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ABSTRACT 

At present, the conjugate gradient (CG) method of Hager and Zhang (Hager and Zhang, SIAM Journal on Optimization, 
16(2005)) is regarded as one of the most effective CG methods for optimization problems. In order to further study the CG 
method, we develop the Hager and Zhang's CG method and present two modified CG formulas, where the given formulas 
possess the value information of not only the gradient but also the function. Moreover, the sufficient descent condition will 
be holden without any line search. The global convergence is established for nonconvex function under suitable 
conditions. Numerical results show that the proposed methods are competitive to the normal conjugate gradient method. 
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1   INTRODUCTION  

Consider the following unconstrained optimization problem 

min ( )
nx

f x ,                                                                                                             (1.1) 

where : nf  is continuously differentiable. The nonlinear conjugate gradient method is one of the most effective 

line search methods for (1.1) because of its simplicity and its very low memory requirement. This method can avoid, like  
steepest descent method, the computation and storage of some matrices associated with the Hessian of objective  
functions. The following iterative formula is often used by CG method 

1 , 1, 2,k k k kx x d k …                                                                               (1.2) 

where kx  is the current iterate point, 0k  is a steplength, and kd  is the search direction defined by 

1

1

1
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k k k

k

k

g d if k
d

g if k
                                                                           (1.3) 

where kg  is the gradient of ( )f x  at the point kx  , and k  ∈ ℜ is a scalar which determines the different 

conjugate gradient methods. These based conjugate gradient methods [12, 17, 18, 27, 35] are equivalent 

(see [13, 48] etc) in the linear case, namely, when f  is a strictly convex quadratic  function and k  is 

calculated by the following exact minimization rule: the step size k  is chosen such that 

0
( ) min ( )k k k k kf x d f x d                                                                     (1.4) 

One of the most efficient formula for k  is the following PRP method [35] 

1 1

2

( )
,

T
PRP k k k

k

k

g g g

g
                                                                                      (1.5) 

where kg  and 1kg  are the gradients ( )kf x  and 1( )kf x  of ( )f x  at the point kx  and 1kx  , respectively, 

and .  denotes the Euclidian norm of vectors. For its convergent results, Polak and Ribiere [35] presenteded the global 

convergence with the exact line search for convex functions. Powell [36] gave a counter example to show that there exist 
nonconvex functions on which the PRP method does not converge globally even using the exact line search. He 

suggested that k  should not be less than zero, which is very important to ensure the global convergence (see [13, 37]). 

Considering the above suggestion, Gilbert and Nocedal[19] proved that the modified PRP method 

max 0, PRP

k k  is globally convergent with the WWP line search under the assumption of sufficient descent 

condition. 

    From the literature, one hopes to find the steplength k  using the following weak Wolfe-Powell (WWP) line search 

( ) T

k k k k k k kf x d f g d                                                                           (1.6) 

And 

( ) ,T T

k k k k k kg x d d g d                                                                                 (1.7) 

where (0,1/ 2) , and ( ,1) . However, the global convergence of the PRP conjugate gradient method is still 

open with the above WWP conditions. Some formulas which possess the global convergence property (such as 
DY

k
 

[12]) with the WWP did not perform better than the performances of  the PRP method in numerical computation. Based 
DY

k
 , Dai and Yuan [14] use the WWP condition and propose an efficient conjugate gradient method. Over the past few 

years, much effort has been put to find out new formulas for conjugate methods such that they have not only global 
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convergence property for general functions but also good numerical performance (see [13, 19]). Thus, any new conjugate 
gradient method should at least satisfy one of the following conditions [41]: 

    (i) The method with the WWP line search rule (or other line search rules) has some strongly convergent properties, at 
least, the method with the formula and the WWP line search rule (or other line search rules) may generate a descent 
direction at each iteration, and converges globally. 

    (ii) The average performances on the numerical computation of the formula with WWP line search rule (or others)should 
not be much inferior to the ones of the PRP. 

