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Abstract 

Sentiment Analysis, or Opinion Mining, has recently captivated the interest of scientists worldwide. With the 

increasing use of the internet, the web is becoming overloaded by data that contains useful information, which 

can be used in different fields. In fact, many studies have shed light on Sentiment Analysis of online data in 

different languages. However, the amount of research dealing with the Arabic language is still limited. In this 

paper, an empirical study is led to Sentiment Analysis of online reviews written in Modern Standard Arabic. A 

new system called SSAAR (System for Sentiment Analysis of Arabic Reviews) is proposed, allowing computational 

classification of reviews into three classes (positive, negative, neutral). The input data of this system is built by 

using a proposed framework called SPPARF (Scraping and double Preprocessing Arabic Reviews Framework), 

which generates a structured and clean dataset. Moreover, the provided system experiments two improved 

approaches for sentiment classification based on supervised learning, which are: Double preprocessing method 

and Feature selection method. Both approaches are trained by using five algorithms (Naïve Bayes, stochastic 

gradient descent Classifier (SGD), Logistic Regression, K-Nearest Neighbors, and Random Forest) and compared 

later under the same conditions. The experimental results show that the feature selection method using the SGD 

Classifier performs the best accuracy (77.1%). Therefore, the SSAAR System proved to be efficient and gives 

better results when using the feature selection method; nevertheless, satisfying results were obtained with the 

other approach, considered consequently suitable for the proposed system. 

Keywords: Arabic Language, Machine Learning, Natural Language Processing, Opinion mining, Sentiment 

Analysis. 

1. Introduction 

Using the internet to express opinions or share information about different topics has become essential for 

people all around the world in their daily lives, especially among people speaking Arabic language. In the Middle 

East and north Africa, the number of internet users has reached on June 30, 2019, more than 286 million users 

who represent about 6% of the world’s internet surfers who use the Arabic language. For that reason, an 

increasing interest has been shown recently by many researchers in analyzing this huge amount of information 

available on the web, including public opinions expressed on blogs, websites and social network, etc.By the way, 

for decision making and improving their trading activities, many companies resort to opinion mining. It is the 

same case for governments, which resort to public citizens’ opinions to improve the quality of services and 

information offered to them. Individuals are also interested in others’ opinions because it could help them to 

have an idea about a wanted product or service. However, studies aiming opinion mining or sentiment analysis 

from Arabic websites or social media stay limited and more research is required to solve many issues related to 

this topic, due to challenges in processing natural Arabic language with its complex morphology (a 

Morphologically Rich Language), and also the use of different types of dialectical Arabic, Arabizi (Arabic written 

in Latin script combined with Arabic numerals). 

In this work, we are interested in producing a new system for sentiment analysis of online reviews and comments 

written in Modern Standard Arabic, including a framework for scraping and preprocessing data. This paper is 

organized as follows. Section 2 gives an overview of the latest works in sentiment analysis in Arabic and other 

languages. Section 3 presents the architecture of the proposed system. Section 4 outlines the experiment done 
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and discusses the results obtained by testing two approaches of our system. In Section 5 the paper is concluded 

and the future work is presented. 

 

2. Related work 

2.1. Sentiment Analysis of Non-Arabic texts 

To the best of our knowledge, most of the studies on sentiment analysis are conducted in the English language, 

due to the lack of resources in other languages. In fact, there are many issues related to sentiment analysis such 

as subjectivity detection, opinion extraction, irony detection and so on.   

B. Pang and al [1] have focused in their work on two tasks of sentiment analysis, the first one is subjectivity 

classification, it is about classifying a text, into subjective or objective classes. The second task is classifying the 

subjective text into positive or negative one. However, the most studied task is sentiment polarity classification, 

to which many approaches have been applied.  

Pang and al. [2] used the machine learning approach for text sentiment analysis, they applied naive Bayes, 

maximum entropy and SVM algorithms for sentiment analysis of reviews. According to experiments, the best 

performance was obtained using the SVM algorithm. Another approach used for sentiment analysis is the 

approach based on Semantic Orientation (SO) [3].  

