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Abstract 

The existence of charged elementary ’point particles’ still is a basically unsolved puzzle in theoretical physics. 

The present work takes a fresh look at the problem by including gravity—without resorting to string theory. 

Using Einstein’s equations for the gravitational fields in a general static isotropic metric with the full energy-

momentum tensor (for the charged material mass and the electromagnetic fields) as the source term, a novel 

exact solution with a well-defined characteristic radius emerges where mass and charge accumulate: 

—with  being the ’classical’ radius associated with the total charge  and where 

 is the Schwarzschild radius belonging to the observable mass  (for the electron one has 

m and m). The resulting ’Einstein-Maxwell’ gravitational electron radius can also be 

written as , where m is the fundamental Planck length and      

the fine-structure constant, which yields m. 
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I. Introduction 

Modern theoretical physics is essentially based on the existence of a finite set of elementary ’point 

particles’—leptons and quarks—and their electromagnetic, gravitational, and weak or strong interactions (see, 

e.g., Refs. [1–5]). Apart from the neutrino’s, all fundamental particles carry an electric charge. However, the very 

concept of a stable ’point charge’—such as the electron—is an old and as yet basically unsolved problem. 

Namely, why should it be possible to accumulate a finite amount of electric charge in an infinitely small 

volume? What internal force does the work against the repulsive self-interaction? In fact, without such a force 

the charged particle should immediately explode. 

Historically, the problems with a point charge were already recognized in classical physics (see, e.g., 

Refs. [6–12]). For instance, in Poincaré’s ’electron model’ [7] the electric force on the charged sphere was 

counteracted by an elastic force of unspecified, non-electromagnetic and non-gravitational nature in order to 

define a total energy-momentum tensor  satisfying the condition  characteristic of a closed 

system (see, e.g., Ref. [13], Ch. 7.3). In fact, even more than a decade after the advent of general relativity, 

during a visit to Leiden University in 1925, Einstein asked Lorentz’ opinion on a purely electromagnetic model 

for the electron—i.e., without gravitational forces. Lorentz, however, rejected the idea (Ref. [12], Letter 398). 

In any case, to quote from Feynman’s Lectures (Ref. [10] Vol. I, p. 32-4): “The classical electron radius 

 m no longer has the significance that we believe that the electron really has such a 

radius”. More recently, based on state-of-the-art precision measurements of the electron’s gyromagnetic -

factor (and using a simple ’electron model’ due to Brodsky and Drell [14]), 1989 Nobel laureate H.G. Dehmelt 

has pointed out that "Today everybody ’knows’ the electron is a Dirac point particle with radius  and 

. But is it? The value  m given here constitutes an important new upper limit. [..] Thus, the 

electron may have size." (Ref. [15]; see also, e.g., Refs. [16, 17]). 

Nevertheless, in non-gravitational quantum theory the electron can be treated successfully as a 

structureless point particle—at least, if the problem of its infinite self-energy is being ’swept under the carpet’. 

Indeed, as is well-known from the very beginning of quantum electrodynamics (see, e.g, Ref. [18]), this 

’success’ is only possible at a price. Namely, handling the infinite self-energy of a point charge requires an 

infinite mass renormalization to yield results in terms of the observed mass  (see, e.g., Refs. [3,4,18–23]). 

Unfortunately, this fundamentally hampers the unification with quantum gravity—as the latter has been found 

to be non-renormalizable. 

For instance, to quote from Ref. [3], p. 568: “The definition of quantum gravity beyond the formal level 

leads to a number of unsolved problems. [...] Even pure quantum gravity is non-renormalizable in four 

dimensions. In fact, it is commonly believed that the theory remains non-renormalizable, a property which 

would indicate the breakdown of local quantum theory at Planck’s length scale m.” It is 

further worth noticing that modern string theory has been proposed—and is still under development—inter 

alia to cope with the problem of point-like particles, replacing them by tiny one-dimensional loops of Planck 

size (see, e.g., Refs. [4, 5]). 

The present work takes a fresh look at the problem by including gravity—as yet without resorting to 

string theory, ignoring the weak interaction and without a priori assuming the mass-charge density to be 

rigorously zero outside some  (as in the usual Reissner-Nordström analysis; see, e.g., Refs. [13, 24, 25] and 

Appendix A). Namely, the enormous amount of electrostatic energy compressed into an infinitely small 

volume must—according to Einstein’s general theory of relativity—give rise to huge local gravitational effects. 