The following sufficient descent condition 

2
, 0 tan 0T

k k kg d c g k and some cons t c                                     (1.8) 

is often used to analyze the global convergence of the nonlinear conjugate gradient method with the inexact line search 
techniques. Toouati-Ahmed and Storey [1], Al-Baali [2], Gilbert and Nocedal [19],and Hu and Storey [28] hinted  that the 
sufficient descent condition may be crucial for conjugate gradient methods. In order to ensure the sufficient descent 

condition and establish the convergence of the PRP method, Grippo and Lucidi [21] presented a new line search rule. 
Resent years, some good results on the nonlinear conjugate gradient method are given (see [3, 9, 25, 42]). But for some 
methods which have been studied in the optimization area, such as the steepest descent method and the Newton method, 

the descent properties or the sufficient descent properties are independent of line searches. Is there any nonlinear 

conjugate gradient formula which possesses the sufficient descent property (1.8) without any line search? Many authors 

answer this question positively (see [21, 23, 24, 43, 44, 45, 46, 47, 49, 53, 56]etc.). For instance, Zhang, Zhou, and Li [56] 
presented a modified PRP method with 

1

1

1

1

, 0,

PRP

k k k k k

k

k

g d y if k
d

g if k
                                                                    (1.9) 

where 
1

2

T

k k
k

k

g d

g
 . It is not difficult to get 

2T

k k kd g g  . This method can reduces to a standard PRP method if 

exact line search is used, its global convergence with Armijo-type line search is obtained, but fails to WWP line search. 
Based on [11], Hager and Zhang proposed a new conjugate gradient method [23] 

   
1
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d

g if k
                                                                                 (1.10) 

where 

2

1

1 1

( 2 )

, , .

T k

k k kT
HZ k k
k k k k k k kT

k k

y
g y s

s y
s x x and y g g

d y
 This method can guarantee that kd  

provides a descent direction of f  at kx  . Moreover, kd  satisfies 
27

8

T

k k kd g g  . This method can be regarded as 

a modified HS method and possess global convergence with WWP line search. Furthermore,they gave another more 
effective CG formula [24] 

max , ,HZ HZ

k k k  

where 
1

,min ,
k

k kd g
 and 0  is a constant. Numerical results show that this method is better than the 

others conjugate gradient methods (such as the PRP, the PRP+, the HS, and the DY, etc.)and the limited memory BFGS 
method (see [23, 24] in detail). Today, this method (1.10) is considered to be one of the most effective algorithm. 

Therefore, any new conjugate gradient method should satisfy the following two conditions: 

    (j) The method with the WWP line search rule (or other line search rules) has some strongly convergent properties, at 
least, the method with the formula and the WWP line search rule (or other line search rules) may generate a sufficient 

descent direction at each iteration, and converges globally. 

    (jj) The average performances on the numerical computation of the formula with WWP line search rule (or others) 

should not be much inferior to the ones of the HZ  . 
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    In this paper, we design two new CG formulas to satisfy the above conditions. The main attributes of this paper are as 
follows. 

    • The given method possesses the the sufficient descent property without any line search technique. 

    • The global convergence of  the new methods is established for nonconvex function. 

    • Numerical results show that these two methods are competitive to the HZ  method. 

    In the next section, motivation and algorithm are stated. The sufficient descent property and the global convergence of 

the new method are proved in Section 3. In the Section 4, the numerical results are reported. One conclusion is stated in 
the last section. 

2.  MOTIVATION AND ALGORITHM 

In this section, we will give motivations based on the BFGS formulas and the line search technique,respectively. 

2.1  Motivations based on BFGS formula 

It is well known that the BFGS method is one of the most effective methods for unconstrained optimization problems. 