Using also the machine learning approach, Wang and al. [4] worked on sentiment analysis of short texts. They 

build a high-dimensional mixed feature sentiment analysis model based on SVM. 

In his literature [5], M. Taboada used an approach based on sentiment dictionary to identify sentiment words 

and values. This approach does not need manual annotation of samples and is easy to implement but its 

performance depends essentially on the quality of the sentiment dictionary.  

Kiritchenko et al. [6] used different sentiment features extracted from the high-coverage sentiment dictionary, 

which was generated from sentiment tweets, in order to work on supervised statistical text sentiment 

classification. 

2.2. Sentiment Analysis of Arabic texts 

Despite of the complexity the Arabic language processing, many scientists have chosen to challenge sentiment 

analysis in Arabic and deal with its different issues  .  

El-Halees’s work [7] deals with Arabic sentiment analysis using a combined classification approach which consists 

of three methods (lexicon-based classification, Maximum Entropy and K-Nearest Neighbors) applied in 

sequence.  

Abdul-Mageed and al. [8] worked on sentiment analysis in Arabic language using a machine learning approach. 

They built a sentence-level system for subjectivity and sentiment analysis. They also presented a newly 

developed manually annotated corpus of Modern Standard Arabic (MSA) together with a new polarity lexicon 

and described an automatic SSA tagging system that exploits the annotated data.  

In their work [9], Abdul-Mageed and al. Proposed a supervised machine learning system for Arabic SSA 

(Subjectivity and Sentiment Analysis), called ‘SAMAR’. In fact, they built a binary classifier to distinguish objective 

from subjective cases, then positive sentiment from negative one. SVM was used as a learning algorithm 

together with language specific and general features.  

Ahmad and Almas [10] worked on sentiment analysis of financial texts. They tried to find some grammars or 

rules describing common and frequent Arabic patterns that are usually used in financial news to report object 

values changes. Then, they used these rules to visualize the changes in the sentiments contained in the news 

text.  
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Nabil and al. [11] presented an Arabic social sentiment analysis dataset collected from twitter, and described 

their used method for collecting and annotating the dataset. Then they tested a four-way sentiment classification 

that classifies texts in four classes: objective, subjective, subjective positive and subjective negative. 

 

 

3. Proposed System : SSAAR 

SSAAR (System for Sentiment Analysis of Arabic Reviews) is a machine learning based system for sentiment 

analysis of Modern Standard Arabic reviews and comments available on the web, it allows a classification of our 

input comments into three classes (positive, negative and neutral), using a supervised approach. In this proposed 

system, we develop a new framework called SPPARF for scraping data from the web and gathering it into 

structured shape, which will be detailed later. We also test two different approaches for comment classification, 

and evaluate their performance so as to find the ultimate one for our case of study. 

3.1. Building Dataset 

3.1.1. Information resources 

In this work, we have collected more than 8153 Arabic comments from two information resources: 

✓ The Arabic version ‘booking.com’: it is one of the best-known travel websites, established in 1996, it 

helps connect travellers with the world’s largest selection of places to stay in, including everything from 

apartments to 5 star luxury resorts. The booking website and mobile application are available in over 40 

languages including Arabic, offer 29.006.647 total reported listings and cover more than 153,519 destinations 

in 225 countries and territories worldwide1. 

✓ The Arabic website ‘blogs.aljazeera.net’: it is a free online news platform, created by Aljazeera Media 

Network where users can post comments, share photographs and post videos related to the world’s news or 

other interesting content on the web. It is very popular ad interactive website in the Arab world, and the majority 

of its bloggers are from North Africa and the Middle East.  

Those two websites are not chosen at random, it is specially due to the fact that the use of modern standard 

Arabic in those websites is compulsory for writing reviews. A thing, which will help us reduce noise from our 

data and concentrate on other tasks than removing expressions written with dialectical Arabic or Arabizi and 

other non-MSA expressions. 

3.1.2. SPPARF:   Scraping and double preprocessing Arabic Reviews Framework 

In this section, we will describe how we reduced scraped HTML files from our information resources into a 

structured form containing the relevant insight for our work using a new framework called SPPARF. 

