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ABSTRACT 

Nowadays, cloud computing makes it possible for users to use the computing resources like application, 

software, and hardware, etc., on pay as use model via the internet. One of the core and challenging issue in 

cloud computing is the task scheduling. Task scheduling problem is an NP-hard problem and is responsible 

for mapping the tasks to resources in a way to spread the load evenly. The appropriate mapping between 

resources and tasks reduces makespan and maximizes resource utilization. In this paper, we present and 

implement an independent task scheduling algorithm that assigns the users' tasks to multiple computing 

resources. The proposed algorithm is a hybrid algorithm for task scheduling in cloud computing based on a 

genetic algorithm (GA) and particle swarm optimization (PSO). The algorithm is implemented and simulated 

using CloudSim simulator. The simulation results show that our proposed algorithm outperforms the GA and 

PSO algorithms by decreasing the makespan and increasing the resource utilization. 
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1. INTRODUCTION  

Cloud computing is a novel technology that enhances the usage of the virtualized resources on the internet 

for the end user. The main idea behind cloud computing is providing on-demand various resources and 

services from service providers with high availability and scalability in a distributed system [1]. Cloud 

computing consists of a collection of a huge number of computing resources such as virtual machines, 

network bandwidth, processing, and storage [2]. Provisioning of these resources on demand is one of the 

major objectives of the cloud computing task scheduling. Task scheduling problem(TSP) is the most critical 

challenge in the cloud environment [3]. TSP is a nondeterministic polynomial time(NP)-hard problem and is 

responsible for allocating tasks of an application to computation resources efficiently [4]. Thus, many 

techniques have proposed to solve the NP-hard problem, but there is no specific technique provides a 

solution with polynomial time for this problem. However, the meta-heuristic techniques have attracted the 

attention to get optimal solutions for this problem. Meta-heuristic is a population-based technique. 

Algorithms such as ant colony optimization(ACO),  genetic algorithm (GA), particle swarm optimization(PSO), 

and imperialism competitive algorithm (ICA) are examples of algorithms that use this technique [5]. Genetic 

algorithm and particle swarm optimization are the most popular meta-heuristic techniques to solve the TSP. 

PSO is a population-based stochastic optimization technique that gains its popularity due to the ease of 

implementation, quick convergence for large problems, and few parameters to adjust. However, PSO 

algorithm might get a non-optimal solution because there is a possibility of becoming trapped in a local 

search in the last iteration. The drawback of the GA- based algorithms is the slowness to reach the optimal 

solution for the large size problems. Hence, the proposed algorithm inherits the advantages of PSO and GA 

algorithms to address the TSP. The proposed HTSCC algorithm improves the local search by using the GA 

mutation operator and expected to work with the different size of tasks. These features of the proposed 

algorithm reduce the makespan and increase the resources utilization. The rest of this paper is organized as 

follows: Section 2 presents related work. In Section 3, the proposed method in details is described. Section 4 

discusses the experimental results and evaluates the proposed work. Then, the conclusion and future work are 

summarized in section 5.  

2. RELATED WORK 

Tasks scheduling is a hot and major research area in the distributed environment like cloud computing. It is a 

challenging issue in which a lot of research works have been carried out. Many meta-heuristic techniques were 

proposed to solve the TSP using various strategies.  

A. Al-maamari and F. A. Omara [3], proposed an algorithm that combines PSO with other local search strategy 

called Cuckoo search. The algorithm performs well in reducing the increasing the resource utilization and 

completion time.  

A. Chhabra [6] proposed a hybrid PSACGA algorithm by amalgamate the features of ACO, PSO and operators 

of GA to overcome the limitation of each individual algorithm. The proposed algorithm shows a good 

performance in optimizing the flow time and makespan of parallel job scheduling problem. 

Q. Meng, L. Zhang, and Y. Fan [7] have proposed a method to overcome trapping in a local search by 

combining the PSO algorithm with GA and simulated annealing(SA). 

A. S. Kumar and M. Venkatesan [8] presented a hybrid algorithm called HGPSO for task scheduling based on 

the priority of the task. The proposed algorithm takes input from an on-demand queue and evaluates the 

appropriate resources for the user tasks. 

