

7236

HTSCC: A Hybrid Task Scheduling Algorithm in Cloud Computing Environment

Rasha A. Al-Arasi
1
, Anwar Saif

2

1
Sana‘a University, Department of Computer Science, Sana ‘a, Yemen

rasha.ali66@gmail.com

2
Sana‘a University, Department of Information Systems, Sana‘a, Yemen

anwarsaif.ye@gmail.com

ABSTRACT

Nowadays, cloud computing makes it possible for users to use the computing resources like application,

software, and hardware, etc., on pay as use model via the internet. One of the core and challenging issue in

cloud computing is the task scheduling. Task scheduling problem is an NP-hard problem and is responsible

for mapping the tasks to resources in a way to spread the load evenly. The appropriate mapping between

resources and tasks reduces makespan and maximizes resource utilization. In this paper, we present and

implement an independent task scheduling algorithm that assigns the users' tasks to multiple computing

resources. The proposed algorithm is a hybrid algorithm for task scheduling in cloud computing based on a

genetic algorithm (GA) and particle swarm optimization (PSO). The algorithm is implemented and simulated

using CloudSim simulator. The simulation results show that our proposed algorithm outperforms the GA and

PSO algorithms by decreasing the makespan and increasing the resource utilization.

Indexing terms/Keywords

Cloud computing, Task scheduling, Genetic algorithm (GA), Particle swarm optimization (PSO), Makespan,

Resource utilization.

Subject Classification: Distributed Computing Classification

Language: English

Date of Submission: 09-08-2018

Date of Acceptance: 25-08-2018

Date of Publication: 29-08-2018

DOI: 10.24297/ijct.v17i2.7584

ISSN: 2277-3061

Volume: 17 Issue: 02

Journal: International Journal Of Computers & Technology

Publisher: CIRWORLD

Website: https://cirworld.com

 This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:rasha.ali66@gmail.com
mailto:anwarsaif.ye@gmail.com
https://cirworld.com/index.php/ijct/index

7237

1. INTRODUCTION

Cloud computing is a novel technology that enhances the usage of the virtualized resources on the internet

for the end user. The main idea behind cloud computing is providing on-demand various resources and

services from service providers with high availability and scalability in a distributed system [1]. Cloud

computing consists of a collection of a huge number of computing resources such as virtual machines,

network bandwidth, processing, and storage [2]. Provisioning of these resources on demand is one of the

major objectives of the cloud computing task scheduling. Task scheduling problem(TSP) is the most critical

challenge in the cloud environment [3]. TSP is a nondeterministic polynomial time(NP)-hard problem and is

responsible for allocating tasks of an application to computation resources efficiently [4]. Thus, many

techniques have proposed to solve the NP-hard problem, but there is no specific technique provides a

solution with polynomial time for this problem. However, the meta-heuristic techniques have attracted the

attention to get optimal solutions for this problem. Meta-heuristic is a population-based technique.

Algorithms such as ant colony optimization(ACO), genetic algorithm (GA), particle swarm optimization(PSO),

and imperialism competitive algorithm (ICA) are examples of algorithms that use this technique [5]. Genetic

algorithm and particle swarm optimization are the most popular meta-heuristic techniques to solve the TSP.

PSO is a population-based stochastic optimization technique that gains its popularity due to the ease of

implementation, quick convergence for large problems, and few parameters to adjust. However, PSO

algorithm might get a non-optimal solution because there is a possibility of becoming trapped in a local

search in the last iteration. The drawback of the GA- based algorithms is the slowness to reach the optimal

solution for the large size problems. Hence, the proposed algorithm inherits the advantages of PSO and GA

algorithms to address the TSP. The proposed HTSCC algorithm improves the local search by using the GA

mutation operator and expected to work with the different size of tasks. These features of the proposed

algorithm reduce the makespan and increase the resources utilization. The rest of this paper is organized as

follows: Section 2 presents related work. In Section 3, the proposed method in details is described. Section 4

discusses the experimental results and evaluates the proposed work. Then, the conclusion and future work are

summarized in section 5.