Most of the files in our collected data are scraps of those websites in raw HTML format.  Each website selected 

has a specific HTML page structure, thus we developed a customized parser for each one. The semi-structured 

form of HTML and the specific tags for each field allowed us to find easily information we needed on each page. 

In the Booking website we extracted the couple (Hotel name; Comments), and from Aljazeera Blog we extracted 

the couple (Topic – title – ; Comments). 

Some parsed pages containing advertisements are very noisy, and contain some symbols and numbers, so, we 

applied web and data preprocessing techniques to clean our data. Otherwise, our work did not stop here, we 

built a data scraping and preprocessing framework called SPPARF where we can scrap automatically Arabic 

reviews and apply to them different Arabic preprocessing techniques in order to obtain cleaned and structured 

data. 

The flow diagram of the proposed framework is illustrated in Fig.1, in which we could notice how all components 

are connected, and understand how the overall developed system works. The main purpose of the proposed 

 
1https://www.booking.com/index.fr.html 
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system is to scrap and preprocess in double steps the Arabic comments from HTML pages (Websites, blogs, 

etc.). The framework contains three basic units:  

i.Text Scraper; 

ii.Processing the web; 

iii.Preprocessing comments.  

 

Fig. 1: The Scrapping and double Preprocessing Arabic Reviews Framework ( SPPARF) 

In the following, we will give more details about each component. 

➢ Text Scraper: 

In this module, we used the Python programming language which contains libraries that are open source and 

very useful, here we used Beautiful Soup and Selenium Libraries. The input webpage goes through a series of 

operations, which facilitates the process of text extraction. For this purpose, we use Beautiful Soup, which is a 

Python library for pulling data out of HTML and XML files. We also use Selenium library, which is a package used 
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to automate web browser interaction from Python. The objective of using those tools is developing a powerful 

web scraper based on Python language, and which allows text extraction from different types of webpages. 

In order to get a global overview of our scrapped data, a word cloud representation is used to identify the most 

frequent words. The word cloud result of booking website is shown in Fig. 2. In fact, the most frequent words 

are those with the biggest font size and when font gets smaller the frequency decreases. For example, in the 

booking website’s cloud, the word cloud shows that ‘الفندق’ and some words like  ‘كان’ ; ’في‘   ; ’;  ’من‘   لى  ع’   are the 

most frequent ones, this means that our scraped data is very noisy and contains some words which are useless 

for sentiment analysis and should be deleted, that is why we will resort later to data preprocessing. 

 

Fig. 2: Word cloud of our Dataset 

➢ Processing the Web 

In this step, and before applying Web-processing techniques, the scraped data is provided as an input to our 

framework, which has to classify in primary time the fetched results into a reliable and unreliable data. Then, 

only the reliable links are scraped and undergo some preprocessing techniques. 

In the algorithm presented below, we describe the process: 

1. Procedure ProcessTheLink (text) 

2.             Link (GetFetchedPages (Text) 

3.             Reliable (GetReliableLink (Link) 

4.             For each link in Reliable 

5. ScrapedPage (ScrapLink (Link) 

6.             Return ScrapedPage 

7. end procedure 

After selecting a reliable link, the second task of the system is to extract only Arabic text and specific attributes 

like titles and comments in Modern Standard Arabic (MSA). Furthermore, other operations are executed by the 

system as the following :(1) striping of all non-alphabetic characters like emoji’s (2) Removing multiple 

occurrences of comments, (3) checking whether the word is a valid Arabic word. 

➢ Preprocessing Comments 

 

In this step ‘Preprocessing comments’ of our proposed framework, we applied some preprocessing techniques 

using the Natural Language Toolkit (NLTK), which is a comprehensive Python library for natural language 

preprocessing (NLP) and text analytics [12]. In order to get a robust and less noisy data, the NLTK library provides 

us with an extremely powerful tool for performing the following tasks we need in our framework: 
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Tokenization: it is the process of breaking a flow of text into words, sentences, symbols, or other significant 

elements called token. The purpose of tokenization is the exploration of words in a sentence. Tokens lists 

represent a set of words used as an input for processing. 

Cleaning: Text Cleanup means the removal of all unnecessary or unwanted information, eliminate redundant 

lines, filled the empty values and remove diacritics, punctuation and special characters, numbers, Latin letters 

etc. This step gives a reduced and clear dataset. 