Therefore, in this article the gravitational field equations for the Ricci tensor  are studied for a classical self-

gravitating charged mass, i.e., with the full energy-momentum tensor  for the material mass and the 

electromagnetic fields as the source of gravitational energy—in a static isotropic metric (Sec. II and III). The 

analysis involves an ’electrostatic equilibrium’ condition (Sec. IV), and rigorously yields a well-defined novel 

mass-charge distribution with (in fact, for all charged leptons) a characteristic size m (Sec. V and VI). 
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II. The gravitational field equations 

  Throughout the present article, it is chosen to keep both the speed of light  and the gravitational 

constant  explicitly in the formula—rather than using ’geometrized units’ where . The notation 

closely follows that of Weinberg’s book [1]. The field equations of general relativity may then be written as 

  

  (2.1) 

with  

  (2.2) 

 

where  is the Ricci tensor,  the covariant energy-momentum tensor,  the metric tensor, 

and  (with ). In mixed components (see, e.g., Sec. IV), Eq. (2.1) becomes 

 with   and . The covariant tensor  defines the 

Riemannian space-time geometry by means of the proper time , such that 

  

  (2.3) 

 

where, in this paper, time will be labelled by . 

For the problem of a charged mass, the energy-momentum tensor consists of two contributions, viz., 

for the—electrically charged—matter and the electromagnetic field itself. In the standard ’ideal fluid’ form 

(without internal pressure), the energy-momentum tensor for the mass reads  

  (2.4) 

 

where  is the proper mass density. In the Dirac representation one has 

  

  (2.5) 

 

where  is the determinant of the metric tensor, so that the mass   is given by  

  (2.6) 

 

where  is the determinant of the three-dimensional metric tensor  —see, 

e.g., Refs. [13, 26]. 

The system is closed (so that ) by including the electromagnetic field energy-momentum, 

given by 
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  (2.7) 

 

where the antisymmetric electromagnetic field tensor  is defined by  for the electric field and  

 for the magnetic field,  representing the usual three-dimensional Levi-Civita symbol and  being 

the vacuum permittivity. It is useful to note that, since  and , Eq. (2.7) implies that 

. 

The electromagnetic fields satisfy Maxwell’s equations 

  

  (2.8) 

 

where  is the current four-vector—with  being the proper charge density, which in the 

Dirac representation reads 

  

  (2.9) 

 

Since the current satisfies the conservation law , the charge  is conserved and given by  

  (2.10) 

 

Note that both  and  transform like a scalar. 

III. The static isotropic case 

 The static isotropic metric may be written in the ’standard’ form in spherical coordinates , so 

that the only nonvanishing components of the metric tensor are 

  

  (3.1) 

 

and . The only nonzero components of the Ricci tensor are (with , etc.) 

  

        (3.2) 

  

        (3.3) 
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        (3.4) 

 

while  and the only nonzero component of the material energy-momentum tensor now reads 

  

  (3.5) 

 

which readily yields 

 

 

       (3.6) 

  

while . 

For the metric (3.1), Eq. (2.8) leads to the Poisson equation 

  

  (3.7) 

 

for the only nonzero component  of the electric field, while for the contributions from Eq. (2.7) one 

obtains 

  

 

 

                                                           (3.8) 

 

while . Note that , as it should be. 

IV. The equilibrium condition 

 Einstein’s gravitational field equations (2.1) for the static isotropic mass-charge system may thus be 

written as 

 

                                           (4.1) 
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                                                                   (4.2) 

 

                                                      (4.3) 

 

Note that , , and . 

To find the equilibrium equation, first consider . This leads to 

  

  (4.4) 

 

Using the -equation (4.3) to eliminate , one gets 

  

  (4.5) 

 

Now differentiating Eq. (4.5) with respect to  and using  to eliminate , one obtains 

  

                  

 

                                            (4.6) 

 

Once more invoking Eq. (4.4), the result reads 

  

  (4.7) 

 

which—putting  and noticing the identity   —by 

invoking the Poisson equation (3.7) can be rewritten as 

  

  (4.8) 
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which represents the balancing of the repulsive electrostatic self-force and the attractive gravitational self-

force. It is the electrostatic counterpart of the usual ’hydrostatic equilibrium’ condition for ideal fluids. In fact, 

by virtue of the Bianchi identities, Eq. (4.8) is a direct consequence of the conservation law . Namely, 

one gets  with , while by means of the Poisson equation (3.7) one 

obtains . 

For a structureless charged mass the intrinsic charge-to-mass ratio  should be an -

independent constant, i.e., , which according to Eqs. (2.5) and (2.9) implies the equation of state 

 for the proper density. Without loss of generality, one may put  so that—by virtue of Eq. 

(2.10) for —the as yet undetermined mass  satisfies Eq. (2.6). Hence, the equilibrium equation (4.8) may be 

rewritten as 

  

  (4.9) 

 

with . Now using the Newtonian limit   and the Poisson limit   for 

, one obtains  

  (4.10) 

 

By Eq. (4.9) the problem of the charged mass is reduced to finding the temporal metric function . 

