Characterization of Thermally Evaporated CdSe1-XSX Thin Films for Solar Cells Applications

Authors

  • M. Abdel-Rahman Physics Department, Faculty of Science, Minia University, P.O. 61519 Minia, Minia, Egypt.

DOI:

https://doi.org/10.24297/jap.v14i2.7446

Keywords:

CdSe, CdS, CdSeS thin films, thermal evaporation, optical and electrical properties

Abstract

Binary semiconductor CdSe and CdS thin films are widely used for optoelectronic devices and window materials. The formation of ternary CdSe1-xSx thin films improves the physical characteristics of the binary CdSe thin films. The importance of CdSe1-xSx thin film is the change of band gap when incorporating S into the CdSe. This change in energy gap recommends CdSe1-xSx thin film for photovoltaic and photoconductive cells applications. In this work, polycrystalline CdSe1-xSx thin films have been grown in terms of thermal evaporation technique. X-ray diffractometry has been used to determine the lattice parameters and the crystallite size of the CdSe1-xSx mixed crystals. The variation in lattice parameters with composition from x = 0 to x = 1 were linearly. The crystallite size varies parabolically with the change in composition. The energy gap, opt g E , values of CdSe1-xSx thin films were estimated in terms of first derivative of absorbance with respect to wavelength and found to be increased with the formation of the ternary compound Cd-Se-S and with increasing the S content as expense of Se. This wider energy gap of the prepared films, which permits extra light to reach the solar cell junction, was correlated with the change in the microstructure parameters of thin films.

Downloads

Download data is not yet available.

References

S. M. Sze; “Semiconductor Devices: Physics And Technology†2nd ed. John Wiley & Sons, 1985.

K. N. Shreekanthan, B.V. Rajendra, V. B. Kasturi and G. K. Shivakumar; Cryst. Res. Technol. 38, 30(2003).

S. S. Kale and C. D. Lokhande; Materials Chemistry and Physics, 62 (2000) 103-108.

Y. H. Yu, P. V. Kamat and M. A. Kuno; Adv. Funct. Mater. 20 (2010) 1464–1472.

V. L. Colvin, M. C.Schlamp and A. P. Alivisatos; Nature, 370 (1994) 354–357.

N. G. Zakharov, K. V. Vorontsov and Y. N. Frolov; Bulletin of the Lebedev Physics Institute., 42 (7) (2015) 216-220.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng; X. Fan and S. T. Lee; Adv. Funct. Mater. 17 (2007) 1795–1800.

Jaeyoung Jang, Dmitriy S. Dolzhnikov, Wenyong Liu, Sooji Nam, Moonsub Shim and Dmitri V. Talapin; Nano Lett., 15 (2015) 6309-6317.

A. Ashour; Turkish Journal of Physics, 27 No. 6 (2003) 551-558.

K. D. Dobson, I Visoly Fisher, G. Hodes and D. Cahen; Solar Energy Materials and Solar Cells, 62 (2000) 295.

K. Sarmah, R. Sarma, H. L. Das; Chalc. Lett., 5 (2008) 153.

N. J. Suthan kissinger, M. Jayachandran, K. Perumal, C. Sanjeevi raja, Bull. Mater. Sci. 30 (2007) 547.

E. A. Sanchez-Ramirez, M. A. Hernandez-Perez, J. Aguilar-Hernandez, E. G. Palacios-Beas and M. Villanueva-Ibanez; Materials Research, 20 (4) (2017) 1121-1128.

A.A. Yadav, M. A. Barote and M. A. Masumdar; Materials Chemistry and Physics, 121 (1-2) (2010) 53-57.

M. A. Hrrnandez-Perez, J. Aguilar-Hernandez, G. Contreras-Puente, J. R. Vargas-Garcia and E. Rangel-Salinas; Physica E: Low-dimensional systems and Nanostructures, 40 (7) (2008) 2535-2539.

A. S. Hassanien and A. A. Akl; Superlatice and Microstructures, 89 (2016) 153-169.

E.R. Shaaban, M. El-Hagary, M. Emam-Ismail, A. Matar and I. S. Yahia; Materials Science and Engineering: B 178 (2013) 183.

M. El-Hagary, A. Matar, E.R. Shaaban and M. Emam-Ismail; Materials Research Bulletin 48 (2013) 2279.

M. Emam-Ismail, M. El-Hagary, E.R. Shaaban and S. Althoyaib; Journal of Alloys and Compounds 529 (2012) 113.

M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. Al-Rashidi and S. Althoyaib; Materials Chemistry and Physics 132 ( 2012) 581.

E.R. Shaaban, A. Almohammedi, El Sayed Yousef, Gomaa A.M. Ali, Kwok Feng Chong, A. Adel and A. Ashour; Optik 164 (2018) 527–537.

E.R. Shaaban, I. Kansal, S.H. Mohamed and J.M.F. Ferreira; Physica B 404(20) (2009) 3571–3576.

E. R. Shaaban; J. Alloys Compd. 563 (2013) 274-279.

R. G. Valeev, P.N. Krylov and E. A. Romanov; J. Surf. Invest. 1 (2007) 35–39

K. M. M. Abo–Hassan, M.R. Muhamad and S. Radhakrishna; Physica B 358 (2005) 256–264

B. Cullity; Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1976) pp. 1-80.

O.P. Agnihotri and A.K. Raturi; Thin Solid Films 108 (1983) 313-317.

B.D. Cullity & S.R. Stock; Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc., (2001) 167-171.

B.G. Potter Jr and J.H. Simmons; Phys. Rev. B 37 (1988) 10838.

R. Ramırez-Bon, F.J. Espinoza-Beltran, H. Arizpe-Chavez, O. Zelaya-Angel, and F. Sanchez-Sinencio, J. Appl. Phys. 77 (1995) 5461.

Downloads

Published

2018-06-30

How to Cite

Abdel-Rahman, M. (2018). Characterization of Thermally Evaporated CdSe1-XSX Thin Films for Solar Cells Applications. JOURNAL OF ADVANCES IN PHYSICS, 14(2), 5477–5487. https://doi.org/10.24297/jap.v14i2.7446

Issue

Section

Articles