Normalization: Consists of converting some letters that have different forms in the same word to the same form. 

For example, the normalization of ‘ إ‘ ’آ‘ ’أ ’ is ‘ا’, also consists of eliminating diacritics. 

Stemming: Stemming is the process of transforming expressions into their roots, for example, the expressions 

‘ السرقات  ’,’السرقة  ’,’مسروقة ’ become’ سرق’. This step is used for removing repetitive features and it is useful 

because it reduces significantly the size of the vocabulary. 

3.2. Dataset Annotation 

After using the first and the second modules of SPPARF to obtain an improved data, and before applying 

preprocessing techniques, we have to annotate our data because our proposed system relies on a supervised 

machine learning approach. Therefore, we have chosen two MSA native speakers who are in charge of manually 

annotating our data. Each annotator was given guidelines. In fact, they should specify the polarity of each 

comment written by a blogger, if it is positive, negative or neutral. Thus, the annotator assigns each comment 

with three possible labels: positive, negative, and neutral as illustrated in Table 1. 

Table 1: Comments annotation 

Comments Polarity 

الفندق في موظفة أحسن خديجة  الغرف خدمات اشكر  Positive 

 Negative .... موظفات من الصباح فترة خصوصا مستمر ضجيج

فيه بالسكن انصح  ولا بتاتا الفندق يعجبني لم ... Negative 

أفضل  تكون أن يمكن مختلطة، تجربة  Neutral 

 Neutral متوسط 

كحترا على يعملون والموظفين العملاء خدمة ... Positive 

جدا رائعة إنسانة( فاطمة) الاستقبال موظفة ... Positive 

 Neutral الافطار مقبول مقابل القيمة 

 

3.3. Dataset Exploration 

Dataset size 

In order to better understand the nature of the various collected datasets, the number of comments for each 

class (positive, negative, neutral) is given below in Table 2. 

Table 2: Number of comments for each class 

Class Number of comments 

Positive 3353 

Negative 2647 

Neutral 2153 

Total 8153 
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From Table 2, we notice clearly that there is not a big difference between the number of comments for each 

class, so we can say that our dataset is a balanced one. It is not a coincidence, we tried to build a balanced data 

in order to avoid overfitting problems during the training of our model. 

 That is why in the next step, we propose to calculate the comments length, because we notice in our 

dataset that the neutral comments are longer than the positive and negative ones. This is due to the fact that it 

is difficult to find a neutral comment; most comments which are classified as neutral,are a kind of a combination 

between positive and negative ones. 

Comments length 

In order to explore more our dataset and have a general idea about its components, we present below in Fig.3 

a box plot, which enables us to study the distributional characteristics of the comments length in our dataset. 

By using a box plot, we can better understand our data by understanding its distribution, outliers, means, median 

and variance. 

 

Figure 3: Box plot showing the distribution of comments length in our Dataset 

We notice that the box plot is comparatively short. This suggests that overall comments have approximately the 

same length. Furthermore, some of the reviews are way more than 1000 characters long. Here we can say that 

the majority of the neutral comments are longer than 1000 characters long. Else, note that in this box plot we 

define comments length as the number of its characters as shown in Table 3.  

Table 3: Example of comments length for each class. 

Comment Polarity Comment length 

 Neutral 8 متوسط 

 Negative 85 .... موظفات من الصباح فترة خصوصا مستمر ضجيج

طبيعية  محمية ساحر شاطئ رائعة غرفة  Positive 33 

 Positive 13 خدمة ممتازة 

والتي بنا الخاصة المناسبة أن إبلاغكم يسرنا ... Positive 368 

 

3.4. Classification 

After preparing and analyzing our dataset, we can use it now for the classification. Since we are working under 

a Machine Learning approach, we used five supervised classification algorithms to classify our dataset into three 
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classes (positive, negative, neutral) which are: Naïve Bayes; SGD Classifier; Logistic Regression, K-Nearest 

Neighbors and Random Forest. The choice of those algorithms is based on literature. To the best of our 

knowledge, those are the most frequent machine learning algorithms used in the case of sentiment classification 

for different languages. 

