Studies on Raman Spectra of Cu2+ Ion Doped B2O3-K2O-ZnO-BaO Glasses

  • L.S. Ravangave Department of Physics, Shri Sant Gadge Maharaj College, Nanded, Maharashtra, India.
  • G.N. Devde Department of Physics, Shri Sant Gadge Maharaj College, Nanded, Maharashtra, India.
Keywords: Borate glasses, Raman spectroscopy.

Abstract

Glasses with compositions 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO were prepared using melt quenching technique. The effect of BaO content in present glass system doped with copper ion in place of ZnO has been studied with respect to structural properties. Raman spectroscopy is an experimental technique appropriate for providing information about  the structure, local arrangement of the atoms in the present glasses. The Raman spectra of glasses were recorded at room temperature in the range 200-1800 cm-1 using a He-Ne excitation source having wavelength 632.81 nm. The Raman peaks appeared around 760 cm-1 assigned symmetric breathing vibrations of six-membered ring with both BO3 triangle and BO4 tetrahedral. The intensity of these peaks is slightly varied with the addition of BaO content while the broadness is found to be larger at 30 mol% of BaO than 30 mol% ZnO. This indicates that certain BO4 units could be preferentially converted while those in ring groups could be stabilized. Raman studies it is concluded that present glasses are composed of [BO4] and [BO3] units in metaborate, orthoborate, diborate groups.

Downloads

Download data is not yet available.

References

1. H. Kawazoe, H. Hosono, T. Kanazawa, (1978) J. of Non-Cryst. Solids 29, 173.
2. A. Agarwal, S. Khasa, V.P. Seth, M. Arora, (2013) J. Alloys and Compds. 568, 112.
3. Manal Abdel-Baki, Fouad El-Diasty, (2011) J. Solid State Chem. 184, 2762.
4. H.G. Hecht, T.S. Johnston, (1967) J. Chem. Phys. 46, 23.
5. Siegel, J.A. Lorence, (1966) J. Chem. Phys. 45, 2315.
6. G. N. Devde , G. Upender. V. Chandra Mouli, l. S. Ravangave, (2016)J. of Non-crystalline Solids, 432, 319-324.
7. G. Upender, M. Prasad, V. Chandra Mouli, (2011) J. Non-Cryst. Solids 357, 903.
8. S. Suresh, J. Chinna Babu, V. Chandra Mouli, Phys. Chem. Glasses 46 (2005) 27.
9. D. Sreenuvasu, N. Narsimlu, G.S. Sastry, V. Chandra Mouli, (1996) J. Mater, Sci. Mater. Elec.7, 283.
10. M. Abid, M. El-Labirou, M. Taibi, Mater. Sci. Eng. B 97 (2003) 20.
11. G. N. Devde and L. S. Ravangve, (2015) International Journal of Engg. Sci. and Tech.(IJSET), 4, 407-417.
12. B.N. Meera, J. Ramakrishnan, (1993) J. Non-Cryst. Solids 159, 1.
13. S.R. Rejisha, P.S. Anjana, N.G.Kumar, N. Santha, (2014) J. Non-Cryst. Solids 388, 68.
14. B.P. Dwivedi, M.H. Rahman, Y. Kumar, B.N. Khanna, (1993) J. Phys. Chem. Solids 54, 621.
15. M. Subhadra, P. Kistaiah, (2012) Vibr. Spectr. 62, 23.
16. T. Furukawa, W.B. White, (1982) Phys. Chem. Glasses 21, 85.
17. R. Ciceo-Lucacel, I. Ardelean, (2007) J. Non-Cryst. Solids 353, 2020.
18. D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, (2003) W. Kiefer, J. Mol. Struct. 651, 485.
19. G. Padmaja, P. Kistaiah, (2009) J. Phys. Chem. A 113, 2397.
20. V. Dimitrov, T. Komatsu, (2010) J. Univ. Chem. Tech. Metallur. 45, 219.
Published
2017-01-10
Section
Articles