There are many good results can be found (see [5, 6, 7, 8, 15, 29, 30, 32, 49] etc.). Where Wei,Yu, Yuan, and Lian [40] 
presented a new BFGS update method generated by Taylor’s formula as follows: 

* *

1 *
,

TT

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s s y
                                                                  (2.1) 

where 
*

2

k
k k k

k

y y s
s

 and 2 ( ) ( ) ( ( ) ( )) .T

k k k k k k k k k kf x f x d g x d g x s  . Under the 

assumption that the objective functions are uniformly convex ones, the superlinear convergence of the new BFGS 
algorithm was given with the weak Wolfe-Powell (WWP) linesearch. Observing the quasi-Newton Equation 

*

1k k kB s y                                                                                                   (2.2) 

which contains not only gradient value information but also function value information at the present and the previous step, 
one may argue that the resulting methods will really outperform than the original method. In fact, the practical computation 
shows that this method is better than the normal BFGS method (see [39, 40] for detail). Furthermore, some theoretical 
advantages of the new quasi-Newton equation (2.2) can be seen from the following two theorems. 

Theorem 2.1 (Lemma 3.1 [40]) Considering the quasi-Newton equation (2.2). Then we have for all k≥1 

1 1 1 1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) .

2

T T

k k k k k k k k k kf x f x g x x x x x B x x  

Theorem 2.2 (Theorem 3.1 [31]) Assume that the function ( )f x  is suffciently smooth and ks is suffciently small, then 

we have 

4*

1 1

1
( ) ( )

3

T T T

k k k k k k k k k ks G s s y s T s s s                                             (2.3) 

and 

4

1 1

1
( ) ( )

2

T T T

k k k k k k k k k ks G s s y s T s s s                                              (2.4) 

where 1kG  denotes the Hessian matrix of f  at 1kx  , 1kT  is the tensor of f  at 1kx  , and 

3

1
1

, , 1

( )
( ) .

n
T i j lk
k k k k k k ki j l

i j l

f x
s T s s s s s

x x x
 

It can be seen that if the objective function f  is uniformly convex, then 

*

1 1 1 12 2 2( ) 0
TT T T

k k k k k k k k k k k k ks y s y f f g g s s g f f  
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holds, where the last inequality is from the uniform convexity of f  . Hence, the update formula (2.1)can ensure the 

positive definiteness of the matrix kB  for uniformly convex function, and the superlinear convergence of this method has 

been established. However, if f  is a general convex function, then
*T

k ks y  may equal to 0. In this case, the positive 

definiteness of the update matrix kB  can not be sure.Moreover, the global convergence and the superlinear convergence 

are still open for the general convexfunction. Motivated by the above observations, we study whether there exists another 
quasi-Newtonformula whose approximation for the Hessian of the objective function is not inferior to those of the formula 
(2.1) or the normal BFGS formula in some sense, which possesses the global convergence and the superlinear 
convergence for general convex function and its numerical results are competitive to those of other similar methods. Now 

we discuss k  for general convex functions in the following two cases: 

case i: If 0k  we have 

2
( ) 0 .T T Tk

k k k k k k k k

k

s y s s y s y
s

                                                     (2.5) 

case ii: If 0k , we get 

1

0 2 ( ) ( ) ( ( ) ( ))

2 ( ( ) ( ))

,

T

k k k k k k k k k k

T T

k k k k k k k

T

k k

f x f x d g x d g x s

g s g x d g x s

s y

                       (2.6) 

which means that 0T

k ks y  holds. Therefore, we define the quasi-Newton equation as follows [or see [50]in detail]: 

1 ,m

k k kB s y                                                                                          (2.7) 

where
2

max ,0km

k k k

k

y y s
s

 ,and  

1

( )
,

T m m T

k k k k k k
k k T T m

k k k k k

B s s B y y
B B

s B s s y
                                                               (2.8) 

which can ensure 1kB  inherits the positive definiteness of kB  for the general convex function. The global convergence 

and the superlinear convergence have been established for general convex functions.Numerical results show that this 
method is interesting.Zhang, Deng, and Chen [54] presented the following quasi-Newton equation: 

3*

1 ,k k k k k kB s y y A s                                                                   (2.9) 

Where 

1 1

2

6 ( ) ( ) 3 ( ) ( )
T

k k k k k

k

k

f x f x g x g x s
A

s
 .                                      (2.10) 

They obtained the following modified BFGS-type update formula 

3* 3*

1 3*
.