2. RELATED WORK

Tasks scheduling is a hot and major research area in the distributed environment like cloud computing. It is a

challenging issue in which a lot of research works have been carried out. Many meta-heuristic techniques were

proposed to solve the TSP using various strategies.

A. Al-maamari and F. A. Omara [3], proposed an algorithm that combines PSO with other local search strategy

called Cuckoo search. The algorithm performs well in reducing the increasing the resource utilization and

completion time.

A. Chhabra [6] proposed a hybrid PSACGA algorithm by amalgamate the features of ACO, PSO and operators

of GA to overcome the limitation of each individual algorithm. The proposed algorithm shows a good

performance in optimizing the flow time and makespan of parallel job scheduling problem.

Q. Meng, L. Zhang, and Y. Fan [7] have proposed a method to overcome trapping in a local search by

combining the PSO algorithm with GA and simulated annealing(SA).

A. S. Kumar and M. Venkatesan [8] presented a hybrid algorithm called HGPSO for task scheduling based on

the priority of the task. The proposed algorithm takes input from an on-demand queue and evaluates the

appropriate resources for the user tasks.

A cuckoo search-based task scheduling method presented by M. Agarwal and G. M. S. Srivastava [2] in the

cloud computing for the optimization of makespan.

7238

A. Al-maamari and F. A. Omara [9] have applied task scheduling method based-PSO for cloud computing to

reduce the makespan and maximize resource utilization. The proposed algorithm is combining between

cuckoo search and dynamic PSO. thus the algorithm is called MDAPSO.

M. Shojafar et al. [10] presented a FUGE algorithm to minimize cost and makespan in tasks scheduling for the

cloud. Based on different QoS parameters various types of chromosomes were created. The FUGE algorithm

used fuzzy theory to calculate crossover operation and fitness value of these chromosomes.

K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng [11] proposed a genetic algorithm-based approach called multi-

agent genetic algorithm (MAGA) for balancing the load between virtual machines. MAGA is an amalgamation

of multi-agent techniques and GA that improves the optimization and reduces convergence time as compared

to basic GA.

O. Udomkasemsub et al. [12] presented a workflow scheduling using the random-draft PSO(RDPSO) algorithm

for workflow scheduling in the cloud environment to minimize makespan and cost.

C. T. Joseph, K. Chandrasekaran, and R. Cyriac [13] proposed a novel approach for mapping virtual

machines(VMs) to suitable physical machines to maximize resource utilization using a family genetic algorithm

(FGA). R. Aron, I. Chana, and A. Abraham [14] introduced a novel PSO strategy in grid environment for secure

scheduling of jobs on appropriate resources.

For the aim of reducing makespan and increasing resource utilization, F. Ebadifard and S. M. Babamir [15]

proposed a static task scheduling technique for independent tasks on cloud computing based on PSO

algorithm.

N. Dordaie and N. J. Navimipour [16] presented a hybrid Particle swarm optimization and hill climbing

algorithm for task scheduling in cloud computing. This algorithm reduces the makespan compared to the PSO

and HEFT-B algorithms.

S. A. Hamad and F. A. Omara [17] modified the GA task scheduling to introduce a task scheduling algorithm

that minimizes the cost of tasks and completion time and maximizes resource utilization.

M. Jaeyalakshmi and P. Kumar [18] have introduced an algorithm to solve task scheduling and resource

allocation problem in cloud computing based on bat algorithm. Bat algorithm optimized the performance

and efficiency of the system by tunning multibed objectives such as makespan, load balancing, deadline, and

execution cost.

R. Babukartik and P. Dhavachelvan [19], proposed a hybrid algorithm which combines the advantages of ACO

and Cuckoo search to minimize the makespan. The proposed algorithm can be used in high power and

scientific computing.