3.5. System Architecture  

As explained in our work [13], getting sentiment from text can be solved through three approaches, machine-

learning approach, lexicon based approach and hybrid approach. In this work, we use two different techniques 

for sentiment analysis of Arabic comments, which rely on supervised machine learning approach: Sentiment 

analysis using a double preprocessing method and Sentiment analysis using Feature Selection. 

In the supervised machine learning based approach, sentiment analysis needs an annotated corpus, and here 

we have already annotated our dataset as seen in section 3.2. 

Our proposed System Architecture is presented in Fig.4, which gives an overview of the complete process 

pipeline, including the SPPARF framework presented in section 3.1.2. Our proposed system tests two different 

approaches: the double preprocessing method and the feature selection method. 

 

Figure 4: SSAAR System Architecture 

 

3.5.1. Double preprocessing method 

This method is based mainly on the double preprocessing conducted by the SPPARF described in section 3.1.2.  
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To prepare our dataset, we applied all SPPARF preprocessing techniques for both training and testing sets. We 

trained our model using five learning algorithms in order to see which one will perform better in our case. So 

the double preprocessed data is used to feed our five learning models.  

We perform learning by using these double preprocessed comments as features. After applying tokenization, 

cleaning, normalization and stemming; we get a well preprocessed comments, where the tokens are significant 

words fed as features. Then the classification is done using the five supervised classifiers mentioned in 

section 3.4, in order to get three classes: negative, positive and neutral. 

 

3.5.2. Feature Selection Method using TF-IDF 

Features in the context of opinion mining are the words, terms or phrases that strongly express the opinion as 

positive or negative [14]. When we set out to classify comments in our dataset, we generally start with a very 

large number of words that need to be considered, even though very few of the words are actually significant 

and suitable for our case. In our Arabic sentiment classification case, we are interested in words related to 

expressing sentiment. 

The presence of extra features have drawbacks. The first is that they make document classification slower, since 

there are far more words than there really need to be. The second is that they can reduce our model 

performance, since the classifier must consider these words when classifying a document. 

Feature selection is the process of removing some of the unnecessary features in order to take advantage of 

using fewer features. This allows the classifier to fit a model to the problem set more quickly since there is less 

information to consider, and thus allows it to classify items faster. 

Several methods are used to assess the importance of each feature by attaching a certain weight in the text, 

such as: feature frequency (FF), Term Frequency Inverse Document Frequency (TF-IDF), and feature presence 

(FP) [15]. 

TF-IDF is a common metric used in text categorization tasks, it is composed of two scores, term frequency    

inverse   document frequency. Term frequency is found by simply counting the number of times that a given 

term has occurred in a given document, and inverse document frequency is found by dividing the total number 

of documents by the number of documents that a given word appears in. When these values are multiplied 

together, we get a score that is highest for words that appear frequently in a few documents, and low for terms 

that appear frequently in every document, allowing us to find terms that are important in a document [15]. 

     In fact, in our second proposed approach, we consider feeding our model with Modern Standard Arabic 

comments after applying on them the first and second tasks of our framework SPPARF. The feature selection 

Method is used to pick out discriminating terms for training and classification by computing a score for each 

individual feature. 

By the way, TF-IDF (term frequency-inverse document frequency) or Term weighting can be as simple as binary 

representation or as detailed as a mix of term and dataset existence probabilities stemmed from complex 

information theoretic underlying concepts [16]. 

 In TF-IDF terms weighting, the text documents are represented as transactions. Selecting the keyword for the 

feature selection process is the main preprocessing step necessary for the indexing of documents. In our work, 

we used TF-IDF to weight the terms in term-document matrices of our evaluation datasets. 

Then, supposing that ‘D’ is a document collection, ‘W’ is a word, and an individual document d. D, the weight 

‘w’ is calculated using Equations 1 and 2 presented in [17]. 

TF= TF ×IDF                       (1) 

Wd= ƒw,d × log |D| ⁄ ƒw,d     (2) 
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where ƒ w, dor TF is the number of times ‘w’ appears in a document ’d’, |D| is the size of the dataset, ƒ w, Dor IDF 

is the number of documents in which ‘w’ appears in D. The result of TF-IDF is a vector with the various terms 

along with their term weight as shown in Table 4. 