TT

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s
 

This quasi-Newton equation (2.9) contains both gradient and function value information at the current and the previous 
step too, one may argue that the resulting methods will really outperform than the original method. In fact, the practical 
computation shows that this method is better than the normal BFGS method (see [54] for detail). Furthermore, some 
theoretical advantages of the new quasi-Newton equation (2.9) can be seen from the following theorem. 
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Theorem 2.3 (Theorem 3.3 [54]) Assume that the function ( )f x  is suffciently smooth and ks  is suffciently small, then 

we have 

43*

1( ) ( )T

k k k k ks G s y s                                                                 (2.11) 

and 

3

1( ) ( ) .T

k k k k ks G s y s                                                                 (2.12) 

Similarly, we can define another quasi-Newton equation as follows 

1 ,mm

k k kB s y  

where max ,0mm

k k k ky y A s  . It is not diffcult to deduce that 0T mm

k ks y  holds for generally convexk 

functions. 

   Motivated by the above discussions and the conjugate gradient method HZ, the modified HZ formulas are to replace ky  

by 
m

ky  and 
mm

ky  respectively. Namely the new conjugate gradient formulas are defined by 

1

1

1

, 1

0,

m

k k k

k

k

g d if k
d

g if k
                                                           (2.13) 

and 

1

1

1

, 1

0,

mm

k k k

k

k

g d if k
d

g if k
                                                           (2.14) 

where 

2

1( 2 )

m

kT m

k k kT m
m k k
k T m

k k

y
g y s

s y

d y
.and 

2

1( 2 )

mm

kT mm

k k kT mm
mm k k
k T mm

k k

y
g y s

s y

d y
.In the following section,we 

state our algorithms. 

2.2   Algorithms 

The earliest nonmonotone line search framework was developed by Grippo, Lampariello, and Lucidi in[20] for Newton’s 
methods. Many subsequent papers have exploited nonmonotone line search techniques of this nature (see [4, 26, 33, 51, 
52, 57] etc.). Although these nonmonotone technique work well in many cases, there are some drawbacks. First, a good 
function value generated in any iteration is essentially discarded due to the max in the nonmonotone line search 
technique. Second, in some cases,the numerical performance is very dependent on the choice of M (see [20, 38]). Zhang 
and Hager [55]presented a new nonmonotone line search technique defined by: 

( ) ( ) ,T

k k k k k k kf x d C g x d                                                               (2.15) 

( ) ( ) ,T T

k k k k k kg x d d g x d                                                               (2.16) 

where 0 1 , 1

1

( )k k k k k k
k

k

Q C f x d
C

Q
 , 1 1k k kQ Q , 

min max,k , min max0 1 , 1 1( )C f x ,and 1 1Q . It is not difficult to see that 1kC  is a convex 

combination of kC  and 1( )kf x . Since 1 1( )C f x , it follows that kC  is a convex combination of the function values 

1( )f x , 2( )f x , · · · , ( )kf x . The choice of k  controls the degree of nonmonotonicity. If 0k  for each k , then the 

line search is the usual monotone Wolfe or Armijo line search. If 1k  for each k , then k kC A  , where 
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1

1
( )

k

k i

i

A f x
k

 

is the average function value. Numerical results show that this technique is better than the normal nonmonotone 

technique. Considering the efficiency of this technique, we will use this technique to find steplength k  . Based on the 

above discussions, we state our algorithms as follows. 

Algorithm 1(New-cg1) 

Step 0: Choose an initial point 
1 min max, (0,1),0 1,0 1.nx  Set 

1 1 1 1 1 1( ), 1, ( ), : 1.d g f x Q C f x k  

Step 1: If kg , then stop; Otherwise go to the next step. 

Step 2: Compute step size k  by line search rules (2.15) and (2.16). 

Step 3: let 1k k k kx x d  . If 1kg , then stop. 

Step 4: Calculate the search direction by (2.13) 

Step 5: : 1k k , and go to Step 2. 

Algorithm 2(New-cg2) 

Step 4 of Algorithm 1 is replaced by: Calculate the search direction by (2.14). 