A cuckoo search-based task scheduling method presented by M. Agarwal and G. M. S. Srivastava [2] in the 

cloud computing for the optimization of makespan.  
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A. Al-maamari and F. A. Omara [9] have applied task scheduling method based-PSO for cloud computing to 

reduce the makespan and maximize resource utilization. The proposed algorithm is combining between 

cuckoo search and dynamic PSO. thus the algorithm is called MDAPSO. 

M. Shojafar et al. [10] presented a FUGE algorithm to minimize cost and makespan in tasks scheduling for the 

cloud. Based on different QoS parameters various types of chromosomes were created. The FUGE algorithm 

used fuzzy theory to calculate crossover operation and fitness value of these chromosomes. 

K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng [11] proposed a genetic algorithm-based approach called multi-

agent genetic algorithm (MAGA) for balancing the load between virtual machines. MAGA is an amalgamation 

of multi-agent techniques and GA that improves the optimization and reduces convergence time as compared 

to basic GA. 

O. Udomkasemsub et al. [12] presented a workflow scheduling using the random-draft PSO(RDPSO) algorithm 

for workflow scheduling in the cloud environment to minimize makespan and cost. 

C. T. Joseph, K. Chandrasekaran, and R. Cyriac [13] proposed a novel approach for mapping virtual 

machines(VMs) to suitable physical machines to maximize resource utilization using a family genetic algorithm 

(FGA). R. Aron, I. Chana, and A. Abraham [14] introduced a novel PSO strategy in grid environment for secure 

scheduling of jobs on appropriate resources. 

For the aim of reducing makespan and increasing resource utilization, F. Ebadifard and S. M. Babamir [15] 

proposed a static task scheduling technique for independent tasks on cloud computing based on PSO 

algorithm.  

N. Dordaie and N. J. Navimipour [16] presented a hybrid  Particle swarm optimization and hill climbing 

algorithm for task scheduling in cloud computing. This algorithm reduces the makespan compared to the PSO 

and HEFT-B algorithms. 

S. A. Hamad and F. A. Omara [17] modified the GA task scheduling to introduce a task scheduling algorithm 

that minimizes the cost of tasks and completion time and maximizes resource utilization. 

M. Jaeyalakshmi and P. Kumar [18] have introduced an algorithm to solve task scheduling and resource 

allocation problem in cloud computing based on   bat algorithm.  Bat algorithm optimized the performance 

and efficiency of the system by  tunning  multibed objectives such as makespan, load balancing, deadline, and 

execution cost. 

R. Babukartik and P. Dhavachelvan [19], proposed a hybrid algorithm which combines the advantages of ACO 

and Cuckoo search to minimize the makespan. The proposed algorithm can be used in high power and 

scientific computing. 

R. Muthuram and G. Kousalya [20], introduced efficient genetic algorithms based scheduling algorithm to 

optimized the makespan and execution cost. This algorithm begins with an initial population and implements 

the different genetic operators such as selection, crossover, and mutation. 

Z. Tarek, M. Zakria, and F. A. Omara [21] proposed a modified particle swarm optimization (MPOS) for solving 

the TSP with an objective of reducing the cost. 

3. PROPOSED METHOD 

In this section, we have introduced the GA and PSO algorithms and then presented HTSCC algorithm in detail. 
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3.1 . Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a population-based stochastic optimization which was introduced by 

James Kennedy and Russell Eberhart in 1995 [22]. The development of this algorithm was inspired from social 

behavior of particles like bird flocking and fish schooling. Nowadays the PSO algorithm is used in different 

domains such as scheduling, communication networks, neural networks, power systems, security and military, 

fuzzy system control and so on [23]. Compared to other meta-heuristic optimization algorithms the 

advantages of PSO are that it is easy to implement and there are few parameters to adjust. The PSO algorithm 

preserves a swarm of particles where the particles represent potential solutions and the population of 

potential solutions represents swarms. Each particle has a position in source multidimensional search space. 

The position of a particle is determined according to its own personal best experiences of a particle (Pbest) 

and the common best experience (Gbest) among a number of swarms [24]. In addition to the position, the 

particles have velocity.  In every iteration of PSO position and velocity for every particle is updated according 

to simple mechanisms. The algorithm is shown in figure1. 