R. Muthuram and G. Kousalya [20], introduced efficient genetic algorithms based scheduling algorithm to

optimized the makespan and execution cost. This algorithm begins with an initial population and implements

the different genetic operators such as selection, crossover, and mutation.

Z. Tarek, M. Zakria, and F. A. Omara [21] proposed a modified particle swarm optimization (MPOS) for solving

the TSP with an objective of reducing the cost.

3. PROPOSED METHOD

In this section, we have introduced the GA and PSO algorithms and then presented HTSCC algorithm in detail.

7239

3.1 . Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a population-based stochastic optimization which was introduced by

James Kennedy and Russell Eberhart in 1995 [22]. The development of this algorithm was inspired from social

behavior of particles like bird flocking and fish schooling. Nowadays the PSO algorithm is used in different

domains such as scheduling, communication networks, neural networks, power systems, security and military,

fuzzy system control and so on [23]. Compared to other meta-heuristic optimization algorithms the

advantages of PSO are that it is easy to implement and there are few parameters to adjust. The PSO algorithm

preserves a swarm of particles where the particles represent potential solutions and the population of

potential solutions represents swarms. Each particle has a position in source multidimensional search space.

The position of a particle is determined according to its own personal best experiences of a particle (Pbest)

and the common best experience (Gbest) among a number of swarms [24]. In addition to the position, the

particles have velocity. In every iteration of PSO position and velocity for every particle is updated according

to simple mechanisms. The algorithm is shown in figure1.

3.2 . Genetic algorithm

John Holland discovered genetic algorithms (GA) in the 1960s. GA is an evolutionary method based on

Darwin's theory of "SURVIVAL OF THE FITTEST" [25]. In the GA algorithm, the chromosomes are a group of

genes and represent a group of candidate solutions to the problem space. Figure 2 depicts the procedure of

this algorithm. The algorithm begins by generating an initial population of chromosomes randomly. The

chromosomes which are selected depend on evaluating of a fitness function. Then, apply the operators of GA

in each generation. The operators are selection, crossover(reproduction), and mutation. The selection process

uses Darwin's theory to select an intermediate population (mating pool) according to their fitness for the next

generation. There are different selection methods to select the best chromosomes(parents) such as

tournament selection (TOS), roulette wheel selection (RWS), linear rank selection (LRS), selection of Boltzmann,

truncation selection (TRS) and others [26]. Various crossover operators such as one-point, two-point, and

uniform crossover can be applied over parents to generate a new offspring. As well, various mutation

operators are also used to mutate new offspring such as Move, Swap, Move, Swap, etc.

Start

Initiate Particle i

Apply Fitness Function on Each
Particle i

Update Velocities for Particle i

Update Positions for Particle i

Determine Pbest and Gbest

Stopping
criterion
satisfied?

Increment i

Stop

Output Results

No

Yes

Start

Initiate Population

Apply Fitness Function

Selection

 Crossover

Mutation

Stopping
criterion
satisfied?

Replace
Population

Stop

Output Results

Yes

No

Fig 1: The flow chart of the PSO algorithm Fig 2: The flow chart of the GA algorithm

7240

3.3 . The Proposed hybrid HTSCC algorithm

The HTSCC algorithm is an optimization algorithm that consolidates the features of GA and PSO algorithms to

overcome the drawbacks of these two algorithms. The flowchart of the HTSCC algorithm shown in figure 3.

Start

Initialization Random
Population

Tournament Selection(TOS)

Reproduction

Mutation

Stopping
criterion
satisfied?

Replace
Population

NO YESYES

Specify Pbest and Gbest

New chromsomes

Updating particle i

Stopping
criterion
satisfied?

Stop

Output Results

NO

YESYES

Increment i

Fig 3: The flow chart of the HTSCC algorithm

The HTSCC algorithm is mainly divided into two phases: in the first phase, initializes the population randomly

and applies GA operators tournament selection(TOS), reproduction (crossover), and mutation sequentially. The

second phase applies the PSO method over GA to get optimal solutions. The detailed steps are shown in

figure 4.