    In the following section, we will show that the given two algorithms possess the sufficiently descent 

property without any line search technique and the global convergence for the general functions. 

3.  THE SUFFICIENT DESCENT PROPERTY AND THE GLOBAL CONVERGENCE 

With conjugate gradient methods, the line search typically requires sufficient accuracy to ensure that the search directions 

yield descent [10, 22], Moreover, it has been shown [12] that for the Fletcher-Reeves [18] and Polak-Ribie`-Polyak [34, 35] 
conjugate gradient methods, a line search that satisfies the strong Wolfee conditions may not yield a direction of descent 

for a suitable choice the Wolfe line search parameters, even for the function 
2

( )f x x  , where 0  is a 

constant. An attractive feature of these two conjugate gradient is that the search directions always yield descent. 

Lemma 3.1 Consider (2.13) and (2.14), we have 

2

1 1 1

7
.

8

T

k k kg d g                                                                                    (3.1) 

Proof. Since 1 1d g  , we get 
2

1 1 1

Tg d g  , then (3.1) holds. For 1k , multiplying (2.13) by 
1

T

kg  ,we obtain 

2

1 1 1 1

2

2 11
1 1 2

22 2 2

1 1 1 1

2

( 2 )
( )

( ) 2 ( )

( )

T m T

k k k k k k

m TT m
k k kT k k

k k k T m T m

k k k k

T m T m T T m m T

k k k k k k k k k k k k

T m

k k

g d g g d

y g dg y
g g d

d y d y

g y d y g d g d y y g d

d y

                        (3.2) 

Let 
1 1

1
( ) , 2( ) ,

2

T m T m

k k k k k ku d y g v g d y and use the inequality 
2 21

( )
2

Tv u v u ,we have 
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2
2

1 1 1 1

222 2

1 1

1 1
( 2 )

2 2

1
( ) 2( ) ,

8

T m T m T T m T m

k k k k k k k k k k k k

T m T m

k k k k k k

g y d y g d d y g g d y

d y g g d y

                                            (3.3) 

this implies that 
2

1 1 1

7

8

T

k k kg d g  by considering the last equality of (3.2). Similarly, we can also get (3.1) from 

(2.14). The proof is complete. 

    In the following we assume that 0kg  for all k , for otherwise a stationary point has been found.The following 

assumptions are often used to prove the convergence of the nonlinear conjugate gradient methods (see [18, 27, 35, 43, 
49] etc.). 

    Assumption 3.1  (i) The level set 0( ) ( )nx f x f x  is bounded, where 0x  is a given point. 

    (ii) In an open convex set 0  that contains , f  has a lower bound, is differentiable, and its gradient g  is Lipschitz 

continuous, namely, there exists a constant 0L  such that 

0( ) ( ) , , .g x g y L x y x y                                                         (3.4) 

Lemma 3.2  Suppose that Assumption 3.1 holds. Let the sequence kg  and kd  be generated by Algorithm 1. Then 

2

1
,

T

k k

k

k

g d

L d
                                                                         (3.5) 

and 

27(1 )
,

8

T m

k k ks y g                                                                    (3.6) 

2m

k ky L s                                                                                    (3.7) 

hold. 

Proof. By (2.16) and the Lipschitz condition (3.4), we have 

2

1(1 ) ( ) ,T T

k k k k k k kg d g g d L d  

Considering (3.1), we get (3.5). Using the definition of 
m

ky  , (3.1), and the relation (2.16), we obtain 

12

2

max ,0
( ) ( ) (1 )

7(1 )

8

kT m T T T T

k k k k k k k k k k k k

k

k

d y d y s d y d g g g d
s

g

                         (3.8) 

then (3.6) holds. In the following, we prove that (3.7) holds. By mean value theorem, we get 

1 1

1

1

2

2( ) ( )

( 2 ( ) )

( ) ( )

(1 )

,

T

k k k k k k

T

k k k k k

k k k k k k k

k k k

k

f f g g s

g x s g g s

s g g x s g g x s

s L s L s

L s

                          (3.9) 
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where (0,1)  and the last inequality follows (3.4). Therefore, from the definition of 
m

ky  and the Lipschitz condition 

(3.4), we have 

2 2

max ,0
2 .

