considering only problems where the
number of variables is at least 50. Altogether,we solved 72 problems. The names and characters of these problems are
listed in Table 4.1.

TABLE 4.1{Teat problems and thely character)

Problems Character
ARGLINA ARGLINE ARGLINC . EDQRTIC BROWNAL,BROYDNTD BRYEND
CHAINWOO,CHNROSNE,COSINE,CRAGGLVY,CURLY10,CURLY 20, DIXMAANA,
DIXMAANB DIXMAANC DIXMAAND DIXMAANE DIXMAANF DIXMAANG. DIXMAANH
DIXMAANLDIXMAAN] DIXMAANL. DIXONIDQ, DOQDRTIC. DORTIC, EDENSCH
EG2.ENGVALLERRINROS.EXTROSNE FLETCBV2 FLETCHCR FREURQTH Academle
GENHUMPS GENROSE.INDEF, LIARWHD MANCING M3QRTALS M3QRTBLS
NONCVEULNONCVEUN NONDIANONDQUAR. PENALTY1,PENALTY2 POWELL3G
POWER,QUARTC,SCHMVETT,3ENSQRS, SINQUAD,SPARSINE, SFARSQUR
SPMBRTLS,3ROSENBR, TESTQUAD TOINTG33, TQUARTIC, TRIDIA
VARDIM,VAREIGVL, WOQDS
DECONVU FMINSRF2,FMINSURF MOREBV. TOINTGOR TOINTQOR Modelling

The program will be stopped when ”gk”oo <max 10° ,10_12 ||gl||w was satisfied. The parameters and the line
search rules are similar to [24]: 0 =0.1,0 =0.9,77 =0.01. The detailed numerical results are listed on Appendix I.
Dolan and More” [16] gave a new tool to analyze the efficiency of Algorithms. They introduced the notion of a

performance profile as means to evaluate and compare the performance of the set of solvers S on a test set P .
Assuming that there exist N solvers and np problems, for each problem P and solver S, they defined

'[p’S = computing time (the number of function evaluations or others) required to solve problem P by solver S.

Requiring a baseline for comparisons, they compared the performance on problem P by solver S with the best
performance by any solver on this problem; that is, using the performance ratio

t

_ p.s

min t  :seS

}/p,s
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Suppose that a parameter ¥, Zj/pvs forall p, Sis chosen, and y, =y if and only if solver S does not solve
problem P .
The performance of solver S on any given problem might be of interest, but we would like to obtain an overall

assessment of the performance of the solver, then they defined

ps(t):nisize pePiy, <t

p

thus O, (t) was the probability for solver S€ S that a performance ratio Vs Was within a factor t € R of the best
possible ration. Then function p, was the (cumulative) distribution function for the performance ratio. The performance
profile O, R 0,1 for a solver was a nondecreasing, piecewise constant function, and continuous from the right at

each breakpoint. The value of P, (1) was the probability that the solver would win over the rest of the solvers.

According to the above rules, we know that one solver whose performance profile plot is on top rightwill win over the
rest of the solvers.

In these three figures, HZ™ denotes the algorithm in [24], New-cgl denotes Algorithm 1, and New-cg2 denotes
Algorithm 2, respectively. In Figure 1, 2, and 3, the performance denotes the iteration number,the number of function
value and the gradient value, and the cpu time, respectively. From these three figures, it not difficult to see that Algorithm

2 perform best among these three algorithms, and Algorithm1 is competitive to the algorithm of HZ" .

Femes e mee merler of S 1nd grakenit
Es o HH
L=
arf ¥
o ;_-u';
Fanll-} HE
— = —at
ey B
e, Btz g 1]
Bty
oty
e
-~ - - 4 P o = - ot

5. CONCLUSION

In this paper, we propose two modified conjugate gradient formulas based on the well-known HZ formula,which
possesses the sufficient descent condition without carrying out any line search too. The global convergence is established

for nonconvex functions. Numerical results show that these two proposed methods are competitive to HZ ™ method.
These two formulas have not only the gradient value information but also the function value information, moreover their
quasi-Newton equation is closer to the Hessian matrix of the objective function than the normal quasi-Newton equation.
This maybe make them possess better numerical results.

6. Acknowledgment. This work is supported by Guangxi Education researchproject (Grant No. 201010LX288),
Guangxi NSF (Grant No. 2012GXNSFAA053002) and China NSF (Grant No. 11261006, 11161003 and 71001015).
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Appendix . Numerical results of the paper.
iteration numher nf+ng(the number of function and gradient) Cputine

oroblems | HI+ | New-cgl | Ney-cg? 7+ \ew-cg! New-cgl Hl- New-cgl [ New-cg2
ARGLIVA | 1 1 1 2. 00E+00 i ] 0.03599 | 0.03599 | 0.03499
ARGLINB [ 7 403 8 30 15644 207 0.04099 | 3.03754 | 0.07439
ARGLINC | 227 ] 0 1609 5 146 0.34195 | 0.04399 | 0.06099
ARTHEAD | 9 8 8 3l Al 2 0.07899 1 0.07899 | 0.07799
BOGRTIC | 1217 | 633 83 4086 2480 4084 . 46678 | 0.99385 | 1.66375
BROWNAL | 4 ] { 28 18 28 0,021 0.019 | 0.021
BROVONTD | 1444 | 1452 | 1436 4338 4362 4374 2.50002 | 2.53461 [ 255361

BRYBND | 31 3l 3l 08 9% 08 0.09598 | 0.09638 | 0.09798
CHAINWOO | 272 24 28 820 143 193 0.2909 | 0.206% | 0.281%
CHNROSNB | 249 219 280 131 B4l 860 0,003 0.004 [ 0.003

COSINE | 1 1 1] al 0 2 0.08099 | 0.07899 | 0.07939
CRAGGLYY | 97 08 g7 303 305 303 0.21397 | 0.21197 | 0. 20897
CLRLYI0 | 64092 | 60002 [ 67579 | 19234 180083 202813 101, 55250 | 94.92457] 108, 89243
CURLY20 | 100367 | 96477 [ 79307 | 301223 289520 238001 458.68527 | 282,839 | 228, 2343
DECONVU | 102 113 119 308 T 309 0,003 0.004 [ 0.003
DIXAANA | 8 8 8 20 2 20 0.019 0.02 0,02
DINAANE | 9 9 0 2 2 2 0,021 0. 021 0,02
DIXIAANC | 10 1 10 3 3 3 0,021 0.02 0,021
DIXAAND | 1 1] 11 3 3 3 0,021 0.021 | 0.022
DIXAANE [ 194 194 194 o84 284 o84 0.10098 | 0.10198 | 0.10138
DIXHAANE [ 147 147 147 443 443 443 0.08099 | 0.08099 | 0.08099
DINIAANG [ 144 |44 |44 44 44 14 0.07999 1 0.07899 | 0.07899
DIXHAANH [ 140 140 4] 42 122 12 0.07699 1 0.07799 | 0.07799
DIXMAANT | 813 813 813 244l 244l 244 0.37194 097494 | 0.374%4
DIXHAANT | 137 137 137 413 413 413 0.07599 1 0.07699 | 0.07699
DIXHAANL | 112 112 |12 338 338 338 0.06499 | 0.06599 | 0.06399
DIXON3DA | 10000 { 10000 { 10000 30003 30003 30003 0.71398 | 6.87295 | 6.783%7
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SINEAD | 43 il il 198 312 1% 0.18697 | 0.238% | 0.32495
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SROSENER | 12 |l 1l i 3 i 0.02799 ] 0.02699 | 0.0269
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