Step 1: The Initialization of a random population and determining the parameters of the proposed algorithm

such as a number of iterations and populations. These populations are called chromosomes which represent

the random solutions in the first iteration.

Step 2: Apply GA method.

Step 2.1: Tournament selection is used to select an intermediate solution(chromosomes) for crossover

operator depending on relative fitness. The TOS aim is to overcome the limitations of the population size. In

this step, not all the chromosomes are selected. Only, the best two chromosomes are selected at random from

the population. The random number is then selected between 0 and 1. The non-selected chromosomes could

be selected again when they returned to the population.

Step 2.2: Single point crossover operator is applied to the selected chromosomes with 0.9 probability

crossover (PC) to generate two offspring. The reproduction point is selected randomly from the rang of

chromosome length.

 //phase 1:GA method
Step 1: Initialize population randomly
Step 2: GA method
 //Apply GA operators
 2.1: Tournament selection (TOS)
 (depending on relative fitness)
 2.2: Reproduction
 (Apply PC, carry out crossover)
 2.3: Mutation
 (Using PM)
Step 3: Repeat until the termination criterion reached
 //phase 2: PSO
Step 4: PSO Method
 // Apply position and velocity operators of the PSO
 4.1: Calculate Pbest and Gbest
 4.2: Update velocity
 4.3: Update position
Step 5: Repeat until the termination criterion reached and Get best solution

Fig 4: Proposed algorithm

7241

Step 2.3: Mutation operator takes place after crossover to make modification in the chromosomes which yield

from reproduction. In the HTSCC algorithm, the probability of mutation(PM) is (1/ (number of tasks)). The

mutation aims to produce chromosomes with the best fitness value than existent chromosomes. Also,

improving the local search ability. The chromosomes are enhanced progressively in each generation by

applying the GA operators.

Step 3: Steps 2.1 to 2.3 will be repeated until the termination criterion reached.

Step 4: Apply the PSO method.

The resulting chromosomes from the first phase are fed to the second phase as particles. The particles

represent several solutions in PSO. In this phase, the operators of PSO such as determine Pbesti and Gbest, a

velocity of particles, and the position of particles are applied in each iteration.

Step 4.1: In each iteration, Pbesti and Gbest are calculated. The Pbesti is the best position of particle and Gbest

is the best position of entire particles in the population. In the beginning, the fitness value is evaluated against

each particle Xi. If particles' fitness is better than Pbesti, Pbesti is replaced by Xi. Likewise, if Pbesti better than

Gbest, Gbest is replaced by Pbesti according to the following:

If Xi < Pbesti

 {Pbesti = Xi}

If Pbesti <

Gbest

 {Gbest = Pbesti}

Step 4.2: After determining the value of Pbesti and Gbest, velocity and position of particles are updating

accordingly. The velocity of each particle is updated by equation 1.

Step 4.3: Equation 2 shows how each particle’s position (Xi
k+1

) is updating during the search in the solution

space.

Vi
k+1

= W Vi
k
+ a1 rand1 * (Pbesti - Xi

k
) + a2rand2 * (Gbest - Xi

k
), [27] (1)

Xi
k+1

=Xi
k
+ Vi

k+1
, [27] (2)

Where

Vi
k+1

 velocity of particle i at iteration k+1

W inertia weight

Vi
k
 velocity of particle i at iteration k

a1,a2 acceleration coefficients

rand1,rand2 random number between 0 and 1

Pbesti best position of particle i

Xi
k
 position of particle i at iteration k

Gbest best position of entire particles in a population

Xi
k+1

 position of particle i at iteration k+1

7242

a1rand1*(Pbesti-Xi
k
) cognitive component

a2rand2 *(Gbest-Xi
k
) social component

Step 5: Steps 4.1 to 4.3 will be repeated until the termination criterion reached. The minimum returned Gbest

presents the best solution of TSP.