V. The temporal metric function 

 Consider Eq. (4.5) for , and using Eq. (4.9) for  write it as 

  

  (5.1) 

 

where  and . Now again take , collect the  terms and once more use 

Eq. (4.9) for . After a somewhat laborious but otherwise elementary calculation this leads to 

  

  (5.2) 

 

Substituting  and  from Eq. (5.1), and combining similar terms—some of which add up to zero—Eq. (5.2) is 

found to factorize such that for  it becomes a trivial zero identity (see Appendix A and, e.g., Ref. [27]) 

while for  it either leads to the trivial solution  or to a nontrivial metric function  satisfying 

  

                                                                                               (5.3) 
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which is akin to the prototype equation  for the temporal evolution of so-called ’finite-time blow-

up’ processes in, e.g., chemistry and hydrodynamic turbulence (see, e.g., Ref. [28], p. 353). 

Noticing that , using Eq. (5.3) for  and defining the auxiliary variable 

, one thus rigorously obtains 

  

  (5.4) 

 

The exact solution of Eq. (5.4) is given by 

  

  (5.5) 

 

where the integration constant has been set equal to the Schwarzschild radius  belonging to the 

observed mass m in order to satisfy the Newtonian limit  for large values of . 

For , one has  as well. On the other hand,  for . Namely, expanding Eq. 

(5.5) in powers of  yields , with 

  

  (5.6) 

 

Using  [as given below Eq. (4.9)] in the definition of  [as given below Eq. (5.1)] and invoking Eq. 

(4.10) for , one obtains . Once more using (4.10), this becomes  which leads to 

—with  being the ’classical’ radius belonging to the charge  and where 

 is the Schwarzschild radius belonging to the mass —so that , which explicitly 

amounts to 

  

  (5.7) 

 

where the exponential factor from Eq. (5.6) has been omitted as it is always of the order of unity. Actually, with 

m and m for the electron, one has  so that the exponential correction 

tends to  . Finally, one obtains m—which may be called the 

’Einstein-Maxwell’ gravitational electron radius. 

VI. Results 

The temporal metric function now follows from . Using Eq. (5.4) for , this yields  
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  (6.1) 

 

where  follows from Eqs. (5.5) and (5.6), while . Notice that for finite values of  and 

 one has , so that the function  becomes 

. Fig. 1 shows the exact solution  of Eq. (5.3) for a few values of . Further, using Eq. 

(5.5) for , Eq. (6.1) can also be written as . Hence,  while a simple 

calculation using Eqs. (5.4) and (5.5) yields .  

 

Similarly, the radial metric function  follows from Eq. (5.1) as 

 

  (6.2) 

 

while . For finite  and , one gets . 

 

 

Figure 1. The temporal metric function  [for  (bottom line),  (middle),  (top)]. Shown 

is the numerical solution of the exact Eq. (5.3), as a function of the non-dimensional radial variable   . 

 

       Next, the radial electrostatic field is obtained from Eq. (4.9), which yields 

  

  (6.3) 

 

where  is the unit step function. Fig. 2 shows the exact solution as , with . For finite 

values of  and with , this function becomes , which has its peak value 

 at  . One further gets  

 

  (6.4) 
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Finally, the Poisson equation (3.7) leads to 

  

  (6.5) 

 

where  is the Dirac distribution and which rigorously satisfies Eq. (2.10) for the total charge —recalling 

that  [see its definition below Eq. (4.9)] with   [from Eq. (4.10) and ] 

and using Eq. (5.6) for , so that 

 

  (6.6) 

 

For finite values of  and , the second part of the density (6.5) now becomes  

. Clearly, with  [see below Eq. (5.7)] charge and mass almost completely 

accumulate at the Einstein-Maxwell radius —the tail in Eq. (6.5) containing only some . 

 

 

Figure 2. The radial electrostatic field  [for  (bottom line),  (middle),  (top)]. Shown is 

 [with ], using the numerical solution of the exact Eq. (5.3), as a function of the non-

dimensional radial variable . 

 

The singular part of the density follows from the Poisson equation rather than from the gravitational 

field equations per se. Namely, from Eq. (6.5) one has , so that by virtue of 

 one has . Of course, the continuous part of the density  obeys the 

Einstein equations for  (for all values of ). E.g., consider Eq. (4.4) and note that its right-hand side 

amounts to , so that it remains to show that —which is easily done since 

  [by Eqs. (5.4) and (6.2)] and  by definition. 