k kkm

k k k k k

k k

s
y y s y L s

s s
 

Then (3.7) holds. This completes the proof。 

Based on Assumption 3.1, Lemma 3.1, and Lemma 3.2, similar to the Theorem 3.2 in [23], it is not difficult to prove the 

following global convergence theorem of Algorithm 1. So we only state it as follows,but omit the proof。 

Theorem 3.1 Let Assumption 3.1 hold and the sequence ,k kg d  be generated by Algorithm 1. Then 

lim inf 0.k
k

g  

In a way similar to the above discussions, we can also get the global convergence of Algorithm 2. In this paper, we do not 
prove it anymore. 

4. NUMERICAL RESULTS 

In this section, we test the numerical behavior of Algorithm 1. The algorithm is implemented by Fortran code in double 
precision arithmetic. All experiments are run on a PC with CPU Intel Pentium Dual E7500 2.93GHz, 2G bytes of SDRAM 
memory, and Red Hat Linux 9.03 operating system. Our experiments are performed on the subset of the nonlinear 
unconstrained problems from the CUTEr [17] collection, and the second-order derivatives of all the selected problems are 
available. Since we are interested in large problems,we refined this selection by considering only problems where the 
number of variables is at least 50. Altogether,we solved 72 problems. The names and characters of these problems are 
listed in Table 4.1. 

 

The program will be stopped when 
6 12

1max 10 ,10kg g  was satisfied. The parameters and the line 

search rules are similar to [24]: 0.1, 0.9, 0.01.  The detailed numerical results are listed on Appendix I. 

Dolan and More´ [16] gave a new tool to analyze the efficiency of Algorithms. They introduced the notion of a 

performance profile as means to evaluate and compare the performance of the set of solvers S  on a test set P . 

Assuming that there exist sn  solvers and pn  problems, for each problem p  and solver s , they defined 

,p st  = computing time (the number of function evaluations or others) required to solve  problem p  by solver s . 

Requiring a baseline for comparisons, they compared the performance on problem p  by solver s  with the best 

performance by any solver on this problem; that is, using the performance ratio 

,

,

,

.
min :

p s

p s

p s

t

t s S
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Suppose that a parameter 
,M p s

 for all p , s is chosen, and 
,p s M

if and only if solver s does not solve 

problem p . 

The performance of solver s  on any given problem might be of interest, but we would like to obtain an overall 

assessment of the performance of the solver, then they defined 

,

1
( ) : ,s p s

p

t size p P t
n

 

thus ( )s t  was the probability for solver s S  that a performance ratio 
,p s

 was within a factor t  of the best 

possible ration. Then function s  was the (cumulative) distribution function for the performance ratio. The performance 

profile : 0,1s   for a solver was a nondecreasing, piecewise constant function, and continuous from the right at 

each breakpoint. The value of (1)s  was the probability that the solver would win over the rest of the solvers. 

According to the above rules, we know that one solver whose performance profile plot is on top rightwill win over the 
rest of the solvers. 

In these three figures, HZ  denotes the algorithm in [24], New-cg1 denotes Algorithm 1, and New-cg2 denotes 
Algorithm 2, respectively. In Figure 1, 2, and 3, the performance denotes the iteration number,the number of  function 
value and the gradient value, and the cpu time, respectively. From these three figures, it not difficult to see that Algorithm 

2 perform best among these three algorithms, and Algorithm1 is competitive to the algorithm of HZ  . 

 

5. CONCLUSION 

In this paper, we propose two modified conjugate gradient formulas based on the well-known HZ  formula,which 
possesses the sufficient descent condition without carrying out any line search too. The global convergence is established 

for nonconvex functions. Numerical results show that these two proposed methods are competitive to HZ  method. 
These two formulas have not only the gradient value information but also the function value information, moreover their 
quasi-Newton equation is closer to the Hessian matrix of the objective function than the normal quasi-Newton equation. 
This maybe make them possess better numerical results. 
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