4. PERFORMANCE EVALUATION

In this section, the proposed HTSCC algorithm is compared with original GA and PSO algorithms in terms of

resource utilization and makespan.

4.1 . Environment setting

In our experiments, we have used CloudSim to implement the proposed HTSCC algorithm and other

algorithms. The CloudSim is a toolkit simulation for modeling the cloud computing environment [28]. It is an

easy to use simulator and flexible in defining configurations parameters. We have used some parameters in

our proposed algorithm which have a considerable impact on the performance of the algorithm. The

parameters used by HTSCC algorithm along with their values are given in Table 1.

Table 1. Simulation parameters setting

Parameter Value

Number of VMs 5 -10

Number of tasks 10 - 40

RAM(MB) 128 - 4096

BW(mbps) 700 - 1500

MIPS 200 - 600

No. of processor 5

Two scenarios were used to test the performance of the proposed algorithm, the first scenario uses 5 virtual

machines while the second one uses 10 virtual machines. The number of tasks in both scenarios is between 10

and 40.

In this table, the parameters were used to specify the specifications of VMs. We were used a different number

of VMs, 5VMs as scenario one and 10VMs as scenario two with a different number of tasks between (10 to 40)

in the two scenarios. The performance metrics experienced in these experiments are makespan and resource

utilization. The setting parameters for the proposed HTSCC algorithm are shown in Table 2.

Table 2. HTSCC algorithm parameters

The HTSCC start with 80

Parameter Value

Maximum iteration 80

Population size(no. of solution) 80

Execute times 10

Crossover operator Single point

Crossover probability 0.9

Mutation operator Random

Mutation probability 1/(number of tasks)

a1=a2 1.49445

r1,r2 Random numbers between 0 and

1 W 0.9 to 0.4

7243

random solutions and the termination condition is set to 80. The simulation experiment is executed 10 times

and the average of the results of the makespan and resource utilization were compared with GA and PSO

algorithms.

4.2. Experimental result

In order to evaluate the performance of the proposed HTSCC algorithm in reducing the makespan and

increasing resource utilization, we have two different scenarios. In the first scenario, we used 5 VMs and

change the number of tasks from 10 to 40. The second scenario, 10 VMs and change the number of tasks from

10 to 40. The final results of executed the three algorithms in terms of makespan and resource utilization

which depicted in Table 3.

The results in table 3 show that the proposed HTSCC achieves better results than GA and PSO. It has the

minimum makespan and the maximum resource utilization among the three algorithms. Each experiment is

repeated 10 times, and the average results were calculated and demonstrated in Table 4.

Table 3. The simulation results of the two sceinarios

F
irst S

c
e
n

a
rio

:

Scheduling

algorithm

N
u

m
b

e
r

o
f

V
M

s

N
u

m
b

e
r

o
f

ta
sk

s

M
a
k

e
sp

a
n

(s
e
c
)

R
e
so

u
rc

e

u
ti

li
z
a
ti

o
n

(r
a
te

)

S
e
c
o

n
d

 S
c
e
n

a
rio

N
u

m
b

e
r

o
f

V
M

s

N
u

m
b

e
r

o
f

ta
sk

s

M
a
k

e
sp

a
n

(s
e
c
)

R
e
so

u
rc

e

u
ti

li
z
a
ti

o
n

(r
a
te

)

10

HTSCC 48.5 0.491053 32.9 0.346789

GA

5

10
74.1 0.395652

10
52.2 0.211538

PSO 64.1 0.387838 40.7 0.245000

HTSCC 86.5 0.555801 58.4 0.350577

GA
20

142.3 0.350000
20

79.6 0.321221

PSO 136.2 0.423944 68.2 0.268354

HTSCC 123.3 0.518440 73.8 0.514617

GA
30

226.2 0.382123
30

93.3 0.366667

PSO 179.1 0.403530 87.4 0.367816

HTSCC 155.2 0.513242 96.7 0.471577

GA
40

210.1 0.418095
40

105.4 0.445121

PSO 192.2 0.472251 101.9 0.455876

7244

Table 4. Average result of 10 experiments.