3.2 . Genetic algorithm 

John Holland discovered genetic algorithms (GA) in the 1960s. GA is an evolutionary method based on 

Darwin's theory of "SURVIVAL OF THE FITTEST" [25]. In the GA algorithm, the chromosomes are a group of 

genes and represent a group of candidate solutions to the problem space. Figure 2 depicts the procedure of 

this algorithm. The algorithm begins by generating an initial population of chromosomes randomly. The 

chromosomes which are selected depend on evaluating of a fitness function. Then, apply the operators of GA 

in each generation. The operators are selection, crossover(reproduction), and mutation. The selection process 

uses Darwin's theory to select an intermediate population (mating pool) according to their fitness for the next 

generation. There are different selection methods to select the best chromosomes(parents) such as 

tournament selection (TOS), roulette wheel selection (RWS), linear rank selection (LRS), selection of Boltzmann, 

truncation selection (TRS) and others [26]. Various crossover operators such as one-point, two-point, and 

uniform crossover can be applied over parents to generate a new offspring. As well, various mutation 

operators are also used to mutate new offspring such as Move, Swap, Move, Swap, etc.  

Start

Initiate Particle i

Apply Fitness Function on Each 
Particle i

Update Velocities for Particle i 

Update Positions for  Particle i 

Determine Pbest and Gbest 

Stopping 
criterion 
satisfied?

Increment i

Stop

Output Results 

No

Yes

 

Start

Initiate Population

Apply Fitness Function 

Selection 

 Crossover

Mutation 

Stopping 
criterion 
satisfied?

Replace 
Population

Stop

Output Results 

Yes

No

 

Fig 1: The flow chart of the PSO algorithm Fig 2: The flow chart of the GA algorithm 
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3.3 . The Proposed hybrid HTSCC algorithm 

The HTSCC algorithm is an optimization algorithm that consolidates the features of GA and PSO algorithms to 

overcome the drawbacks of these two algorithms. The flowchart of the HTSCC algorithm shown in figure 3. 

Start

Initialization Random  
Population

Tournament Selection(TOS) 

Reproduction

Mutation 

Stopping 
criterion 
satisfied?

Replace 
Population

NO YESYES

Specify Pbest and Gbest

New chromsomes

Updating particle  i

Stopping 
criterion 
satisfied?

Stop

Output Results 

NO

YESYES

Increment i

 

Fig 3: The flow chart of the HTSCC algorithm 

The  HTSCC algorithm is mainly divided into two phases: in the first phase, initializes the population randomly 

and applies GA operators tournament selection(TOS), reproduction (crossover), and mutation sequentially. The 

second phase applies the PSO method over GA to get optimal solutions. The detailed steps are shown in 

figure 4. 

Step 1: The Initialization of a random population and determining the parameters of the proposed algorithm 

such as a number of iterations and populations. These populations are called chromosomes which represent 

the random solutions in the first iteration.  

Step 2: Apply GA method.     

Step 2.1: Tournament selection is used to select an intermediate solution(chromosomes) for crossover 

operator depending on relative fitness. The TOS aim is to overcome the limitations of the population size. In 

this step, not all the chromosomes are selected. Only, the best two chromosomes are selected at random from 

the population. The random number is then selected between 0 and 1. The non-selected chromosomes could 

be selected again when they returned to the population.  

Step 2.2: Single point crossover operator is applied to the selected chromosomes with 0.9 probability 

crossover (PC) to generate two offspring. The reproduction point is selected randomly from the rang of 

chromosome length. 