Table 4: Term weight in TF-IDF method 

Word Frequency 

 1275 جميل

 1719 جيد 

 1021 سيئة

 1390 رديئة 

4. Experiments and results 

4.1. Experimental Setting 

In this work, experiments are carried out on our dataset built in section 3.1, composed of Arabic reviews written 

in modern standard Arabic and collected from two different websites. After manual annotation, we found out 

that our labelled data is constructed from 3353 positive comments, 2647 negative and 2153 Neutral as shown 

in Table 2. For Arabic reviews classification, we adapt and apply five learning models trained using the Supervised 

machine learning classifiers seen in section 3.4. All the algorithms were implemented using Python Language. 

 Note also that supervised learning is based on labelled dataset and thus the labels are provided to the model 

during the process. These labelled dataset are trained to produce reasonable outputs when encountered during 

decision-making. To help us to understand the sentiment analysis in a better way, in all our experiments, we 

have split our labelled dataset in a 70/30 ratio: 70% for training and 30% for testing as shown in Table 5, which 

is a common practice in data science, found in the literature. This also relies on the size of the data set and 

whether it is balanced or not. 

Table 5: Dataset splitting 

Class Dataset Training set Testing set 

Positive 3353 2347 1006 

Negative 2647 1852 795 

Neutral 2153 1507 646 

Total 8153 5706 2447 

4.2. Results and evaluation 

To evaluate the performance of the proposed methods and several classifiers, the F1 score [18] is used after 

calculating the precision and recall. The accuracy shows the global correctness of the model by averaging the 

correct classifications on the total number of classifications [19]. The precision measures the accuracy of the 

classifier in regards to the specific predicted class. The recall or sensitivity of the classifier is the percentage of 

the correct predicted classes among the actual class in the data.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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𝐹1_𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

4.2.1. Double preprocessing method 

As seen in section 3.5.1, this method relies on thorough cleaning of the dataset by applying all SPPARF 

preprocessing techniques for both training and testing sets. Then feeding our five models with the resulted data. 

Table 6 shows the result of accuracy, precision, recall, and f1-score for each class in the testing dataset and for 

each algorithm. 

Table 6: Results of the Double preprocessing method 

Algorithm Class Accuracy Precision Recall f1_score 

Naive Bayes Classifier Positive  

0.678 

0.96 0.66 0.78 

Neutral 0.02 0.91 0.05 

Negative 0.84 0.70 0.76 

SGD Classifier Positive  

0.770 

0.90 0.82 0.85 

Neutral 0.47 0.67 0.55 

Negative 0.85 0.76 0.80 

Random Forest Positive  

0.613 

0.77 0.56 0.73 

Neutral 0.16 0.46 0.24 

Negative 0.77 0.70 0.65 

Logistic Regression Positive  

0.713 

0.91 0.70 0.79 

Neutral 0.27 0.70 0.39 

Negative 0.82 0.74 0.78 

K Nearest Neighbors Positive  

0.612 

0.70 0.75 0.72 

Neutral 0.41 0.44 0.43 

Negative 0.67 0.58 0.62 

We notice that the SGD Classifier produces the best accuracy (0.77) which is slightly higher than Logistic 

Regression. (0.71). This means that in our case SGD Classifier and Logistic Regression are both suitable for Arabic 

sentiment analysis. 

For more details, we present in Fig. 5, 6 and 7 the performance of the used classifiers for each class (positive, 

negative and neutral). 
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Figure 5: Performance of classifiers for positive comments using double preprocessing method 

 

Figure 6: Performance of classifiers for negative comments using double preprocessingmethod 
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Figure 7: Performance of classifiers for neutral  comments using double preprocessing method 

4.2.2. TF-IDF method 

In the TF-IDF feature selection method, Table 4 shows that the SGD Classifier performs the best across almost 

learning algorithms. Its accuracy is 0.77, which is one percent larger than Logistic Regression (0.76) and seven 

percent larger than Naïve Bayes Classifier (0.70).  