 

VII. Final remarks 

        

        The mass-charge distribution (6.5) is an exact particle-like solution of the classical Einstein-Maxwell 

equations (for all values of the parameter ). It emerges from a rigorous balance between 

electrostatic self-repulsion and gravitational self-attraction for all values of the radius  (see Sec. IV), which is 

part of its novelty—see, e.g., Refs. [13, 24, 25]. It is further worth noticing that it appears to be the only 

solution for a point-like charge which correctly satisfies the observable Newtonian and Poisson limits for large 
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 but does not necessarily explode (as is, for instance, the case for the usual Reissner-Nordström 

’superextremal’ black hole electron; see, e.g., Ref. [24]). 

 

For an elementary ’point charge’—like, e.g., the Dirac electron—the electrostatic self-interaction is the 

well-known source of an infinite self-energy (plaguing quantum field theory and its unification with general 

relativity), and it requires the inclusion of gravity to establish equilibrium at the new finite size 

m (where m is the ’classical’ electron radius and m is the electron 

Schwarzschild radius)—as shown at the end of Sec. V. In fact, a system of this kind was first considered by 

Poincaré as a model for the electron, however, without specifying the nature of the model’s counteracting 

’elastic forces’ (see, e.g., Refs. [7, 13]). 

 

In the present work it is shown that these forces intrinsically arise from local gravitational effects, 

which become huge when compressing a finite charge into an infinitesimal volume and which give rise to the 

novel ’hidden’ mass —which is essentially located at  while taking care of the observable 

Newtonian and Poisson limits for . For the electron—with the parameter   

(while, e.g., for the heavier tauon )—mass and charge indeed almost completely accumulate at the 

radius  (see Sec. VI). 

 

By virtue of the relation (4.10) between the point-like massive charge  and the observable 

charged mass , the characteristic radius  is mass independent (i.e., identical for all charged leptons). 

Namely, by Eqs. (5.6) and (5.7) one has —which is also worth noticing to follow at once from 

equating the electromagnetic mass  at  to the Schwarzschild gravitational mass 

 (so that for the parameter  one also has , with kg). Hence, 

apart from involving the total charge, the novel ’Einstein-Maxwell’ gravitational electron radius only depends 

on the fundamental constants  and . It is readily written as 

 

  (7.1) 

 

where m is the Planck length (see, e.g., Refs. [3, 11]) and   is the 

fine-structure constant. The resulting numerical value (see, e.g., Ref. [29]) is: m. 

 

Since the radius (7.1) is about an order of magnitude smaller than Planck’s length —which is the 

fundamental size of the tiny one-dimensional loops proposed in modern string theory in order to inter alia 

cope with the problem of point-like particles (see, e.g., Refs. [4, 5])—the electron is indeed a point-like charge 

from the perspective of non-gravitational theory. However, while tiny it is large enough to produce only a 

relatively small quantum mechanical self-energy . 

 

For instance, for the free electron (see, e.g., Ref. [20], p. 270, tentatively taking  for the 

ultraviolet wave number cutoff) one now qualitatively gets  (where 

m is the Compton wavelength)—which removes the infinite mass renormalization from 

quantum electrodynamics (see also, e.g., Refs. [22, 23]) and thus opens up new perspectives for unifying non-

gravitational quantum field theory with non-renormalizable quantum gravity. 

 

Appendix 

The case  

For  the upshot from Eq. (5.2) yields a trivial zero identity for all metric functions . Hence, in 

that case the problem can be solved by any mass-charge distribution, the ensuing metric following from the 
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Poisson equation (3.7) with the equilibrium equation (4.9) for  and Eq. (5.1) for . Upon once integrating 

the Poisson equation, one gets 

 

  (A.1) 

 

with —so that by Eq. (2.10) one has . For instance, for a density with finite 

range  so that —such as, e.g.,  —one would have  for 

, and a metric singularity arises if . With , this then leads to  

 

  (A.2) 

 

which is worth noticing to correspond to a special case (viz., the ’extremal black hole’) of the Reissner-

Nordström metric [13, 24, 25]. 

 

A density with infinite range  may be given by —i.e.,  —

which by Eq. (A.1) for  would imply  and a singularity arises if . In this case the 

temporal metric function reads , which for  of course reduces to the result 

given in Eq. (A.2). 

 

Finally, notice that by Eq. (4.10) for  the observable classical mass amounts to  , 

so that in this case the corresponding Schwarzschild radius  precisely equals the mass-

independent ’Einstein-Maxwell’ radius  of Eq. (7.1). However, one now gets 

kg if —which is obviously far too heavy for the electron and is unlikely to be repaired by 

quantum effects (see, e.g., Sec. 7). To account for the correct order of magnitude of the electron mass 

kg one needs , as shown in the main text. 
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