 //phase 1:GA method
Step 1: Initialize population randomly
Step 2:  GA method  
                     //Apply GA operators
             2.1: Tournament selection (TOS)
                    (depending on relative fitness )
             2.2: Reproduction
                    (Apply PC, carry out crossover )
             2.3: Mutation
                    (Using PM)
Step 3: Repeat until the termination criterion reached 
 //phase 2: PSO
Step 4:   PSO Method
                     // Apply position and velocity operators of the PSO
             4.1: Calculate Pbest and Gbest
             4.2: Update velocity 
             4.3: Update position
Step 5: Repeat until the termination criterion reached and Get best solution

 

Fig 4: Proposed algorithm 
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Step 2.3: Mutation operator takes place after crossover to make modification in the chromosomes which yield 

from reproduction. In the HTSCC algorithm, the probability of mutation(PM) is (1/ (number of tasks)). The 

mutation aims to produce chromosomes with the best fitness value than existent chromosomes. Also, 

improving the local search ability. The chromosomes are enhanced progressively in each generation by 

applying the GA operators. 

Step 3: Steps 2.1 to 2.3 will be repeated until the termination criterion reached. 

Step 4: Apply the PSO method.  

The resulting chromosomes from the first phase are fed to the second phase as particles. The particles 

represent several solutions in PSO. In this phase, the operators of PSO such as determine Pbesti and Gbest, a 

velocity of particles, and the position of particles are applied in each iteration.          

Step 4.1: In each iteration, Pbesti and Gbest are calculated. The Pbesti is the best position of particle and Gbest 

is the best position of entire particles in the population. In the beginning, the fitness value is evaluated against 

each particle Xi. If particles' fitness is better than Pbesti, Pbesti is replaced by Xi. Likewise, if Pbesti better than 

Gbest, Gbest is replaced by Pbesti according to the following: 

If  Xi < Pbesti  

 {Pbesti = Xi} 

If  Pbesti < 

Gbest 

 

 {Gbest = Pbesti} 

Step 4.2: After determining the value of Pbesti and Gbest, velocity and position of particles are updating 

accordingly. The velocity of each particle is updated by equation 1. 

Step 4.3: Equation 2 shows how each particle’s position (Xi
k+1

) is updating during the search in the solution 

space. 

 

Vi
k+1 

= W Vi
k 
+ a1 rand1 * (Pbesti - Xi

k
) + a2rand2 * (Gbest - Xi

k
), [27] (1) 

Xi
k+1

=Xi
k
+ Vi

k+1
, [27] (2) 

Where 

Vi
k+1

 velocity of particle i at iteration k+1 

W inertia weight  

Vi
k
 velocity of particle i at iteration k 

a1,a2 acceleration coefficients  

rand1,rand2 random number between 0 and 1 

Pbesti best position of particle i 

Xi
k
 position of particle i at iteration k 

Gbest best position of entire particles in a population                                      

Xi
k+1

 position of particle i at iteration k+1 
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a1rand1*(Pbesti-Xi
k
) cognitive component 

a2rand2 *(Gbest-Xi
k
) social  component 

Step 5: Steps 4.1 to 4.3 will be repeated until the termination criterion reached. The minimum returned Gbest 

presents the best solution of TSP. 

4. PERFORMANCE EVALUATION 

In this section, the proposed HTSCC algorithm is compared with original GA and PSO algorithms in terms of 

resource utilization and makespan.   

4.1 . Environment setting 

In our experiments, we have used CloudSim to implement the proposed HTSCC algorithm and other 

algorithms. The CloudSim is a toolkit simulation for modeling the cloud computing environment [28]. It is an 

easy to use simulator and flexible in defining configurations parameters. We have used some parameters in 

our proposed algorithm which have a considerable impact on the performance of the algorithm.  The 

parameters used by HTSCC algorithm along with their values are given in Table 1. 

Table 1. Simulation parameters setting  

Parameter Value 

Number  of VMs 5 -10 

Number  of tasks 10 - 40 

RAM(MB) 128 - 4096 

BW(mbps) 700 - 1500 

MIPS 200 - 600 

No. of processor 5 

Two scenarios were used to test the performance of the proposed algorithm, the first scenario uses 5 virtual 

machines while the second one uses 10 virtual machines. The number of tasks in both scenarios is between 10 

and 40.  

In this table, the parameters were used to specify the specifications of VMs. We were used a different number 

of VMs, 5VMs as scenario one and 10VMs as scenario two with a different number of tasks between (10 to 40) 

in the two scenarios. The performance metrics experienced in these experiments are makespan and resource 

utilization. The setting parameters for the proposed HTSCC algorithm are shown in Table 2. 