Scheduling algorithm Makespan(sec) Resource utilization(rate)

HTSCC 84.4125 0.470262

GA 122.9 0.361302

PSO 108.725 0.37808

Fig 5: The makespan of GA, PSO and HTSCC algorithms

with 5VMs

Fig 6: The makespan of GA, PSO and HTSCC algorithms

with 10VMs

Fig 7: The resource utilization of GA, PSO and HTSCC

algorithms with 5VMs

Fig 8: The resource utilization of GA, PSO and HTSCC

algorithms with 10VMs

7245

Figures 5 and 6 show, the HTSCC algorithm achieved considerable enhancement of 31.32% and 22.36%

better than GA and PSO algorithms respectively. Also, in term of resource utilization, figures 7 and 8, they

show an improvement up to 23.17% and 19.6% of HTSCC over the GA and PSO respectively.

These results show the significance of the proposed algorithm in obtaining the optimal solution faster and

with fewer resources than the other algorithms by combining the fast convergence and appropriate diversity.

5. CONCLUSION AND FUTURE WORK

The work in this paper presents a hybrid task scheduling algorithm to ensure distribution of the tasks through

VMs in an efficient way to increase resource utilization and decrease makespan of the application in the cloud

computing environment. The proposed HTSCC algorithm makes use of the advantages of the GA and PSO

algorithms in order to maximize resource utilization and minimize makespan. Simulation results of the HTSCC

show that the makespan can be enhanced by about 31.32% and 22.36% while resource utilization is enhanced

by about 23.17% and 19.6% compared to the GA and PSO respectively. In the future work, the proposed

algorithm will be tested over dynamic workflow applications where the user can change the parameters of the

workflow task during the runtime. Moreover, the proposed algorithm will be enhanced to address multi-

objective metrics such as cost, speed up and efficiency.

REFERENCES

1. Senyo, P.K., E. Addae, and R. Boateng, Cloud computing research: A review of research themes,

frameworks, methods and future research directions. International Journal of Information Management,

2018. 38(1): p. 128-139.

2. Agarwal, M. and G.M.S. Srivastava, A Cuckoo Search Algorithm-Based Task Scheduling in Cloud

Computing, in Advances in Computer and Computational Sciences. 2018, Springer. p. 293-299.

3. Al-maamari, A. and F.A. Omara, Task scheduling using hybrid algorithm in cloud computing environments.

Journal of Computer Engineering (IOSR-JCE), 2015. 17(3): p. 96-106.

4. Singh, P., M. Dutta, and N. Aggarwal, A review of task scheduling based on meta-heuristics approach in

cloud computing. Knowledge and Information Systems, 2017: p. 1-51.

5. Yang, X.-S., et al., Swarm intelligence and bio-inspired computation: theory and applications. 2013:

Newnes.

6. Chhabra, A., Hybrid PSACGA Algorithm for Job Scheduling to Minimize Makespan in Heterogeneous Grids,

in Industry Interactive Innovations in Science, Engineering and Technology. 2018, Springer. p. 107-120.

7. Meng, Q., L. Zhang, and Y. Fan, A Hybrid Particle Swarm Optimization Algorithm for Solving Job Shop

Scheduling Problems, in Theory, Methodology, Tools and Applications for Modeling and Simulation of

Complex Systems. 2016, Springer. p. 71-78.

8. Kumar, A.S. and M. Venkatesan, Task scheduling in a cloud computing environment using HGPSO

algorithm. Cluster Computing, 2018: p. 1-7.

9. Al-maamari, A. and F.A. Omara, Task scheduling using PSO algorithm in cloud computing environments.

International Journal of Grid and Distributed Computing, 2015. 8(5): p. 245-256.

10. Shojafar, M., et al., FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy

theory and a genetic method. Cluster Computing, 2015. 18(2): p. 829-844.