The first remark is that feeding the model with selected features can give better results than feeding the learning 

model with the entire text. Another reflection is that feature selection method (TF-IDF) trained using the five 

chosen learning classifiers (i.e., SGD, KNN, LR, RF, and NB) exhibits good and robust performance. 

 

Table 7: Performance of the classifiers using the TF-IDF method 

Algorithm Accuracy Precision Recall f1_score 

Naive Bayes Classifier 0.703 0.719 0.639 0.575 

SGD Classifier 0.771 0.748 0.744 0.742 

Random Forest 0.642 0.608 0.603 0.589 

Logistic Regression 0.760 0.739 0.725 0.720 

K Nearest Neighbors 0.666 0.642 0.643 0.641 

 

4.2.3. Evaluation 

TABLE 8 reports a comparison between accuracy results for the two proposed methods trained with the five 

aforesaid classifiers. This finding shows that SGD classifier is substantially more accurate than NB, RF, LR, KNN 

classifiers for unigram based feature weights, and still performing well for other types of features. 

Table 8: Performance comparison between the two used methods 

 

 

NB SGD  Random Forest Logistic Regression KNN 

TF-IDF based approach 0.703 0.771 0.642 0.760 0.666 
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Double preprocessing based approach  

0.678 

 

0.770 

 

0.613 

 

0.713 

 

0.612 

 

From Tables 6, 7 and 8 presented above, we can draw the following conclusions: 

 

• The tests and experiments were conducted using two types of input data: First using TF-IDF method for 

feature selection, and second using double preprocessing method. 

• Each dataset was applied to five different classification algorithms, which are k-Nearest Neighbor, Naïve 

Bayes, SGD, random forest, and logistic regression. 

• Performance Metrics: This research statistically measured the performance of the classification (positive, 

negative and neutral) tests that were conducted. Recall, precision, F1-score, and accuracy were 

calculated and analyzed. 

• Using the Feature selection method: From Table 7 and based on the tests and experiments conducted 

for feature selection using TF-IDF algorithm, the SGD Classifier performs the best (77.1%). There is a 

slightly different performance between SGD and Logistic Regression. 

• Using the double preprocessing method: From TABLE 6, Fig.5, 6 and 7, performance results were best 

achieved by SGD Classifier. In addition, Naïve Bayes achieved the poorest performance. 

• Furthermore, although the features were reduced in the double preprocessing method, good 

performance results could still be achieved by performing feature selection.  

• We also noticed that the neutral class gives unsatisfying performance, due to the structure of the neutral 

comment and the lack of neutral features that could train the model in a correct way. 

 

 

 

5. Conclusion and future work 

In this work, we conducted an empirical study of sentiment Analysis of online reviews written in Modern 

Standard Arabic and then built a System called SSAAR (System for Sentiment Analysis of Arabic Reviews). To 

obtain a performing system, we by ourselves construct the SPPARF Framework which is specific scraper and 

preprocessing framework adapted for MSA Arabic data collection and advanced preprocessing, used as an input 

framework for our proposed system. In fact, SPPARF was used to collect and preprocess MSA Arabic text, which 

consists of Arabic comments collected from Booking website and Aljazeera blog. 

 Secondly, we tested and compared between two methods to feed our learning algorithms. The first one is the 

double preprocessing method, and the second one is the TF-IDF method based on feature selection method. 

We found out that in both methods, SGD Classifier exhibits the best performance for sentiment classification for 

both positive and negative class but not for the neutral class. 

Thirdly, the experimental results indicate that the larger our dataset is the best the learning algorithm performs; 

it is the case for positive and negative classified data verses (VS) the neutral ones. 

Finally, we notice that sentiment classifiers are severely dependent on the type, distribution and size of features 

and dataset. We also conclude that improving the feature selection approach could automatically improve the 

classification precision and efficiency. 

With the consideration of conclusion, our future effort is to investigate in the points below: 

→ The influence of comments length on the learning process to train a sentiment classifier. 

→ Combining the two proposed methods to get better results 

→ Training our model using Cross Validation 
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→ Developing a web tool with a user interface based on our system SSAAR allowing sentiment analysis of 

online Reviews on different websites and Blogs. 
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