Table 2. HTSCC algorithm parameters 

 

 

 

 

 

 

 

 

 

The HTSCC start with 80 

Parameter Value 

Maximum iteration 80 

Population size(no. of solution) 80 

Execute times 10 

Crossover operator  Single point 

Crossover probability 0.9 

Mutation operator Random 

Mutation probability 1/(number of tasks) 

a1=a2 1.49445 

r1,r2 Random numbers between 0 and 

1 W 0.9 to 0.4 
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random solutions and the termination condition is set to 80. The simulation experiment is executed 10 times 

and the average of the results of the makespan and resource utilization were compared with GA and PSO 

algorithms.  

4.2.  Experimental result  

In order to evaluate the performance of the proposed HTSCC algorithm in reducing the makespan and 

increasing resource utilization, we have two different scenarios. In the first scenario, we used 5 VMs and 

change the number of tasks from 10 to 40. The second scenario, 10 VMs and change the number of tasks from 

10 to 40. The final results of executed the three algorithms in terms of makespan and resource utilization 

which depicted in Table 3. 

The results in table 3 show that the proposed HTSCC achieves better results than GA and PSO. It has the 

minimum makespan and the maximum resource utilization among the three algorithms. Each experiment is 

repeated 10 times, and the average results were calculated and demonstrated in Table 4. 

Table 3. The simulation results of the two sceinarios 
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HTSCC   48.5 0.491053  32.9 0.346789 

GA 

5 

10 
74.1 0.395652 

10 
52.2 0.211538 

PSO 64.1 0.387838 40.7 0.245000 

     

HTSCC  86.5 0.555801  58.4 0.350577 

GA 
20 

142.3 0.350000 
20 

79.6 0.321221 

PSO 136.2 0.423944 68.2 0.268354 

     

HTSCC  123.3 0.518440  73.8 0.514617 

GA 
30 

226.2 0.382123 
30 

93.3 0.366667 

PSO 179.1 0.403530 87.4 0.367816 

     

HTSCC  155.2 0.513242  96.7 0.471577 

GA 
40 
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40 

105.4 0.445121 

PSO 192.2 0.472251 101.9 0.455876 
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Table 4. Average result of 10 experiments. 

Scheduling algorithm Makespan(sec) Resource utilization(rate) 
 

HTSCC 84.4125 0.470262 

GA 122.9 0.361302 

PSO 108.725 0.37808 

 

 

  

Fig 5: The makespan of GA, PSO and HTSCC algorithms 

with 5VMs 

 

Fig 6: The makespan of GA, PSO and HTSCC algorithms 

with 10VMs 

 

  

Fig 7: The resource utilization of GA, PSO and HTSCC 

algorithms with 5VMs 

Fig 8: The resource utilization of GA, PSO and HTSCC 

algorithms with 10VMs 
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Figures 5 and 6 show, the HTSCC algorithm achieved considerable enhancement of 31.32%  and  22.36%  

better than GA and PSO algorithms respectively. Also, in term of resource utilization, figures 7 and 8, they 

show an improvement up to 23.17% and 19.6% of HTSCC over the GA and PSO respectively.  

These results show the significance of the proposed algorithm in obtaining the optimal solution faster and 

with fewer resources than the other algorithms by combining the fast convergence and appropriate diversity. 

5. CONCLUSION AND FUTURE WORK 

The work in this paper presents a hybrid task scheduling algorithm to ensure distribution of the tasks through 

VMs in an efficient way to increase resource utilization and decrease makespan of the application in the cloud 

computing environment. The proposed HTSCC algorithm makes use of the advantages of the GA and PSO 

algorithms in order to maximize resource utilization and minimize makespan. Simulation results of the HTSCC 

show that the makespan can be enhanced by about 31.32% and 22.36% while resource utilization is enhanced 

by about 23.17% and 19.6% compared to the GA and PSO respectively. In the future work, the proposed 

algorithm will be tested over dynamic workflow applications  where the user can change the parameters of the 

workflow task during the runtime. Moreover, the proposed algorithm will be enhanced to address multi-

objective metrics such as cost, speed up and efficiency. 
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