11. Zhu, K., et al. Hybrid genetic algorithm for cloud computing applications. in Services Computing

Conference (APSCC), 2011 IEEE Asia-Pacific. 2011. IEEE.

12. Udomkasemsub, O., L. Xiaorong, and T. Achalakul. A multiple-objective workflow scheduling framework

for cloud data analytics. in Computer Science and Software Engineering (JCSSE), 2012 International Joint

Conference on. 2012. IEEE.

13. Joseph, C.T., K. Chandrasekaran, and R. Cyriac, A novel family genetic approach for virtual machine

allocation. Procedia Computer Science, 2015. 46: p. 558-565.

14. Aron, R., I. Chana, and A. Abraham, A hyper-heuristic approach for resource provisioning-based scheduling

in grid environment. The Journal of Supercomputing, 2015. 71(4): p. 1427-1450.

7246

15. Ebadifard, F. and S.M. Babamir, A PSO‐based task scheduling algorithm improved using a

load‐balancing technique for the cloud computing environment. Concurrency and Computation: Practice

and Experience, 2018. 30(12): p. e4368.

16. Dordaie, N. and N.J. Navimipour, A hybrid particle swarm optimization and hill climbing algorithm for task

scheduling in the cloud environments. ICT Express, 2017.

17. Hamad, S.A. and F.A. Omara, Genetic-based task scheduling algorithm in cloud computing environment.

International Journal of Advanced computer Science and Applications, 2016. 7(4): p. 550-556.

18. Jaeyalakshmi, M. and P. Kumar, Task Scheduling Using Meta-Heuristic Optimization Techniques in Cloud

Environment. International Journal Of Engineering And Computer Science, 2016. 5(11).

19. Babukartik, R. and P. Dhavachelvan, Hybrid Algorithm using the advantage of ACO and Cuckoo Search for

Job Scheduling. International Journal of Information Technology Convergence and Services, 2012. 2(4): p.

25.

20. Muthuram, R. and G. Kousalya, GAF–Genetic Algorithm based Framework for Cloud Resource Scheduling.

21. Tarek, Z., M. Zakria, and F.A. Omara, Pso optimization algorithm for task scheduling on the cloud

computing environment. International Journal of Computers and Technology, 2014. 13(9).

22. Kennedy, J. and R. Eberhart, Particle swarm optimization 1995 IEEE International Conference on Neural

Networks Proceedings. 1942, Vols.

23. Poli, R., An analysis of publications on particle swarm optimization applications. Essex, UK: Department of

Computer Science, University of Essex, 2007.

24. Imran, M., R. Hashim, and N.E.A. Khalid, An overview of particle swarm optimization variants. Procedia

Engineering, 2013. 53: p. 491-496.

25. Kao, Y.-T. and E. Zahara, A hybrid genetic algorithm and particle swarm optimization for multimodal

functions. Applied Soft Computing, 2008. 8(2): p. 849-857.

26. Saini, N., Review of Selection Methods in Genetic Algorithms. International Journal Of Engineering And

Computer Science, 2017. 6(12): p. 22261-22263.

27. Bansal, J.C., Particle Swarm Optimization, in Evolutionary and Swarm Intelligence Algorithms. 2019,

Springer. p. 11-23.

28. Calheiros, R.N., et al., CloudSim: a toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms. Software: Practice and experience, 2011. 41(1): p. 23-

50.

Author’ biography with Photo

Rasha Al-Arasi received the B.S. in Information system and primary M.S. degrees in computer science from the faculty

of computer and information technology in 2010 and 2016, respectively. Currently, She works as a tutor in the field of

computer and information technology at Sana‘a University. Recently, She has published many journals and conference

articles locally and overseas.

 Anwar Saif: received his Ph.D. degree from University Putra Malaysia (UPM) in 2012.

Currently, he is an assistant professor at the faculty of Computer Science and Information

Technology, Sana’a University, Yemen. His research interests in wireless communication,

VoIP, Distributed systems and cloud computing.

